Interprofessional Approaches to Heavy Metal Exposure Assessment and Management

Mohammad Hssin S Alazmi (1) , Sulaiman Mohammed Dhaher Alsharari (2) , Saida Yahia Ali Ghzwani (3) , Saad Hamoud Qahtan Alshehri (4) , Khulood Majed Hamoud Almutairi (5) , Mohammed Abdulrahman M Abobaker (6) , Mohammed Eid S Aljohany  (6) , Fahad Abdullah Sudan Almutairi (7) , Ali Abdulaziz Alrayes (8) , Ibrahim Ahmed Khabrani (9) , Kadhem Yousef Al Sultan  (8) , Ahmad Yahya Qasem Ghazwani (10) , Abdulaziz Mabrook ALzbali (11)
(1) Saudi Red Crescent Tabuk , Saudi Arabia,
(2) Al-Issawiya General Hospital Issawiya, Ministry of Health, Saudi Arabia,
(3) Al-Aidabi Health Center / Jazan, Ministry of Health, Saudi Arabia,
(4) Riyadh Branch Ministry Of Health , Saudi Arabia,
(5) Imam Abdul Rahman Alfaisal Hospital, Ministry of Health, Saudi Arabia,
(6) Ministry Of Health - Riyadh Branch, Saudi Arabia,
(7) Long-Term Care Hospital, Ministry of Health, Saudi Arabia,
(8) Ministry Of Health, Saudi Arabia,
(9) Jazan, Ministry of Health, Saudi Arabia,
(10) Aledabi Phcc, Ministry of Health, Saudi Arabia,
(11) Saudi Red Crescent, Saudi Arabia

Abstract

Background: Heavy metal exposure, stemming from both environmental and occupational sources, poses a significant global health risk. While some metals are essential in trace amounts, others like lead, arsenic, and mercury are toxic, causing multisystem damage through mechanisms like oxidative stress and enzyme inhibition. Diagnosis is challenging due to nonspecific symptoms that mimic common diseases.


Aim: This comprehensive review aims to detail the interprofessional approaches required for the effective assessment and management of heavy metal toxicity. It synthesizes information on etiology, pathophysiology, diagnostic testing, and collaborative care strategies.


Methods: The review outlines the critical procedures for accurate diagnosis, including the selection of appropriate biological specimens (blood, urine, hair) based on the metal's pharmacokinetics and the timing of exposure. It emphasizes advanced analytical techniques like Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the importance of rigorous quality control to prevent contamination and ensure result reliability.


Results: Accurate diagnosis hinges on correlating a plausible exposure history with consistent clinical symptoms and confirmatory laboratory testing. The clinical significance of test results must be interpreted within the context of population reference ranges and individual patient factors, as even low-level exposures can be harmful to vulnerable groups.


Conclusion: Effective management of heavy metal toxicity necessitates a coordinated, interprofessional effort. This involves clinicians, nurses, laboratory personnel, and toxicologists working together to ensure accurate diagnosis, guide interventions like chelation therapy, implement exposure mitigation, and protect public health.

Full text article

Generated from XML file

References

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133-64.

Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167-82.

Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018 Jan;119(1):157-184.

Dorne JL, Kass GE, Bordajandi LR, Amzal B, Bertelsen U, Castoldi AF, Heppner C, Eskola M, Fabiansson S, Ferrari P, Scaravelli E, Dogliotti E, Fuerst P, Boobis AR, Verger P. Human risk assessment of heavy metals: principles and applications. Met Ions Life Sci. 2011;8:27-60.

Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett. 2003 Jan 31;137(1-2):65-83.

Mikulski MA, Wichman MD, Simmons DL, Pham AN, Clottey V, Fuortes LJ. Toxic metals in ayurvedic preparations from a public health lead poisoning cluster investigation. Int J Occup Environ Health. 2017 Jul;23(3):187-192.

Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014 Jun;7(2):60-72.

Hanna-Attisha M, Lanphear B, Landrigan P. Lead Poisoning in the 21st Century: The Silent Epidemic Continues. Am J Public Health. 2018 Nov;108(11):1430.

Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA. Cadmium in Human Diseases: It's More than Just a Mere Metal. Indian J Clin Biochem. 2019 Oct;34(4):371-378.

Kim H, Lee HJ, Hwang JY, Ha EH, Park H, Ha M, Kim JH, Hong YC, Chang N. Blood cadmium concentrations of male cigarette smokers are inversely associated with fruit consumption. J Nutr. 2010 Jun;140(6):1133-8.

Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health. 2012;2012:460508.

Carocci A, Rovito N, Sinicropi MS, Genchi G. Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol. 2014;229:1-18.

Bjørklund G, Hilt B, Dadar M, Lindh U, Aaseth J. Neurotoxic effects of mercury exposure in dental personnel. Basic Clin Pharmacol Toxicol. 2019 May;124(5):568-574.

Hossini H, Shafie B, Niri AD, Nazari M, Esfahlan AJ, Ahmadpour M, Nazmara Z, Ahmadimanesh M, Makhdoumi P, Mirzaei N, Hoseinzadeh E. A comprehensive review on human health effects of chromium: insights on induced toxicity. Environ Sci Pollut Res Int. 2022 Oct;29(47):70686-70705.

Baruthio F. Toxic effects of chromium and its compounds. Biol Trace Elem Res. 1992 Jan-Mar;32:145-53.

DesMarais TL, Costa M. Mechanisms of Chromium-Induced Toxicity. Curr Opin Toxicol. 2019 Apr;14:1-7.

Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: An overview. Indian J Pharmacol. 2011 May;43(3):246-53.

Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015 Jun;8(2):55-64.

Zajac L, Johnson SA, Hauptman M. Doc, can you test me for "toxic metals"? Challenges of testing for toxicants in patients with environmental concerns. Curr Probl Pediatr Adolesc Health Care. 2020 Feb;50(2):100762.

Wang YX, Feng W, Zeng Q, Sun Y, Wang P, You L, Yang P, Huang Z, Yu SL, Lu WQ. Variability of Metal Levels in Spot, First Morning, and 24-Hour Urine Samples over a 3-Month Period in Healthy Adult Chinese Men. Environ Health Perspect. 2016 Apr;124(4):468-76.

Barlow NL, Bradberry SM. Investigation and monitoring of heavy metal poisoning. J Clin Pathol. 2023 Feb;76(2):82-97.

Rodushkin I, Odman F. Assessment of the contamination from devices used for sampling and storage of whole blood and serum for element analysis. J Trace Elem Med Biol. 2001;15(1):40-5.

Moyer TP, Mussmann GV, Nixon DE. Blood-collection device for trace and ultra-trace metal specimens evaluated. Clin Chem. 1991 May;37(5):709-14.

Boeynaems JM, De Leener A, Dessars B, Villa-Lobos HR, Aubry JC, Cotton F, Thiry P. Evaluation of a new generation of plastic evacuated blood-collection tubes in clinical chemistry, therapeutic drug monitoring, hormone and trace metal analysis. Clin Chem Lab Med. 2004 Jan;42(1):67-71.

Sommar JN, Hedmer M, Lundh T, Nilsson L, Skerfving S, Bergdahl IA. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure. J Expo Sci Environ Epidemiol. 2014 Jan-Feb;24(1):51-7.

Smith D, Hernandez-Avila M, Téllez-Rojo MM, Mercado A, Hu H. The relationship between lead in plasma and whole blood in women. Environ Health Perspect. 2002 Mar;110(3):263-8.

Barbosa F, Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect. 2005 Dec;113(12):1669-74.

Banfi G, Salvagno GL, Lippi G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin Chem Lab Med. 2007;45(5):565-76.

Moreira Mde F, Neves EB. [Use of urine lead level as an exposure indicator and its relationship to blood lead]. Cad Saude Publica. 2008 Sep;24(9):2151-9.

Wang X, Gu H, Palma-Duran SA, Fierro A, Jasbi P, Shi X, Bresette W, Tasevska N. Influence of Storage Conditions and Preservatives on Metabolite Fingerprints in Urine. Metabolites. 2019 Sep 27;9(10)

Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat MP. What is the best biomarker to assess arsenic exposure via drinking water? Environ Int. 2012 Feb;39(1):150-71.

Hall M, Chen Y, Ahsan H, Slavkovich V, van Geen A, Parvez F, Graziano J. Blood arsenic as a biomarker of arsenic exposure: results from a prospective study. Toxicology. 2006 Aug 15;225(2-3):225-33.

Takayama Y, Masuzaki Y, Mizutani F, Iwata T, Maeda E, Tsukada M, Nomura K, Ito Y, Chisaki Y, Murata K. Associations between blood arsenic and urinary arsenic species concentrations as an exposure characterization tool. Sci Total Environ. 2021 Jan 01;750:141517.

