The New Frontier in Care: A Systematic Review of Nursing Implications of Remote Patient Monitoring (RPM) for Managing Chronic Diseases

Mohammed Bakheet Dhaif ALdossary (1), Maid Abdul Hameed Al-Enezi (2), Muneerah Mubarak Aldosary (3), Refah Abdullah Mohammed ALdawsari (4), Afrah Mubarak Saeed ALdawsari (5), Samar Mushabab Hadi Al Mahboob (5), Raghad Saad Naser ALdusari (5), Hanan Sanad Saffan Alanazi (6), Fayiz Ali Alshehri (7), Ghurmullah Mukharrib Khalaf Almalki (8), ALia Mata Alanazi (9), Hanin Mohammed Mufareh Asiri (10), Salam Fahad Alsubei (11), Osama Abdulilah Alhamdan (7), Ramzi Hamzah ALkhaibari (12)
(1) Primary Health Care Crnter  in Wadi Ad-Dawasir, Ministry of Health, Saudi Arabia,
(2) Salman bin Mohammed-Hospital, Ministry of Health, Saudi Arabia,
(3) Primary Health Care Sector  in Wadi Ad-Dawasir , Ministry of Health, Saudi Arabia,
(4) PHC Sector  in Wadi Ad-Dawasir , Ministry of Health, Saudi Arabia,
(5) phcc Al-Walamin , Ministry of Health, Saudi Arabia,
(6) Riyadh first cluster , Ministry of Health, Saudi Arabia,
(7) King Abdullah bin Abdulaziz University Hospital , Ministry of Health, Saudi Arabia,
(8) First District (Western Tuwaiq Health Center) , Ministry of Health, Saudi Arabia,
(9) Alnaseem  East Health Care Center , Ministry of Health, Saudi Arabia,
(10) Alazizyah Health Center Abha , Ministry of Health, Saudi Arabia,
(11) Tuwaiq Western Health Center , Ministry of Health, Saudi Arabia,
(12) King Khalid Hospital In Al Kharj, Ministry of Health, Saudi Arabia

Abstract

Background: The increasing global burden of noncommunicable diseases necessitates shifting from episodic to ongoing, proactive models of care. Remote Patient Monitoring (RPM) reacts by enabling patient health information to be collected from outside of clinical settings. Though its economic and technological benefits are well established, the profound implications for the nursing practice are an important area that needs to be synthesized.


Aim: The purpose of this review is to explore the different implications of RPM on nursing responsibilities, roles, and workflows in the management of chronic diseases.


Methods: The method employed was a narrative review to synthesize and critically appraise relevant studies published between 2015 and 2024.


Results: Integration of RPM alters the nurse's role from direct care provider to a hybrid "virtualist" with expertise in data interpretation, patient education, and technology. This impacts the patient-nurse relationship, offering enhanced connectivity as well as risks of depersonalization. At the operational level, RPM requires redesign of workflow to minimize alert fatigue and promote interprofessional practice. The review also identifies key ethical concerns, including data privacy, equity of access, and surveillance potential.


Conclusion: RPM is an innovative tool that improves, not replaces, nursing practice. Its successful utilization depends on informed investment in nurses through personalized education, workflow optimization, and accurate ethical guidelines to establish a viable, patient-centered future for the treatment of chronic diseases.

Full text article

Generated from XML file

References

An, M. H., You, S. C., Park, R. W., & Lee, S. (2021). Using an extended technology acceptance model to understand the factors influencing telehealth utilization after flattening the COVID-19 curve in South Korea: cross-sectional survey study. JMIR medical informatics, 9(1), e25435. https://doi.org/10.2196/25435

Arsad, F. S., Syed Soffian, S. S., Megat Kamaruddin, P. S. N., Nordin, N. R., Baharudin, M. H., Baharudin, U. M., ... & Ahmad, N. (2023). The impact of eHealth applications in healthcare intervention: a systematic review. Journal of Health Research, 37(3), 178-189. https://doi.org/10.56808/2586-940X.1020

Cardoso, D., Cardoso, A. F., & Fernandes, A. M. (2023). Digital health education: shaping the next generation of nursing professionals. JBI Evidence Synthesis, 21(7), 1355-1356. DOI: 10.11124/JBIES-23-00269

Chishtie, J., Sapiro, N., Wiebe, N., Rabatach, L., Lorenzetti, D., Leung, A. A., ... & Eastwood, C. A. (2023). Use of epic electronic health record system for health care research: scoping review. Journal of medical Internet research, 25, e51003. https://doi.org/10.2196/51003

Crawford, A., & Serhal, E. (2020). Digital health equity and COVID-19: the innovation curve cannot reinforce the social gradient of health. Journal of medical Internet research, 22(6), e19361. https://doi.org/10.2196/19361

