The Laboratory and Clinical Guide to RNA Therapeutic Analysis and Patient Management: Advanced Analytical Techniques and Nursing Considerations for the Physicochemical, Functional, and Safe Clinical Application of RNA Therapeutics
Abstract
Background: The success of messenger RNA (mRNA) vaccines has established RNA as a foundation therapeutic modality. The field of RNA therapeutics, however, extends far beyond vaccines and includes heterogeneous molecules like small interfering RNAs (siRNAs), antisense oligonucleotides (ASOs), and circular RNAs (circRNAs), each with its respective set of analytical challenges.
Aim: The aim of this review is to outline advances from 2015-2025 to provide an overall view of the laboratory toolkit required to ensure the identity, purity, potency, and safety of the broad diversity of RNA therapeutics. Furthermore, this review briefly outlines the critical role of nursing professionals in the clinical administration and patient monitoring of these sophisticated therapeutics.
Methods: We conducted a systematic review of the literature, spanning analytical techniques for the analysis of the RNA molecule itself—its primary sequence, integrity, and higher-order structure—and its delivery vehicles, with a focus on lipid nanoparticles (LNPs). Key in vitro and in vivo bioassays for determining biological activity were also discussed.
Results: The analysis delineates a sophisticated, multi-dimensional toolkit. Techniques such as mass spectrometry and capillary electrophoresis determine RNA identity and purity, while methods such as SHAPE probing identify important higher-order structures. Lipid nanoparticle characterization relies on dynamic light scattering and cryo-electron microscopy for parameters like size and encapsulation efficiency. Functional potency is finally verified with cell-based assays and animal models.
Conclusion: A robust and in-depth analytical strategy is the foundation for the development of next-generation RNA drugs. This review is a beginning to address challenges in RNA analysis with a view to guaranteeing the safety and efficacy of such novel drugs.
Full text article
References
Alanazi, A. J., Alreshidi, M. S., Alyamani, I. M., Alotibi, F. S. N., & Almutairi, N. H. B. (2020). Advancing Oncology Care: the Intersection of Pharmacological Therapies, Nursing Support, and Laboratory Diagnostics. International journal of health sciences, 4(S1), 426-441. https://doi.org/10.53730/ijhs.v4nS1.15362
Andries, O., Mc Cafferty, S., De Smedt, S. C., Weiss, R., Sanders, N. N., & Kitada, T. (2015). N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release, 217, 337-344. https://doi.org/10.1016/j.jconrel.2015.08.051
Aviran, S., & Guttman, M. (2018). Integrating RNA-seq and chemical probing to determine RNA structure. Nature Protocols, 13(5), 987–1006.
Baiersdörfer, M., Boros, G., Muramatsu, H., Mahiny, A., Vlatkovic, I., Sahin, U., & Karikó, K. (2019). A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Molecular therapy Nucleic acids, 15, 26-35. https://doi.org/10.1016/j.omtn.2019.02.018
Bloom, K., van den Berg, F., & Arbuthnot, P. (2021). Self-amplifying RNA vaccines for infectious diseases. Gene therapy, 28(3), 117-129. https://doi.org/10.1038/s41434-020-00204-y
Brader, M. L., Williams, S. J., Banks, J. M., Hui, W. H., Zhou, Z. H., & Jin, L. (2021). Encapsulation state of messenger RNA inside lipid nanoparticles. Biophysical journal, 120(14), 2766-2770. https://doi.org/10.1016/j.bpj.2021.03.012
Chen, R., Wang, S. K., Belk, J. A., Amaya, L., Li, Z., Cardenas, A., ... & Chang, H. Y. (2023). Engineering circular RNA for enhanced protein production. Nature biotechnology, 41(2), 262-272. https://doi.org/10.1038/s41587-022-01393-0
Cullis, P. R., & Hope, M. J. (2017). Lipid nanoparticle systems for enabling gene therapies. Molecular Therapy, 25(7), 1467-1475. https://doi.org/10.1016/j.ymthe.2017.03.013
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096
Gleeson, J., Leger, A., Prawer, Y. D., Lane, T. A., Harrison, P. J., Haerty, W., & Clark, M. B. (2022). Accurate expression quantification from nanopore direct RNA sequencing with NanoCount. Nucleic acids research, 50(4), e19-e19. https://doi.org/10.1093/nar/gkab1129
Goyon, A., Yehl, P., & Zhang, K. (2020). Characterization of therapeutic oligonucleotides by liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 182, 113105. https://doi.org/10.1016/j.jpba.2020.113105
Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05.