Villain M, Cirimele V, Kintz P. Hair analysis in toxicology. Clin Chem Lab Med. 2004;42(11):1265-72.

Sharma S, Gupta A, Deshmukh A, Puri V. Arsenic poisoning and Mees' lines. QJM. 2016 Aug;109(8):565-6.

Kintz P. Hair Analysis in Forensic Toxicology: An Updated Review with a Special Focus on Pitfalls. Curr Pharm Des. 2017;23(36):5480-5486.

Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020 May 26;17(11)

Osorio-Rico L, Santamaria A, Galván-Arzate S. Thallium Toxicity: General Issues, Neurological Symptoms, and Neurotoxic Mechanisms. Adv Neurobiol. 2017;18:345-353.

Verdonck J, Duca RC, Galea KS, Iavicoli I, Poels K, Töreyin ZN, Vanoirbeek J, Godderis L. Systematic review of biomonitoring data on occupational exposure to hexavalent chromium. Int J Hyg Environ Health. 2021 Jul;236:113799.

Hodnett D, Wood DM, Raja K, Dargan PI, Shah AD. A healthy volunteer study to investigate trace element contamination of blood samples by stainless steel venepuncture needles. Clin Toxicol (Phila). 2012 Feb;50(2):99-107.

Wilschefski SC, Baxter MR. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev. 2019 Aug;40(3):115-133.

Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA. Human exposure to organic arsenic species from seafood. Sci Total Environ. 2017 Feb 15;580:266-282.

Molin M, Ydersbond TA, Ulven SM, Holck M, Dahl L, Sloth JJ, Fliegel D, Goessler W, Alexander J, Meltzer HM. Major and minor arsenic compounds accounting for the total urinary excretion of arsenic following intake of blue mussels (Mytilus edulis): a controlled human study. Food Chem Toxicol. 2012 Jul;50(7):2462-72.

Hackenmueller SA, Strathmann FG. Total arsenic screening prior to fractionation enhances clinical utility and test utilization in the assessment of arsenic toxicity. Am J Clin Pathol. 2014 Aug;142(2):184-9.

Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Caspian J Intern Med. 2017 Summer;8(3):135-145.

Yaginuma-Sakurai K, Murata K, Iwai-Shimada M, Nakai K, Kurokawa N, Tatsuta N, Satoh H. Hair-to-blood ratio and biological half-life of mercury: experimental study of methylmercury exposure through fish consumption in humans. J Toxicol Sci. 2012 Feb;37(1):123-30.

Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Hong YS. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med. 2016;28:5.

Martin Remy A, Robert A, Jacoby N, Wild P. Is Urinary Chromium Specific to Hexavalent Chromium Exposure in the Presence of Co-exposure to Other Chromium Compounds? A Biomonitoring Study in the Electroplating Industry. Ann Work Expo Health. 2021 Apr 22;65(3):332-345.

Bolann BJ, Rahil-Khazen R, Henriksen H, Isrenn R, Ulvik RJ. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory. Scand J Clin Lab Invest. 2007;67(4):353-66.

Plantin LO. Analytical methods for trace elements in biological material. Acta Neurol Scand Suppl. 1984;100:95-9.

Mattiello G, Bortoli A. [Instrumental analysis of trace elements]. Ann Ist Super Sanita. 1995;31(2):233-7.

Forrer R, Gautschi K, Lutz H. Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biol Trace Elem Res. 2001 Apr;80(1):77-93.

Gulson B, Kamenov GD, Manton W, Rabinowitz M. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields. Int J Environ Res Public Health. 2018 Apr 11;15(4)

Rodushkin I, Engström E, Baxter DC. Isotopic analyses by ICP-MS in clinical samples. Anal Bioanal Chem. 2013 Mar;405(9):2785-97.

Trzcinka-Ochocka M, Brodzka R, Janasik B. Useful and Fast Method for Blood Lead and Cadmium Determination Using ICP-MS and GF-AAS; Validation Parameters. J Clin Lab Anal. 2016 Mar;30(2):130-9.

Morton J, Leese E. Arsenic speciation in clinical samples: urine analysis using fast micro-liquid chromatography ICP-MS. Anal Bioanal Chem. 2011 Feb;399(5):1781-8.

Jones DR, Jarrett JM, Tevis DS, Franklin M, Mullinix NJ, Wallon KL, Derrick Quarles C, Caldwell KL, Jones RL. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures. Talanta. 2017 Jan 01;162:114-122.

