The Digital Pharmacovigilance Ecosystem: An Interdisciplinary Review of Real-Time Wearable Monitoring, EHR Integration, and Artificial Intelligence in Chronic Disease Management
Abstract
Background: The management of chronic diseases in primary care is undergoing a profound transformation driven by the convergence of digital health technologies. Traditional pharmacovigilance, reliant on spontaneous reporting and periodic reviews, is ill-suited for detecting subtle, longitudinal adverse drug reactions (ADRs) in ambulatory patients. The emergence of continuous data streams from wearable medical devices and advanced analytics within electronic health records (EHRs) presents an unprecedented opportunity to establish a proactive, real-time safety surveillance system embedded within routine care. Aim: This narrative review aims to synthesize contemporary evidence on an integrated digital pharmacovigilance ecosystem for chronic disease management. Methods: A systematic search of peer-reviewed literature (2010-2024) was conducted across PubMed, IEEE Xplore, Scopus, CINAHL, and ACM Digital Library. Results: The review identifies that a functional digital pharmacovigilance ecosystem requires seamless data interoperability, validated AI algorithms, and clear clinical workflows. Key findings highlight that wearables provide continuous physiological data serving as potential digital biomarkers for ADRs; EHR-integrated AI can flag anomalous patterns against individual and population baselines; this system empowers general practitioners with actionable insights for treatment personalization. Conclusion: Moving from passive to active pharmacovigilance necessitates a fundamental re-engineering of the primary care chronic disease pathway. Success depends on interdisciplinary collaboration to address challenges of data quality, regulatory frameworks, clinical validation, and equitable access. This ecosystem promises to enhance medication safety, optimize therapeutic outcomes, and usher in a new era of data-driven, preventive pharmacotherapy.
Full text article
References
Alinia, P., Sah, R. K., McDonell, M., Pendry, P., Parent, S., Ghasemzadeh, H., & Cleveland, M. J. (2021). Associations between physiological signals captured using wearable sensors and self-reported outcomes among adults in alcohol use disorder recovery: development and usability study. JMIR Formative Research, 5(7), e27891. https://doi.org/10.2196/27891
Ayaz, M., Pasha, M. F., Alzahrani, M. Y., Budiarto, R., & Stiawan, D. (2021). The Fast Health Interoperability Resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities. JMIR medical informatics, 9(7), e21929. https://doi.org/10.2196/21929
Bate, A., & Hobbiger, S. F. (2021). Artificial intelligence, real-world automation and the safety of medicines. Drug safety, 44(2), 125-132. https://doi.org/10.1007/s40264-020-01001-7
Battelino, T., Alexander, C. M., Amiel, S. A., Arreaza-Rubin, G., Beck, R. W., Bergenstal, R. M., ... & Phillip, M. (2023). Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. The lancet Diabetes & endocrinology, 11(1), 42-57. https://doi.org/10.1016/S2213-8587(22)00319-9
Boers, E., Barrett, M., Su, J. G., Benjafield, A. V., Sinha, S., Kaye, L., ... & Malhotra, A. (2023). Global burden of chronic obstructive pulmonary disease through 2050. JAMA Network Open, 6(12), e2346598-e2346598. doi:10.1001/jamanetworkopen.2023.46598
Chen, X., Zhou, X., Li, H., Li, J., & Jiang, H. (2020). The value of WeChat application in chronic diseases management in China. Computer Methods and Programs in Biomedicine, 196, 105710. https://doi.org/10.1016/j.cmpb.2020.105710
Conte, P., Ascierto, P. A., Patelli, G., Danesi, R., Vanzulli, A., Sandomenico, F., ... & Siena, S. (2022). Drug-induced interstitial lung disease during cancer therapies: expert opinion on diagnosis and treatment. ESMO open, 7(2), 100404. https://doi.org/10.1016/j.esmoop.2022.100404
Corrigan-Curay, J., Sacks, L., & Woodcock, J. (2018). Real-world evidence and real-world data for evaluating drug safety and effectiveness. Jama, 320(9), 867-868. doi:10.1001/jama.2018.10136
Davis, S. E., Zabotka, L., Desai, R. J., Wang, S. V., Maro, J. C., Coughlin, K., ... & Smith, J. C. (2023). Use of electronic health record data for drug safety signal identification: a scoping review. Drug safety, 46(8), 725-742. https://doi.org/10.1007/s40264-023-01325-0
Ding, E. Y., Tran, K. V., Lessard, D., Wang, Z., Han, D., Mohagheghian, F., ... & McManus, D. D. (2023). Accuracy, usability, and adherence of smartwatches for atrial fibrillation detection in older adults after stroke: randomized controlled trial. JMIR cardio, 7(1), e45137. https://doi.org/10.2196/45137
Dunn, J., Shandhi, M. M. H., Cho, P., Roghanizad, A., Singh, K., Wang, W., ... & Shaw, R. (2022). A method for intelligent allocation of diagnostic testing by leveraging data from commercial wearable devices: A case study on COVID-19. Research Square, rs-3. https://doi.org/10.21203/rs.3.rs-1490524/v1
Giardina, C., Cutroneo, P. M., Mocciaro, E., Russo, G. T., Mandraffino, G., Basile, G., ... & Arcoraci, V. (2018). Adverse drug reactions in hospitalized patients: results of the FORWARD (Facilitation of Reporting in Hospital Ward) study. Frontiers in pharmacology, 9, 350.https://doi.org/10.3389/fphar.2018.00350