Hammond, S. M., Aartsma‐Rus, A., Alves, S., Borgos, S. E., Buijsen, R. A., Collin, R. W., ... & Arechavala‐Gomeza, V. (2021). Delivery of oligonucleotide‐based therapeutics: challenges and opportunities. EMBO molecular medicine, 13(4), e13243. https://doi.org/10.15252/emmm.202013243
Hendel, A., Bak, R. O., Clark, J. T., Kennedy, A. B., Ryan, D. E., Roy, S., ... & Porteus, M. H. (2015). Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature biotechnology, 33(9), 985-989. https://doi.org/10.1038/nbt.3290
Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6(12), 1078-1094. https://doi.org/10.1038/s41578-021-00358-0
Janas, M. M., Schlegel, M. K., Harbison, C. E., Yilmaz, V. O., Jiang, Y., Parmar, R., ... & Jadhav, V. (2018). Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nature communications, 9(1), 723. https://doi.org/10.1038/s41467-018-02989-4
Johnson, E. A., Rainbow, J. G., Reed, P. G., Gephart, S. M., & Carrington, J. M. (2023). Developing a preclinical nurse-nurse communication framework for clinical trial patient-related safety Information. CIN: Computers, Informatics, Nursing, 41(7), 514-521. DOI: 10.1097/CIN.0000000000000968
Karikó, K., Muramatsu, H., Keller, J. M., & Weissman, D. (2012). Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Molecular Therapy, 20(5), 948-953. https://doi.org/10.1038/mt.2012.7
Kulkarni, J. A., Darjuan, M. M., Mercer, J. E., Chen, S., Van Der Meel, R., Thewalt, J. L., ... & Cullis, P. R. (2018). On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS nano, 12(5), 4787-4795. https://doi.org/10.1021/acsnano.8b01516
Lermyte, F., Tsybin, Y. O., O’Connor, P. B., & Loo, J. A. (2019). Top or middle? Up or down? Toward a standard lexicon for protein top-down and allied mass spectrometry approaches. Journal of the American Society for Mass Spectrometry, 30(7), 1149-1157. https://doi.org/10.1007/s13361-019-02201-x
Lorenz, C., Lünse, C. E., & Mörl, M. (2017). tRNA modifications: impact on structure and thermal adaptation. Biomolecules, 7(2), 35. https://doi.org/10.3390/biom7020035
Mailler, E., Paillart, J. C., Marquet, R., Smyth, R. P., & Vivet‐Boudou, V. (2019). The evolution of RNA structural probing methods: from gels to next‐generation sequencing. Wiley Interdisciplinary Reviews: RNA, 10(2), e1518. https://doi.org/10.1002/wrna.1518
Marušič, M., Toplishek, M., & Plavec, J. (2023). NMR of RNA-Structure and interactions. Current Opinion in Structural Biology, 79, 102532. https://doi.org/10.1016/j.sbi.2023.102532
Moss, K. H., Popova, P., Hadrup, S. R., Astakhova, K., & Taskova, M. (2019). Lipid nanoparticles for delivery of therapeutic RNA oligonucleotides. Molecular pharmaceutics, 16(6), 2265-2277. https://doi.org/10.1021/acs.molpharmaceut.8b01290
Nelson, J., Sorensen, E. W., Mintri, S., Rabideau, A. E., Zheng, W., Besin, G., ... & Joyal, J. L. (2020). Impact of mRNA chemistry and manufacturing process on innate immune activation. Science advances, 6(26), eaaz6893. https://doi.org/10.1126/sciadv.aaz6893
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines—a new era in vaccinology. Nature reviews Drug discovery, 17(4), 261-279. http://dx.doi.org/10.1038/nrd.2017.243
Rangadurai, A., Shi, H., Xu, Y., Liu, B., Abou Assi, H., Boom, J. D., ... & Al-Hashimi, H. M. (2022). Measuring thermodynamic preferences to form non-native conformations in nucleic acids using ultraviolet melting. Proceedings of the National Academy of Sciences, 119(24), e2112496119. https://doi.org/10.1073/pnas.2112496119