Creber, A., Leo, D. G., Buckley, B. J., Chowdhury, M., Harrison, S. L., Isanejad, M., ... & TAILOR investigators. (2023). Use of telemonitoring in patient self-management of chronic disease: a qualitative meta-synthesis. BMC cardiovascular disorders, 23(1), 469. https://doi.org/10.1186/s12872-023-03486-3

DeJean, D., Giacomini, M., Vanstone, M., & Brundisini, F. (2013). Patient experiences of depression and anxiety with chronic disease: a systematic review and qualitative meta-synthesis. Ontario health technology assessment series, 13(16), 1. https://pubmed.ncbi.nlm.nih.gov/24228079/

Dicheva, N. K., Rehman, I. U., Anwar, A., Nasralla, M. M., Husamaldin, L., & Aleshaiker, S. (2023). Digital transformation in nursing education: A systematic review on Computer-Aided nursing education pedagogies, recent advancements and outlook on the Post-COVID-19 era. IEEE Access, 11, 135659-135695. https://doi.org/10.1109/ACCESS.2023.3337669

Gee, P. M., Greenwood, D. A., Paterniti, D. A., Ward, D., & Miller, L. M. S. (2015). The eHealth enhanced chronic care model: a theory derivation approach. Journal of medical Internet research, 17(4), e4067. https://doi.org/10.2196/jmir.4067

Gray, R., Indraratna, P., Lovell, N., & Ooi, S. Y. (2022). Digital health technology in the prevention of heart failure and coronary artery disease. Cardiovascular Digital Health Journal, 3(6), S9-S16. https://doi.org/10.1016/j.cvdhj.2022.09.002

Hong, N., Liu, C., Gao, J., Han, L., Chang, F., Gong, M., & Su, L. (2022). State of the art of machine learning–enabled clinical decision support in intensive care units: literature review. JMIR medical informatics, 10(3), e28781. https://doi.org/10.2196/28781

Huang, R., Wang, H., Shen, Z., Cai, T., Zhou, Y., Wang, Y., ... & Ma, J. (2022). Increased glycemic variability evaluated by continuous glucose monitoring is associated with osteoporosis in type 2 diabetic patients. Frontiers in Endocrinology, 13, 861131. https://doi.org/10.3389/fendo.2022.861131

Kitsiou, S., Paré, G., & Jaana, M. (2015). Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. Journal of medical Internet research, 17(3), e63. https://doi.org/10.2196/jmir.4174

Lee, A. Y. L., Wong, A. K. C., Hung, T. T. M., Yan, J., & Yang, S. (2022). Nurse-led telehealth intervention for rehabilitation (telerehabilitation) among community-dwelling patients with chronic diseases: systematic review and meta-analysis. Journal of medical Internet research, 24(11), e40364. https://doi.org/10.2196/40364

Liljeroos, M., Thylén, I., & Strömberg, A. (2020). Patients' and nurses’ experiences and perceptions of remote monitoring of implantable cardiac defibrillators in heart failure: cross-sectional, descriptive, mixed methods study. Journal of medical Internet research, 22(9), e19550. https://doi.org/10.2196/19550

Lysaght, T., Lim, H. Y., Xafis, V., & Ngiam, K. Y. (2019). AI-assisted decision-making in healthcare: the application of an ethics framework for big data in health and research. Asian Bioethics Review, 11(3), 299-314. https://doi.org/10.1007/s41649-019-00096-0

Madanian, S., Nakarada-Kordic, I., Reay, S., & Chetty, T. H. (2023). Patients' perspectives on digital health tools. PEC innovation, 2, 100171. https://doi.org/10.1016/j.pecinn.2023.100171

McLean, S., Nurmatov, U., Liu, J. L., Pagliari, C., Car, J., & Sheikh, A. (2011). Telehealthcare for chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews, (7). https://doi.org/10.1002/14651858.CD007718.pub2

Mozumder, M. A. I., Armand, T. P. T., Imtiyaj Uddin, S. M., Athar, A., Sumon, R. I., Hussain, A., & Kim, H. C. (2023). Metaverse for digital anti-aging healthcare: an overview of potential use cases based on artificial intelligence, blockchain, IoT technologies, its challenges, and future directions. Applied Sciences, 13(8), 5127. https://doi.org/10.3390/app13085127

Neuman, M. D., Kappelman, M. D., Israel, E., Ellenberg, S. S., Girman, C., Robb, J., ... & Trontell, A. (2020). Real-world experiences with generating real-world evidence: Case Studies from PCORI's pragmatic clinical Studies program. Contemporary Clinical Trials, 98, 106171. https://doi.org/10.1016/j.cct.2020.106171