Gonzalez-Hernandez, G., Krallinger, M., Muñoz, M., Rodriguez-Esteban, R., Uzuner, Ö., & Hirschman, L. (2022). Challenges and opportunities for mining adverse drug reactions: perspectives from pharma, regulatory agencies, healthcare providers and consumers. Database, 2022, baac071. https://doi.org/10.1093/database/baac071
Guan, M. (2023). Machine Learning for Analyzing Drug Safety in Electronic Health Records. In Machine Learning and Deep Learning in Computational Toxicology (pp. 595-610). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-20730-3_26
Johnson, J. K., Stilphen, M., Young, D. L., Friedman, M., Marcus, R. L., Noren, C. S., ... & Freburger, J. K. (2021). Advancing rehabilitation practice using embedded learning health system researchers. Physical Therapy, 101(6), pzab029. https://doi.org/10.1093/ptj/pzab029
Li, M., Chen, S., Lai, Y., Liang, Z., Wang, J., Shi, J., ... & Ung, C. O. L. (2021). Integrating real-world evidence in the regulatory decision-making process: a systematic analysis of experiences in the US, EU, and China using a logic model. Frontiers in Medicine, 8, 669509. https://doi.org/10.3389/fmed.2021.669509
Liu, N., Huang, R., Baldacchino, T., Sud, A., Sud, K., Khadra, M., & Kim, J. (2020). Telehealth for noncritical patients with chronic diseases during the COVID-19 pandemic. Journal of Medical Internet Research, 22(8), e19493. https://doi.org/10.2196/19493
Lu, Z. K., Xiong, X., Lee, T., Wu, J., Yuan, J., & Jiang, B. (2021). Big data and real-world data based cost-effectiveness studies and decision-making models: a systematic review and analysis. Frontiers in Pharmacology, 12, 700012. https://doi.org/10.3389/fphar.2021.700012
Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S., & Ramoni, R. B. (2016). SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. Journal of the American Medical Informatics Association, 23(5), 899-908. https://doi.org/10.1093/jamia/ocv189
Marzo, R. R., Chen, H. W. J., Abid, K., Chauhan, S., Kaggwa, M. M., Essar, M. Y., ... & Lin, Y. (2022). Adapted digital health literacy and health information seeking behavior among lower income groups in Malaysia during the COVID-19 pandemic. Frontiers in public health, 10, 998272. https://doi.org/10.3389/fpubh.2022.998272
Patel, J., Fang, J., Taylor, L. J., Adler, D. G., & Gawron, A. J. (2019). Safety and efficacy of non-anesthesiologist administration of propofol sedation during esophagogastroduodenoscopy in the intensive care unit. Endoscopy International Open, 7(04), E625-E629. DOI: 10.1055/a-0829-6284
Perez, M. V., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S., Garcia, A., Ferris, T., ... & Turakhia, M. P. (2019). Large-scale assessment of a smartwatch to identify atrial fibrillation. New England Journal of Medicine, 381(20), 1909-1917. DOI: 10.1056/NEJMoa1901183
Skeoch, S., Weatherley, N., Swift, A. J., Oldroyd, A., Johns, C., Hayton, C., ... & Chaudhuri, N. (2018). Drug-induced interstitial lung disease: a systematic review. Journal of clinical medicine, 7(10), 356. https://doi.org/10.3390/jcm7100356
Song, F., Zang, C., Ma, X., Hu, S., Sun, Q., Chow, S. C., & Sun, H. (2021). The use of real-world data/evidence in regulatory submissions. Contemporary Clinical Trials, 109, 106521. https://doi.org/10.1016/j.cct.2021.106521
Steinhubl, S. R., et al. (2020). Digital clinical trials: Creating a vision for the future. NPJ Digital Medicine, *3*, 101.
Tavakoli, M., Carriere, J., & Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID‐19 pandemic: An analysis of the state of the art and future vision. Advanced intelligent systems, 2(7), 2000071. https://doi.org/10.1002/aisy.202000071
Vayena, E., Blasimme, A., & Sugarman, J. (2023). Decentralised clinical trials: ethical opportunities and challenges. The Lancet Digital Health, 5(6), e390-e394. https://doi.org/10.1016/S2589-7500(23)00052-3
Wang, S. V., Sreedhara, S. K., & Schneeweiss, S. (2022). Reproducibility of real-world evidence studies using clinical practice data to inform regulatory and coverage decisions. Nature Communications, 13(1), 5126. https://doi.org/10.1038/s41467-022-32310-3
Williams, D. P., Lazic, S. E., Foster, A. J., Semenova, E., & Morgan, P. (2019). Predicting drug-induced liver injury with Bayesian machine learning. Chemical research in toxicology, 33(1), 239-248. https://doi.org/10.1021/acs.chemrestox.9b00264
Yan, B., Ye, X., Wang, J., Han, J., Wu, L., He, S., ... & Bo, X. (2022). An algorithm framework for drug-induced liver injury prediction based on genetic algorithm and ensemble learning. Molecules, 27(10), 3112. https://doi.org/10.3390/molecules27103112
Yang, Y., Zhou, X., Gao, S., Lin, H., Xie, Y., Feng, Y., ... & Zhan, S. (2018). Evaluation of electronic healthcare databases for post-marketing drug safety surveillance and pharmacoepidemiology in China. Drug safety, 41(1), 125-137. https://doi.org/10.1007/s40264-017-0589-z
Authors
Copyright (c) 2024 Khalil Rafed B Alsaedi, Abdullah Ali Alzumaia, Wafiq Mohamed Hadl Alharb, Waleed Mualla Almukhlifi, Rakan Ibrahim Mohammed Almuqbil, Abdullah Abdulrahman Alotaibi, Fahad Galab Aljabali, Elham Kamil Alanazi, Fahad Ali Alshamrani, Munahi Mohammed Munahi Alqahtani, Ali Abdulmohsen Alessa, Abdullah Ahmed Ali Faqihi

This work is licensed under a Creative Commons Attribution 4.0 International License.