Rohner, E., Yang, R., Foo, K. S., Goedel, A., & Chien, K. R. (2022). Unlocking the promise of mRNA therapeutics. Nature biotechnology, 40(11), 1586-1600. https://doi.org/10.1038/s41587-022-01491-z
Setten, R. L., Rossi, J. J., & Han, S. P. (2019). The current state and future directions of RNAi-based therapeutics. Nature reviews Drug discovery, 18(6), 421-446. https://doi.org/10.1038/s41573-019-0017-4
Smola, M. J., & Weeks, K. M. (2018). In-cell RNA structure probing with SHAPE-MaP. Nature protocols, 13(6), 1181-1195. https://doi.org/10.1038/nprot.2018.010
Tavernier, G., Andries, O., Demeester, J., Sanders, N. N., De Smedt, S. C., & Rejman, J. (2011). mRNA as gene therapeutic: how to control protein expression. Journal of controlled release, 150(3), 238-247. https://doi.org/10.1016/j.jconrel.2010.10.020
Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., ... & Joung, J. K. (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature biotechnology, 33(2), 187-197. https://doi.org/10.1038/nbt.3117
Vlatkovic, I. (2021). Non-immunotherapy application of LNP-mRNA: maximizing efficacy and safety. Biomedicines, 9(5), 530. https://doi.org/10.3390/biomedicines9050530
Vogel, A. B., Kanevsky, I., Che, Y., Swanson, K. A., Muik, A., Vormehr, M., ... & Sahin, U. (2021). BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 592(7853), 283-289. https://doi.org/10.1038/s41586-021-03275-y
Wang, X., Yu, S., Lou, E., Tan, Y. L., & Tan, Z. J. (2023). RNA 3D structure prediction: progress and perspective. Molecules, 28(14), 5532. https://doi.org/10.3390/molecules28145532
Watters, K. E., Angela, M. Y., Strobel, E. J., Settle, A. H., & Lucks, J. B. (2016). Characterizing RNA structures in vitro and in vivo with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods, 103, 34-48. https://doi.org/10.1016/j.ymeth.2016.04.002
Warzak, D. A., Pike, W. A., & Luttgeharm, K. D. (2023). Capillary electrophoresis methods for determining the IVT mRNA critical quality attributes of size and purity. SLAS technology, 28(5), 369-374. https://doi.org/10.1016/j.slast.2023.06.005
Weissman, D., Pardi, N., Muramatsu, H., & Karikó, K. (2012). HPLC purification of in vitro transcribed long RNA. In Synthetic messenger RNA and cell metabolism modulation: Methods and protocols (pp. 43-54). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-260-5_3
Yan, L., Shen, J., Wang, J., Yang, X., Dong, S., & Lu, S. (2020). Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response, 18(3), 1559325820936161. https://doi.org/10.1177/1559325820936161
Yang, J., Jia, C., & Yang, J. (2021). Designing nanoparticle-based drug delivery systems for precision medicine. International journal of medical sciences, 18(13), 2943. https://doi.org/10.7150/ijms.60874
Zhou, J., & Rossi, J. (2017). Aptamers as targeted therapeutics: current potential and challenges. Nature reviews Drug discovery, 16(3), 181-202. https://doi.org/10.1038/nrd.2016.199
Zhou, L. Y., Qin, Z., Zhu, Y. H., He, Z. Y., & Xu, T. (2019). Current RNA-based therapeutics in clinical trials. Current Gene Therapy, 19(3), 172-196. https://doi.org/10.2174/1566523219666190719100526
Authors
Copyright (c) 2024 Laila Hafez Hakami, Ateyah Laheg Nami Alhadri, Abduallaziz Jarallah Obied Alenzi, Salem Osaimer H Almutairi, Albanderi Enad Alotaibi, Maryam Sushil Alneaimy, Bishi Ahmad Mohammad Moukli, Hind Mohammed Ghaythan Alshehri, Ahlam Motashar Alanazi, Ibrahim Ali Mdarbesh, Khalid Eid Alfaris, Dhifallah Azeeb Alzahrani, Faihan Saud Obaid Al-Otaibi

This work is licensed under a Creative Commons Attribution 4.0 International License.
