The Digital Pharmacovigilance Ecosystem: An Interdisciplinary Review of Real-Time Wearable Monitoring, EHR Integration, and Artificial Intelligence in Chronic Disease Management

Khalil Rafed B Alsaedi (1), Abdullah Ali Alzumaia (2), Wafiq Mohamed Hadl Alharb (3), Waleed Mualla Almukhlifi (4), Rakan Ibrahim Mohammed Almuqbil (2), Abdullah Abdulrahman Alotaibi (2), Fahad Galab Aljabali (2), Elham Kamil Alanazi (5), Fahad Ali Alshamrani (2), Munahi Mohammed Munahi Alqahtani (6), Ali Abdulmohsen Alessa (7), Abdullah Ahmed Ali Faqihi (8)
(1) Madinah Health Custer- Alsalam Hospital, Ministry of Health, Saudi Arabia,
(2) Ministry Of Health, Saudi Arabia,
(3) Al Wasli Phc Care Center, Jazan, Ministry of Health, Saudi Arabia,
(4) Imam Abdulrahman Al Faisal Hospital,Ministry of Health, Saudi Arabia,
(5) Al Yamamah Hospital – Riyadh,Ministry of Health, Saudi Arabia,
(6) Riyadh, Al-Rain, Al-Rain General Hospital,Ministry of Health, Saudi Arabia,
(7) Dhahran Specialized Eye Hospital, Ministry of Health, Saudi Arabia,
(8) King Abdullah Hospital – Bisha, Ministry of Health, Saudi Arabia

Abstract

Background: The management of chronic diseases in primary care is undergoing a profound transformation driven by the convergence of digital health technologies. Traditional pharmacovigilance, reliant on spontaneous reporting and periodic reviews, is ill-suited for detecting subtle, longitudinal adverse drug reactions (ADRs) in ambulatory patients. The emergence of continuous data streams from wearable medical devices and advanced analytics within electronic health records (EHRs) presents an unprecedented opportunity to establish a proactive, real-time safety surveillance system embedded within routine care. Aim: This narrative review aims to synthesize contemporary evidence on an integrated digital pharmacovigilance ecosystem for chronic disease management. Methods: A systematic search of peer-reviewed literature (2010-2024) was conducted across PubMed, IEEE Xplore, Scopus, CINAHL, and ACM Digital Library. Results: The review identifies that a functional digital pharmacovigilance ecosystem requires seamless data interoperability, validated AI algorithms, and clear clinical workflows. Key findings highlight that wearables provide continuous physiological data serving as potential digital biomarkers for ADRs; EHR-integrated AI can flag anomalous patterns against individual and population baselines; this system empowers general practitioners with actionable insights for treatment personalization. Conclusion: Moving from passive to active pharmacovigilance necessitates a fundamental re-engineering of the primary care chronic disease pathway. Success depends on interdisciplinary collaboration to address challenges of data quality, regulatory frameworks, clinical validation, and equitable access. This ecosystem promises to enhance medication safety, optimize therapeutic outcomes, and usher in a new era of data-driven, preventive pharmacotherapy.

Full text article

Generated from XML file

References

Alinia, P., Sah, R. K., McDonell, M., Pendry, P., Parent, S., Ghasemzadeh, H., & Cleveland, M. J. (2021). Associations between physiological signals captured using wearable sensors and self-reported outcomes among adults in alcohol use disorder recovery: development and usability study. JMIR Formative Research, 5(7), e27891. https://doi.org/10.2196/27891

Ayaz, M., Pasha, M. F., Alzahrani, M. Y., Budiarto, R., & Stiawan, D. (2021). The Fast Health Interoperability Resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities. JMIR medical informatics, 9(7), e21929. https://doi.org/10.2196/21929

Bate, A., & Hobbiger, S. F. (2021). Artificial intelligence, real-world automation and the safety of medicines. Drug safety, 44(2), 125-132. https://doi.org/10.1007/s40264-020-01001-7

Battelino, T., Alexander, C. M., Amiel, S. A., Arreaza-Rubin, G., Beck, R. W., Bergenstal, R. M., ... & Phillip, M. (2023). Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. The lancet Diabetes & endocrinology, 11(1), 42-57. https://doi.org/10.1016/S2213-8587(22)00319-9

Boers, E., Barrett, M., Su, J. G., Benjafield, A. V., Sinha, S., Kaye, L., ... & Malhotra, A. (2023). Global burden of chronic obstructive pulmonary disease through 2050. JAMA Network Open, 6(12), e2346598-e2346598. doi:10.1001/jamanetworkopen.2023.46598

