Remote and Automated Anesthesia: Telemedicine, Closed-Loop Systems, and the Future of Procedural Sedation
Abstract
Background: The fields of telemedicine and artificial intelligence (AI) are converging with clinical anesthesia, promising to reshape the delivery of procedural sedation and perioperative care. Remote monitoring technologies and closed-loop drug delivery systems offer potential solutions to pressing challenges, including geographic disparities in access to anesthesia expertise, workforce shortages, and the pursuit of heightened precision in drug administration. Aim: This narrative review synthesizes contemporary evidence (2015-2024) to critically evaluate the technological foundations, clinical efficacy, and broader implications of remote anesthesia monitoring and automated sedation systems. Methods: A comprehensive search of PubMed, IEEE Xplore, Scopus, and CINAHL databases was conducted. Results: Evidence indicates that tele-anesthesia platforms can safely extend specialist oversight to non-operating room anesthesia (NORA) sites and remote locations, improving compliance with monitoring standards. Closed-loop systems for propofol sedation demonstrate superior maintenance of target depth compared to manual control, with potential benefits in hemodynamic stability. However, successful integration is contingent on robust connectivity, intuitive human-machine interfaces, and clear liability frameworks. These technologies necessitate a redefinition of the anesthesiologist’s role toward system supervision and management of complex exceptions. Conclusion: Remote and automated anesthesia represents a paradigm shift toward a hybrid model of care. Its responsible adoption requires co-evolution of technology, validation through pragmatic clinical trials, updated training curricula, and proactive policy development to ensure these tools augment rather than replace clinical judgment, ultimately expanding safe access to high-quality sedation.
Full text article
References
Alrasheedi, N. T., Alkhubran, A. J., Alanazi, S. D. S., Al-Sahman, S. M. A., Asiri, R. A. A., Almoushawa, A. A., ... & Aldosari, A. F. (2023). Tele-Anesthesia and Remote Supervision: Changing Perioperative and General Medical Care. Journal of Angiotherapy, 7(1), 1-9. https://doi.org/10.25163/angiotherapy.7110317
Baxter, S. N., Johnson, A. H., Brennan, J. C., Dolle, S. S., Turcotte, J. J., & King, P. J. (2023). The efficacy of telemedicine versus in-person education for high-risk patients undergoing primary total joint arthroplasty. The Journal of Arthroplasty, 38(7), 1230-1237. https://doi.org/10.1016/j.arth.2023.01.015
Bhananker, S. M., Posner, K. L., Cheney, F. W., Caplan, R. A., Lee, L. A., & Domino, K. B. (2006). Injury and liability associated with monitored anesthesia care: a closed claims analysis. Anesthesiology, 104(2), 228-234. https://doi.org/10.1097/00000542-200602000-00005
Bong, C. L., Balanza, G. A., Khoo, C. E. H., Tan, J. S. K., Desel, T., & Purdon, P. L. (2023). A narrative review illustrating the clinical utility of electroencephalogram-guided anesthesia care in children. Anesthesia & Analgesia, 137(1), 108-123. DOI: 10.1213/ANE.0000000000006267
Carayon, P., Wust, K., Hose, B. Z., & Salwei, M. E. (2021). Human factors and ergonomics in health care. Handbook of human factors and ergonomics, 1417-1437. https://doi.org/10.1002/9781119636113.ch53
Cascella, M., Tracey, M. C., Petrucci, E., & Bignami, E. G. (2023). Exploring artificial intelligence in anesthesia: a primer on ethics, and clinical applications. Surgeries, 4(2), 264-274. https://doi.org/10.3390/surgeries4020027
Caruso, T. J., Qian, J., Lawrence, K., Armstrong-Carter, E., & Domingue, B. W. (2020). From socrates to virtual reality: a historical review of learning theories and their influence on the training of anesthesiologists. The Journal of Education in Perioperative Medicine: JEPM, 22(2), E638.https://doi.org/10.46374/volxxii-issue2-Caruso
Clark, P., Kim, J., & Aphinyanaphongs, Y. (2023). Marketing and US Food and Drug Administration clearance of artificial intelligence and machine learning enabled software in and as medical devices: a systematic review. JAMA network open, 6(7), e2321792-e2321792. doi:10.1001/jamanetworkopen.2023.21792
da Silva Aquino, E. R., & Suffert, S. C. I. (2022). Telemedicine in neurology: advances and possibilities. Arquivos de Neuro-psiquiatria, 80(S 05), 336-341. DOI: 10.1590/0004-282X-ANP-2022-S127
Ghita, M., Neckebroek, M., Muresan, C., & Copot, D. (2020). Closed-loop control of anesthesia: Survey on actual trends, challenges and perspectives. Ieee Access, 8, 206264-206279. https://doi.org/10.1109/ACCESS.2020.3037725
