Remote and Automated Anesthesia: Telemedicine, Closed-Loop Systems, and the Future of Procedural Sedation

Mohammed Khalid Alyahya (1) , Waleed Mualla Almukhlifi , Abdullah Mohammed S Albalawi (2) , Mordi Nasser Al Dosari (3) , Mordy Abdullah Al Talasat (4) , Almohanad Mohammed Alqarni (3) , Abdullah Mushari Alshahrani (3) , Waleed Ghalib Alotaibi (3) , Talal Fawaz Saeid Aleidyani (3) , Ahmad A. Sonbol Housni (3) , Awatif Hamoud Najem Alsolmi (5) , ‏Abdullah Ibrahim ALORAYYIDH (3) , Saad Abdullah Alsubait (3) , Abdullah bandar bin Sayyar (3) , . Maram Fahad Alsuwaidan (3) , Muhannad Hazza ALSharif (6)
(1) Imam Abdulrahman Al Faisal Hospital,Ministry of Health, Saudi Arabia,
(2) Riyadh, Hawtat Sudair General Hospital, Ministry of Health, Saudi Arabia,
(3) King Salman Hospital, Riyadh, Ministry of Health, Saudi Arabia,
(4) Ministry Of Health, Saudi Arabia,
(5) Imam Abdulrahman Al Faisal Hospital City- Riyadh Ministry of Health, Saudi Arabia,
(6) Maternity and Children’s Hospital, Al-Madinah Al-Munawwarah, Ministry of Health, Saudi Arabia

Abstract

Background: The fields of telemedicine and artificial intelligence (AI) are converging with clinical anesthesia, promising to reshape the delivery of procedural sedation and perioperative care. Remote monitoring technologies and closed-loop drug delivery systems offer potential solutions to pressing challenges, including geographic disparities in access to anesthesia expertise, workforce shortages, and the pursuit of heightened precision in drug administration. Aim: This narrative review synthesizes contemporary evidence (2015-2024) to critically evaluate the technological foundations, clinical efficacy, and broader implications of remote anesthesia monitoring and automated sedation systems. Methods: A comprehensive search of PubMed, IEEE Xplore, Scopus, and CINAHL databases was conducted. Results: Evidence indicates that tele-anesthesia platforms can safely extend specialist oversight to non-operating room anesthesia (NORA) sites and remote locations, improving compliance with monitoring standards. Closed-loop systems for propofol sedation demonstrate superior maintenance of target depth compared to manual control, with potential benefits in hemodynamic stability. However, successful integration is contingent on robust connectivity, intuitive human-machine interfaces, and clear liability frameworks. These technologies necessitate a redefinition of the anesthesiologist’s role toward system supervision and management of complex exceptions. Conclusion: Remote and automated anesthesia represents a paradigm shift toward a hybrid model of care. Its responsible adoption requires co-evolution of technology, validation through pragmatic clinical trials, updated training curricula, and proactive policy development to ensure these tools augment rather than replace clinical judgment, ultimately expanding safe access to high-quality sedation.

Full text article

Generated from XML file

References

Alrasheedi, N. T., Alkhubran, A. J., Alanazi, S. D. S., Al-Sahman, S. M. A., Asiri, R. A. A., Almoushawa, A. A., ... & Aldosari, A. F. (2023). Tele-Anesthesia and Remote Supervision: Changing Perioperative and General Medical Care. Journal of Angiotherapy, 7(1), 1-9. https://doi.org/10.25163/angiotherapy.7110317

Baxter, S. N., Johnson, A. H., Brennan, J. C., Dolle, S. S., Turcotte, J. J., & King, P. J. (2023). The efficacy of telemedicine versus in-person education for high-risk patients undergoing primary total joint arthroplasty. The Journal of Arthroplasty, 38(7), 1230-1237. https://doi.org/10.1016/j.arth.2023.01.015

Bhananker, S. M., Posner, K. L., Cheney, F. W., Caplan, R. A., Lee, L. A., & Domino, K. B. (2006). Injury and liability associated with monitored anesthesia care: a closed claims analysis. Anesthesiology, 104(2), 228-234. https://doi.org/10.1097/00000542-200602000-00005