Chen, X., Zhou, X., Li, H., Li, J., & Jiang, H. (2020). The value of WeChat application in chronic diseases management in China. Computer Methods and Programs in Biomedicine, 196, 105710. https://doi.org/10.1016/j.cmpb.2020.105710

Conte, P., Ascierto, P. A., Patelli, G., Danesi, R., Vanzulli, A., Sandomenico, F., ... & Siena, S. (2022). Drug-induced interstitial lung disease during cancer therapies: expert opinion on diagnosis and treatment. ESMO open, 7(2), 100404. https://doi.org/10.1016/j.esmoop.2022.100404

Corrigan-Curay, J., Sacks, L., & Woodcock, J. (2018). Real-world evidence and real-world data for evaluating drug safety and effectiveness. Jama, 320(9), 867-868. doi:10.1001/jama.2018.10136

Davis, S. E., Zabotka, L., Desai, R. J., Wang, S. V., Maro, J. C., Coughlin, K., ... & Smith, J. C. (2023). Use of electronic health record data for drug safety signal identification: a scoping review. Drug safety, 46(8), 725-742. https://doi.org/10.1007/s40264-023-01325-0

Ding, E. Y., Tran, K. V., Lessard, D., Wang, Z., Han, D., Mohagheghian, F., ... & McManus, D. D. (2023). Accuracy, usability, and adherence of smartwatches for atrial fibrillation detection in older adults after stroke: randomized controlled trial. JMIR cardio, 7(1), e45137. https://doi.org/10.2196/45137

Dunn, J., Shandhi, M. M. H., Cho, P., Roghanizad, A., Singh, K., Wang, W., ... & Shaw, R. (2022). A method for intelligent allocation of diagnostic testing by leveraging data from commercial wearable devices: A case study on COVID-19. Research Square, rs-3. https://doi.org/10.21203/rs.3.rs-1490524/v1

Giardina, C., Cutroneo, P. M., Mocciaro, E., Russo, G. T., Mandraffino, G., Basile, G., ... & Arcoraci, V. (2018). Adverse drug reactions in hospitalized patients: results of the FORWARD (Facilitation of Reporting in Hospital Ward) study. Frontiers in pharmacology, 9, 350.https://doi.org/10.3389/fphar.2018.00350

Gonzalez-Hernandez, G., Krallinger, M., Muñoz, M., Rodriguez-Esteban, R., Uzuner, Ö., & Hirschman, L. (2022). Challenges and opportunities for mining adverse drug reactions: perspectives from pharma, regulatory agencies, healthcare providers and consumers. Database, 2022, baac071. https://doi.org/10.1093/database/baac071

Guan, M. (2023). Machine Learning for Analyzing Drug Safety in Electronic Health Records. In Machine Learning and Deep Learning in Computational Toxicology (pp. 595-610). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-20730-3_26

Johnson, J. K., Stilphen, M., Young, D. L., Friedman, M., Marcus, R. L., Noren, C. S., ... & Freburger, J. K. (2021). Advancing rehabilitation practice using embedded learning health system researchers. Physical Therapy, 101(6), pzab029. https://doi.org/10.1093/ptj/pzab029

Li, M., Chen, S., Lai, Y., Liang, Z., Wang, J., Shi, J., ... & Ung, C. O. L. (2021). Integrating real-world evidence in the regulatory decision-making process: a systematic analysis of experiences in the US, EU, and China using a logic model. Frontiers in Medicine, 8, 669509. https://doi.org/10.3389/fmed.2021.669509

Liu, N., Huang, R., Baldacchino, T., Sud, A., Sud, K., Khadra, M., & Kim, J. (2020). Telehealth for noncritical patients with chronic diseases during the COVID-19 pandemic. Journal of Medical Internet Research, 22(8), e19493. https://doi.org/10.2196/19493

Lu, Z. K., Xiong, X., Lee, T., Wu, J., Yuan, J., & Jiang, B. (2021). Big data and real-world data based cost-effectiveness studies and decision-making models: a systematic review and analysis. Frontiers in Pharmacology, 12, 700012. https://doi.org/10.3389/fphar.2021.700012

Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S., & Ramoni, R. B. (2016). SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. Journal of the American Medical Informatics Association, 23(5), 899-908. https://doi.org/10.1093/jamia/ocv189