Goddard, K., Roudsari, A., & Wyatt, J. C. (2012). Automation bias: a systematic review of frequency, effect mediators, and mitigators. Journal of the American Medical Informatics Association, 19(1), 121-127. https://doi.org/10.1136/amiajnl-2011-000089
Gottumukkala, V., Vetter, T. R., & Gan, T. J. (2023). Perioperative medicine: what the future can hold for anesthesiology. Anesthesia & Analgesia, 136(4), 628-635. DOI: 10.1213/ANE.0000000000006412
Habli, I., Lawton, T., & Porter, Z. (2020). Artificial intelligence in health care: accountability and safety. Bulletin of the World Health Organization, 98(4), 251. https://doi.org/10.2471/BLT.19.237487
Kamdar, N. (2021). The electronic health record: marching anesthesiology toward value-added processes and digital patient experiences. International Anesthesiology Clinics, 59(4), 12-21. DOI: 10.1097/AIA.0000000000000331
Kempthorne, P., Morriss, W. W., Mellin-Olsen, J., & Gore-Booth, J. (2017). The WFSA global anesthesia workforce survey. Anesthesia & Analgesia, 125(3), 981-990. DOI: 10.1213/ANE.0000000000002258
Kendale, S., Bishara, A., Burns, M., Solomon, S., Corriere, M., & Mathis, M. (2023). Machine learning for the prediction of procedural case durations developed using a large multicenter database: algorithm development and validation study. Jmir ai, 2(1), e44909. https://doi.org/10.2196/44909
Kruse, C. S., Frederick, B., Jacobson, T., & Monticone, D. K. (2017). Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care, 25(1), 1-10. https://doi.org/10.3233/THC-161263
Kuck, K., & Johnson, K. B. (2017). The three laws of autonomous and closed-loop systems in anesthesia. Anesthesia & Analgesia, 124(2), 377-380. DOI: 10.1213/ANE.0000000000001602
Lassarén, P., Tewarie, I. A., Gerstl, J. V., Florman, J. E., Smith, T. R., & Broekman, M. L. (2022). Telemedicine and the right to health: A neurosurgical perspective. Journal of Clinical Neuroscience, 102, 71-74. https://doi.org/10.1016/j.jocn.2022.06.011
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679
Owolabi, E. O., Mac Quene, T., Louw, J., Davies, J. I., & Chu, K. M. (2022). Telemedicine in surgical care in low-and middle-income countries: a scoping review. World journal of surgery, 46(8), 1855-1869. https://doi.org/10.1007/s00268-022-06549-2
Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and Humans, 30(3), 286-297. https://doi.org/10.1109/3468.844354
Ruskin, K. J., Corvin, C., Rice, S. C., & Winter, S. R. (2020). Autopilots in the operating room: safe use of automated medical technology. Anesthesiology, 133(3), 653-665. https://doi.org/10.1097/ALN.0000000000003385
Seger, C., & Cannesson, M. (2020). Recent advances in the technology of anesthesia. F1000Research, 9, F1000-Faculty. https://doi.org/10.12688/f1000research.24059.1
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7
Wang, D., Song, Z., Zhang, C., & Chen, P. (2021). Bispectral index monitoring of the clinical effects of propofol closed-loop target-controlled infusion: Systematic review and meta-analysis of randomized controlled trials. Medicine, 100(4), e23930. DOI: 10.1097/MD.0000000000023930
Weinger, M. B. (2012). Human factors in anesthesiology. Handbook of Human Factors and Ergonomics in Health Care and Patient Safety. 2nd ed. Boca Raton, FL: Taylor & Francis.
West, N., Van Heusden, K., Görges, M., Brodie, S., Rollinson, A., Petersen, C. L., ... & Merchant, R. N. (2018). Design and evaluation of a closed-loop anesthesia system with robust control and safety system. Anesthesia & Analgesia, 127(4), 883-894. DOI: 10.1213/ANE.0000000000002663
Wilson, L. S., & Maeder, A. J. (2015). Recent directions in telemedicine: review of trends in research and practice. Healthcare informatics research, 21(4), 213-222. https://doi.org/10.4258/hir.2015.21.4.213
Wingert, T., Lee, C., & Cannesson, M. (2021). Machine learning, deep learning, and closed loop devices—anesthesia delivery. Anesthesiology clinics, 39(3), 565-581. https://doi.org/10.1016/j.anclin.2021.03.012
Yatabe, J., Yatabe, M. S., Okada, R., & Ichihara, A. (2021). Efficacy of telemedicine in hypertension care through home blood pressure monitoring and videoconferencing: randomized controlled trial. JMIR cardio, 5(2), e27347. https://doi.org/10.2196/27347
Zhu, S., Gilbert, M., Chetty, I., & Siddiqui, F. (2022). The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use. International journal of medical informatics, 165, 104828. https://doi.org/10.1016/j.ijmedinf.2022.104828
Authors
Copyright (c) 2024 Mohammed Khalid Alyahya, Waleed Mualla Almukhlifi, Abdullah Mohammed S Albalawi, Mordi Nasser Al Dosari, Mordy Abdullah Al Talasat, Almohanad Mohammed Alqarni, Abdullah Mushari Alshahrani, Waleed Ghalib Alotaibi, Talal Fawaz Saeid Aleidyani, Ahmad A. Sonbol, Awatif Hamoud Najem Alsolmi

This work is licensed under a Creative Commons Attribution 4.0 International License.