Bong, C. L., Balanza, G. A., Khoo, C. E. H., Tan, J. S. K., Desel, T., & Purdon, P. L. (2023). A narrative review illustrating the clinical utility of electroencephalogram-guided anesthesia care in children. Anesthesia & Analgesia, 137(1), 108-123. DOI: 10.1213/ANE.0000000000006267

Carayon, P., Wust, K., Hose, B. Z., & Salwei, M. E. (2021). Human factors and ergonomics in health care. Handbook of human factors and ergonomics, 1417-1437. https://doi.org/10.1002/9781119636113.ch53

Cascella, M., Tracey, M. C., Petrucci, E., & Bignami, E. G. (2023). Exploring artificial intelligence in anesthesia: a primer on ethics, and clinical applications. Surgeries, 4(2), 264-274. https://doi.org/10.3390/surgeries4020027

Caruso, T. J., Qian, J., Lawrence, K., Armstrong-Carter, E., & Domingue, B. W. (2020). From socrates to virtual reality: a historical review of learning theories and their influence on the training of anesthesiologists. The Journal of Education in Perioperative Medicine: JEPM, 22(2), E638.https://doi.org/10.46374/volxxii-issue2-Caruso

Clark, P., Kim, J., & Aphinyanaphongs, Y. (2023). Marketing and US Food and Drug Administration clearance of artificial intelligence and machine learning enabled software in and as medical devices: a systematic review. JAMA network open, 6(7), e2321792-e2321792. doi:10.1001/jamanetworkopen.2023.21792

da Silva Aquino, E. R., & Suffert, S. C. I. (2022). Telemedicine in neurology: advances and possibilities. Arquivos de Neuro-psiquiatria, 80(S 05), 336-341. DOI: 10.1590/0004-282X-ANP-2022-S127

Ghita, M., Neckebroek, M., Muresan, C., & Copot, D. (2020). Closed-loop control of anesthesia: Survey on actual trends, challenges and perspectives. Ieee Access, 8, 206264-206279. https://doi.org/10.1109/ACCESS.2020.3037725

Goddard, K., Roudsari, A., & Wyatt, J. C. (2012). Automation bias: a systematic review of frequency, effect mediators, and mitigators. Journal of the American Medical Informatics Association, 19(1), 121-127. https://doi.org/10.1136/amiajnl-2011-000089

Gottumukkala, V., Vetter, T. R., & Gan, T. J. (2023). Perioperative medicine: what the future can hold for anesthesiology. Anesthesia & Analgesia, 136(4), 628-635. DOI: 10.1213/ANE.0000000000006412

Habli, I., Lawton, T., & Porter, Z. (2020). Artificial intelligence in health care: accountability and safety. Bulletin of the World Health Organization, 98(4), 251. https://doi.org/10.2471/BLT.19.237487

Kamdar, N. (2021). The electronic health record: marching anesthesiology toward value-added processes and digital patient experiences. International Anesthesiology Clinics, 59(4), 12-21. DOI: 10.1097/AIA.0000000000000331

Kempthorne, P., Morriss, W. W., Mellin-Olsen, J., & Gore-Booth, J. (2017). The WFSA global anesthesia workforce survey. Anesthesia & Analgesia, 125(3), 981-990. DOI: 10.1213/ANE.0000000000002258

Kendale, S., Bishara, A., Burns, M., Solomon, S., Corriere, M., & Mathis, M. (2023). Machine learning for the prediction of procedural case durations developed using a large multicenter database: algorithm development and validation study. Jmir ai, 2(1), e44909. https://doi.org/10.2196/44909

Kruse, C. S., Frederick, B., Jacobson, T., & Monticone, D. K. (2017). Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care, 25(1), 1-10. https://doi.org/10.3233/THC-161263

Kuck, K., & Johnson, K. B. (2017). The three laws of autonomous and closed-loop systems in anesthesia. Anesthesia & Analgesia, 124(2), 377-380. DOI: 10.1213/ANE.0000000000001602