Georgi JC, Sommer YL, Ward CD, Cheng PY, Jones RL, Caldwell KL. Biomonitoring method for the analysis of chromium and cobalt in human whole blood using inductively coupled plasma - kinetic energy discrimination - mass spectrometry (ICP-KED-MS). Anal Methods. 2017;9(23):3464-3476.

Steuerwald AJ, Parsons PJ, Arnason JG, Chen Z, Peterson CM, Louis GM. Trace element analysis of human urine collected after administration of Gd-based MRI contrast agents: characterizing spectral interferences using inorganic mass spectrometry. J Anal At Spectrom. 2013 Jun;28(6):821-830.

Lippi G, Daves M, Mattiuzzi C. Interference of medical contrast media on laboratory testing. Biochem Med (Zagreb). 2014;24(1):80-8.

Saravanabhavan G, Werry K, Walker M, Haines D, Malowany M, Khoury C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007-2013. Int J Hyg Environ Health. 2017 Mar;220(2 Pt A):189-200.

Namkoong S, Hong SP, Kim MH, Park BC. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis. Ann Dermatol. 2013 Feb;25(1):67-72.

Badrick T. Quality leadership and quality control. Clin Biochem Rev. 2003 Aug;24(3):81-93.

Buratti M, Xaiz D, Valia C, Colombi A. Inaccuracy quality control in the monitoring of trace metal concentrations in biological fluids. Sci Total Environ. 1992 Jun 09;120(1-2):81-3.

James D, Ames D, Lopez B, Still R, Simpson W, Twomey P. External quality assessment: best practice. J Clin Pathol. 2014 Aug;67(8):651-5.

Miller WG, Jones GR, Horowitz GL, Weykamp C. Proficiency testing/external quality assessment: current challenges and future directions. Clin Chem. 2011 Dec;57(12):1670-80.

Hertzberg MS, Mammen J, McCraw A, Nair SC, Srivastava A. Achieving and maintaining quality in the laboratory. Haemophilia. 2006 Jul;12 Suppl 3:61-7.

Kristensen GB, Meijer P. Interpretation of EQA results and EQA-based trouble shooting. Biochem Med (Zagreb). 2017 Feb 15;27(1):49-62.

Keleş M. Evaluation of the clinical chemistry tests analytical performance with Sigma Metric by using different quality specifications - Comparison of analyser actual performance with manufacturer data. Biochem Med (Zagreb). 2022 Feb 15;32(1):010703.

Ehrmeyer SS, Laessig RH. Has compliance with CLIA requirements really improved quality in US clinical laboratories? Clin Chim Acta. 2004 Aug 02;346(1):37-43.

Sommer YL, Ward CD, Georgi JC, Cheng PY, Jones RL. Importance of Preanalytical Factors in Measuring Cr and Co Levels in Human Whole Blood: Contamination Control, Proper Sample Collection and Long-Term Storage Stability. J Anal Toxicol. 2021 Mar 12;45(3):297-307.

Ward CD, Williams RJ, Mullenix K, Syhapanha K, Jones RL, Caldwell K. Trace Metals Screening Process of Devices Used for the Collection, Analysis, and Storage of Biological Specimens. At Spectrosc. 2018 Dec;39(6):219-228.

Authors

Mohammad Hssin S Alazmi
Norahmoudramdan@gmail.com (Primary Contact)
Sulaiman Mohammed Dhaher Alsharari
Saida Yahia Ali Ghzwani
Saad Hamoud Qahtan Alshehri
Khulood Majed Hamoud Almutairi
Mohammed Abdulrahman M Abobaker
Mohammed Eid S Aljohany 
Fahad Abdullah Sudan Almutairi
Ali Abdulaziz Alrayes
Ibrahim Ahmed Khabrani
Kadhem Yousef Al Sultan 
Ahmad Yahya Qasem Ghazwani
Abdulaziz Mabrook ALzbali
Alazmi, M. H. S., Sulaiman Mohammed Dhaher Alsharari, Saida Yahia Ali Ghzwani, Saad Hamoud Qahtan Alshehri, Khulood Majed Hamoud Almutairi, Mohammed Abdulrahman M Abobaker, … Abdulaziz Mabrook ALzbali. (2025). Interprofessional Approaches to Heavy Metal Exposure Assessment and Management. Saudi Journal of Medicine and Public Health, 2(2), 1116–1131. https://doi.org/10.64483/202522250

Article Details

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)