Marzo, R. R., Chen, H. W. J., Abid, K., Chauhan, S., Kaggwa, M. M., Essar, M. Y., ... & Lin, Y. (2022). Adapted digital health literacy and health information seeking behavior among lower income groups in Malaysia during the COVID-19 pandemic. Frontiers in public health, 10, 998272. https://doi.org/10.3389/fpubh.2022.998272

Patel, J., Fang, J., Taylor, L. J., Adler, D. G., & Gawron, A. J. (2019). Safety and efficacy of non-anesthesiologist administration of propofol sedation during esophagogastroduodenoscopy in the intensive care unit. Endoscopy International Open, 7(04), E625-E629. DOI: 10.1055/a-0829-6284

Perez, M. V., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S., Garcia, A., Ferris, T., ... & Turakhia, M. P. (2019). Large-scale assessment of a smartwatch to identify atrial fibrillation. New England Journal of Medicine, 381(20), 1909-1917. DOI: 10.1056/NEJMoa1901183

Skeoch, S., Weatherley, N., Swift, A. J., Oldroyd, A., Johns, C., Hayton, C., ... & Chaudhuri, N. (2018). Drug-induced interstitial lung disease: a systematic review. Journal of clinical medicine, 7(10), 356. https://doi.org/10.3390/jcm7100356

Song, F., Zang, C., Ma, X., Hu, S., Sun, Q., Chow, S. C., & Sun, H. (2021). The use of real-world data/evidence in regulatory submissions. Contemporary Clinical Trials, 109, 106521. https://doi.org/10.1016/j.cct.2021.106521

Steinhubl, S. R., et al. (2020). Digital clinical trials: Creating a vision for the future. NPJ Digital Medicine, *3*, 101.

Tavakoli, M., Carriere, J., & Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID‐19 pandemic: An analysis of the state of the art and future vision. Advanced intelligent systems, 2(7), 2000071. https://doi.org/10.1002/aisy.202000071

Vayena, E., Blasimme, A., & Sugarman, J. (2023). Decentralised clinical trials: ethical opportunities and challenges. The Lancet Digital Health, 5(6), e390-e394. https://doi.org/10.1016/S2589-7500(23)00052-3

Wang, S. V., Sreedhara, S. K., & Schneeweiss, S. (2022). Reproducibility of real-world evidence studies using clinical practice data to inform regulatory and coverage decisions. Nature Communications, 13(1), 5126. https://doi.org/10.1038/s41467-022-32310-3

Williams, D. P., Lazic, S. E., Foster, A. J., Semenova, E., & Morgan, P. (2019). Predicting drug-induced liver injury with Bayesian machine learning. Chemical research in toxicology, 33(1), 239-248. https://doi.org/10.1021/acs.chemrestox.9b00264

Yan, B., Ye, X., Wang, J., Han, J., Wu, L., He, S., ... & Bo, X. (2022). An algorithm framework for drug-induced liver injury prediction based on genetic algorithm and ensemble learning. Molecules, 27(10), 3112. https://doi.org/10.3390/molecules27103112

Yang, Y., Zhou, X., Gao, S., Lin, H., Xie, Y., Feng, Y., ... & Zhan, S. (2018). Evaluation of electronic healthcare databases for post-marketing drug safety surveillance and pharmacoepidemiology in China. Drug safety, 41(1), 125-137. https://doi.org/10.1007/s40264-017-0589-z

Authors

Khalil Rafed B Alsaedi
k1r12010@hotmail.com (Primary Contact)
Abdullah Ali Alzumaia
Wafiq Mohamed Hadl Alharb
Waleed Mualla Almukhlifi
Rakan Ibrahim Mohammed Almuqbil
Abdullah Abdulrahman Alotaibi
Fahad Galab Aljabali
Elham Kamil Alanazi
Fahad Ali Alshamrani
Munahi Mohammed Munahi Alqahtani
Ali Abdulmohsen Alessa
Abdullah Ahmed Ali Faqihi
Alsaedi, K. R. B., Abdullah Ali Alzumaia, Wafiq Mohamed Hadl Alharb, Waleed Mualla Almukhlifi, Rakan Ibrahim Mohammed Almuqbil, Abdullah Abdulrahman Alotaibi, … Abdullah Ahmed Ali Faqihi. (2024). The Digital Pharmacovigilance Ecosystem: An Interdisciplinary Review of Real-Time Wearable Monitoring, EHR Integration, and Artificial Intelligence in Chronic Disease Management. Saudi Journal of Medicine and Public Health, 1(2), 1723–1728. https://doi.org/10.64483/202412483

Article Details

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)