Noah, B., Keller, M. S., Mosadeghi, S., Stein, L., Johl, S., Delshad, S., ... & Spiegel, B. M. (2018). Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ digital medicine, 1(1), 20172. https://doi.org/10.1038/s41746-017-0002-4

Oudshoorn, N. (2020). Conclusions: Towards a Sociology of Resilient Cyborgs. In Resilient Cyborgs: Living and Dying with Pacemakers and Defibrillators (pp. 303-327). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2529-2_10

Pekmezaris, R., Tortez, L., Williams, M., Patel, V., Makaryus, A., Zeltser, R., ... & Kozikowski, A. (2018). Home telemonitoring in heart failure: a systematic review and meta-analysis. Health Affairs, 37(12), 1983-1989. https://doi.org/10.1377/hlthaff.2018.05087

Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: a structured literature review. BMC medical informatics and decision making, 21(1), 125. https://doi.org/10.1186/s12911-021-01488-9

Sieck, C. J., Sheon, A., Ancker, J. S., Castek, J., Callahan, B., & Siefer, A. (2021). Digital inclusion as a social determinant of health. NPJ digital medicine, 4(1), 52. https://doi.org/10.1038/s41746-021-00413-8

Silver, J. K., Santa Mina, D., Bates, A., Gillis, C., Silver, E. M., Hunter, T. L., & Jack, S. (2022). Physical and psychological health behavior changes during the COVID-19 pandemic that may inform surgical prehabilitation: a narrative review. Current Anesthesiology Reports, 12(1), 109-124. https://doi.org/10.1007/s40140-022-00520-6

Sim, I. (2019). Mobile devices and health. New England Journal of Medicine, 381(10), 956-968. DOI: 10.1056/NEJMra1806949

Talal, A. H., Sofikitou, E. M., Jaanimägi, U., Zeremski, M., Tobin, J. N., & Markatou, M. (2020). A framework for patient-centered telemedicine: application and lessons learned from vulnerable populations. Journal of biomedical informatics, 112, 103622. https://doi.org/10.1016/j.jbi.2020.103622

Tang, M., Nakamoto, C. H., Stern, A. D., & Mehrotra, A. (2022). Trends in remote patient monitoring use in traditional Medicare. JAMA Internal Medicine, 182(9), 1005-1006. doi:10.1001/jamainternmed.2022.3043

Torous, J., Bucci, S., Bell, I. H., Kessing, L. V., Faurholt‐Jepsen, M., Whelan, P., ... & Firth, J. (2021). The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. World psychiatry, 20(3), 318-335. https://doi.org/10.1002/wps.20883

Walczak, R., Kludacz-Alessandri, M., & Hawrysz, L. (2022). Use of telemedicine technology among general practitioners during COVID-19: a modified technology acceptance model study in Poland. International Journal of Environmental Research and Public Health, 19(17), 10937. https://doi.org/10.3390/ijerph191710937

World Health Organization. (2021). Noncommunicable diseases: Key facts. Retrieved from https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

Zipfel, N., de Wit, M., Snippen, N. C., Bosma, A. R., Hulshof, C. T. J., de Boer, A. G. E. M., & van der Burg-Vermeulen, S. J. (2023). Improving person-centered occupational health care for workers with chronic health conditions: a feasibility study. BMC Medical Education, 23(1), 224. https://doi.org/10.1186/s12909-023-04141-3

Authors

Mohammed Bakheet Dhaif ALdossary
Mobaaldosari@moh.gov.sa (Primary Contact)
Maid Abdul Hameed Al-Enezi
Muneerah Mubarak Aldosary
Refah Abdullah Mohammed ALdawsari
Afrah Mubarak Saeed ALdawsari
Samar Mushabab Hadi Al Mahboob
Raghad Saad Naser ALdusari
Hanan Sanad Saffan Alanazi
Fayiz Ali Alshehri
Ghurmullah Mukharrib Khalaf Almalki
ALia Mata Alanazi
Hanin Mohammed Mufareh Asiri
Salam Fahad Alsubei
Osama Abdulilah Alhamdan
Ramzi Hamzah ALkhaibari
ALdossary, M. B. D., Al-Enezi, M. A. H., Aldosary, M. M., ALdawsari, R. A. M., ALdawsari, A. M. S., Al Mahboob, S. M. H., … ALkhaibari, R. H. (2024). The New Frontier in Care: A Systematic Review of Nursing Implications of Remote Patient Monitoring (RPM) for Managing Chronic Diseases. Saudi Journal of Medicine and Public Health, 1(1). https://doi.org/10.64483/jmph-167

Article Details

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.