Lassarén, P., Tewarie, I. A., Gerstl, J. V., Florman, J. E., Smith, T. R., & Broekman, M. L. (2022). Telemedicine and the right to health: A neurosurgical perspective. Journal of Clinical Neuroscience, 102, 71-74. https://doi.org/10.1016/j.jocn.2022.06.011

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679

Owolabi, E. O., Mac Quene, T., Louw, J., Davies, J. I., & Chu, K. M. (2022). Telemedicine in surgical care in low-and middle-income countries: a scoping review. World journal of surgery, 46(8), 1855-1869. https://doi.org/10.1007/s00268-022-06549-2

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and Humans, 30(3), 286-297. https://doi.org/10.1109/3468.844354

Ruskin, K. J., Corvin, C., Rice, S. C., & Winter, S. R. (2020). Autopilots in the operating room: safe use of automated medical technology. Anesthesiology, 133(3), 653-665. https://doi.org/10.1097/ALN.0000000000003385

Seger, C., & Cannesson, M. (2020). Recent advances in the technology of anesthesia. F1000Research, 9, F1000-Faculty. https://doi.org/10.12688/f1000research.24059.1

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7

Wang, D., Song, Z., Zhang, C., & Chen, P. (2021). Bispectral index monitoring of the clinical effects of propofol closed-loop target-controlled infusion: Systematic review and meta-analysis of randomized controlled trials. Medicine, 100(4), e23930. DOI: 10.1097/MD.0000000000023930

Weinger, M. B. (2012). Human factors in anesthesiology. Handbook of Human Factors and Ergonomics in Health Care and Patient Safety. 2nd ed. Boca Raton, FL: Taylor & Francis.

West, N., Van Heusden, K., Görges, M., Brodie, S., Rollinson, A., Petersen, C. L., ... & Merchant, R. N. (2018). Design and evaluation of a closed-loop anesthesia system with robust control and safety system. Anesthesia & Analgesia, 127(4), 883-894. DOI: 10.1213/ANE.0000000000002663

Wilson, L. S., & Maeder, A. J. (2015). Recent directions in telemedicine: review of trends in research and practice. Healthcare informatics research, 21(4), 213-222. https://doi.org/10.4258/hir.2015.21.4.213

Wingert, T., Lee, C., & Cannesson, M. (2021). Machine learning, deep learning, and closed loop devices—anesthesia delivery. Anesthesiology clinics, 39(3), 565-581. https://doi.org/10.1016/j.anclin.2021.03.012

Yatabe, J., Yatabe, M. S., Okada, R., & Ichihara, A. (2021). Efficacy of telemedicine in hypertension care through home blood pressure monitoring and videoconferencing: randomized controlled trial. JMIR cardio, 5(2), e27347. https://doi.org/10.2196/27347

Zhu, S., Gilbert, M., Chetty, I., & Siddiqui, F. (2022). The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use. International journal of medical informatics, 165, 104828. https://doi.org/10.1016/j.ijmedinf.2022.104828

Authors

Mohammed Khalid Alyahya
m.k.s.y321@gmail.com (Primary Contact)
Waleed Mualla Almukhlifi
Abdullah Mohammed S Albalawi
Mordi Nasser Al Dosari
Mordy Abdullah Al Talasat
Almohanad Mohammed Alqarni
Abdullah Mushari Alshahrani
Waleed Ghalib Alotaibi
Talal Fawaz Saeid Aleidyani
Ahmad A. Sonbol Housni
Awatif Hamoud Najem Alsolmi
‏Abdullah Ibrahim ALORAYYIDH
Saad Abdullah Alsubait
Abdullah bandar bin Sayyar
. Maram Fahad Alsuwaidan
Muhannad Hazza ALSharif
Alyahya, M. K., Waleed Mualla Almukhlifi, Abdullah Mohammed S Albalawi, Mordi Nasser Al Dosari, Mordy Abdullah Al Talasat, Almohanad Mohammed Alqarni, … Muhannad Hazza ALSharif. (2024). Remote and Automated Anesthesia: Telemedicine, Closed-Loop Systems, and the Future of Procedural Sedation. Saudi Journal of Medicine and Public Health, 1(2), 1467–1472. https://doi.org/10.64483/202412414

Article Details

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.