Role of Human Papillomavirus (HPV) in the Development and Progression of Cervical Cancer
Abstract
Cervical cancer remains a major cause of morbidity and mortality, disproportionately affecting women in low- and middle-income countries despite its high preventability. Persistent infection with high-risk human papillomavirus (hrHPV), particularly genotypes 16 and 18, is a necessary causal factor in cervical carcinogenesis. This review synthesizes current evidence on the role of HPV in the initiation and progression of cervical cancer, spanning viral biology, molecular pathogenesis, host determinants, and clinical implications. We summarize HPV structure, classification, transmission, and natural history, highlighting how the E6 and E7 oncoproteins disrupt p53 and pRb pathways, drive genomic instability, and interact with host epigenetic and DNA damage-response machinery. We also examine host genetic susceptibility, hormonal influences, smoking, HIV-associated immunosuppression, cervicovaginal dysbiosis, micronutrient deficiencies, and immune evasion mechanisms that condition progression from transient infection to high-grade lesions and invasive cancer. Finally, we review advances in HPV-based screening, biomarkers, and prophylactic and therapeutic vaccination, and discuss how HPV status and genotype inform prognosis and treatment response. Understanding these viral–host interactions is essential for optimizing implementation of the WHO 90-70-90 strategy and for designing context-appropriate interventions to reduce persistent global inequities in cervical cancer burden. Special emphasis is placed on challenges and opportunities for scaling prevention and care in high-burden, resource-limited settings.
Full text article
References
Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., ... & Vaccarella, S. (2023). Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. The lancet global health, 11(2), e197-e206.
Jang, W., Kim, S., Son, Y., Kim, S., Lee, S., Kim, H. J., ... & Yon, D. K. (2025). Global, regional, and national burden of pharyngeal cancer and projections to 2050 in 185 countries: A population-based systematic analysis of GLOBOCAN 2022. Journal of Korean Medical Science, 40(30).
Momenimovahed, Z., Mazidimoradi, A., Maroofi, P., Allahqoli, L., Salehiniya, H., & Alkatout, I. (2023). Global, regional and national burden, incidence, and mortality of cervical cancer. Cancer reports, 6(3), e1756.
Asgedom, Y. S., Kassie, G. A., Habte, A., Ketema, D. B., & Aragaw, F. M. (2024). Socioeconomic inequality in cervical cancer screening uptake among women in sub-Saharan Africa: a decomposition analysis of Demographic and Health Survey data. BMJ open, 14(12), e088753.
Yang, L., Boily, M. C., Rönn, M. M., Obiri-Yeboah, D., Morhason-Bello, I., Meda, N., ... & Maheu-Giroux, M. (2023). Regional and country-level trends in cervical cancer screening coverage in sub-Saharan Africa: A systematic analysis of population-based surveys (2000–2020). PLoS medicine, 20(1), e1004143.
Li, Z., Liu, P., Yin, A., Zhang, B., Xu, J., Chen, Z., Zhang, Z., Zhang, Y., Wang, S., Tang, L., Kong, B., & Song, K. (2025). Global landscape of cervical cancer incidence and mortality in 2022 and predictions to 2030: The urgent need to address inequalities in cervical cancer. International journal of cancer, 157(2), 288–297. https://doi.org/10.1002/ijc.35369
Kim, G. Harald zur Hausen's Experiments on Human Papillomavirus Causing Cervical Cancer (1976–1987): Embryo Project Encyclopedia (2017-03-09). 2017 [cited 2018 23 Oct].
Lowy D. R. (2024). Harald zur Hausen (1936 to 2023): Discoverer of human papillomavirus infection as the main cause of cervical cancer. Proceedings of the National Academy of Sciences of the United States of America, 121(11), e2400517121. https://doi.org/10.1073/pnas.2400517121
Haedicke, J., & Iftner, T. (2013). Human papillomaviruses and cancer. Radiotherapy and oncology, 108(3), 397-402.
Zhang, Y., Qiu, K., Ren, J., Zhao, Y., & Cheng, P. (2025). Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal transduction and targeted therapy, 10(1), 44.
Shi, R., Qi, W., Wang, Z., Cai, J., Zhao, M., & Wang, Z. (2025). High-risk human papillomavirus genotype distribution and attribution to cervical lesions in a Shanxi Province screening population. Scientific Reports, 15(1), 28217.
Jansen, E. E., Zielonke, N., Gini, A., Anttila, A., Segnan, N., Vokó, Z., ... & Priaulx, J. (2020). Effect of organised cervical cancer screening on cervical cancer mortality in Europe: a systematic review. European journal of cancer, 127, 207-223.
Bruni, L., Serrano, B., Roura, E., Alemany, L., Cowan, M., Herrero, R., ... & de Sanjose, S. (2022). Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. The Lancet Global Health, 10(8), e1115-e1127.
Crifase, C., & Parker, J. (2025). Preventing Cervical Cancer: Best Practices in Pap and HPV Testing. StatPearls.
Hull, R., Mbele, M., Makhafola, T., Hicks, C., Wang, S. M., Reis, R. M., Mehrotra, R., Mkhize-Kwitshana, Z., Kibiki, G., Bates, D. O., & Dlamini, Z. (2020). Cervical cancer in low and middle-income countries. Oncology letters, 20(3), 2058–2074. https://doi.org/10.3892/ol.2020.11754
Lowy, D. R. (2016). HPV vaccination to prevent cervical cancer and other HPV-associated disease: from basic science to effective interventions. The Journal of clinical investigation, 126(1), 5-11.
Ilic, I., & Ilic, M. (2025). Human Papillomavirus Vaccination Coverage Estimates Among the Primary Target Cohort (9-14-Year-Old Girls) in the World (2010-2024). Vaccines, 13(10), 1010. https://doi.org/10.3390/vaccines13101010
Brisson, M., Kim, J. J., Canfell, K., Drolet, M., Gingras, G., Burger, E. A., ... & Hutubessy, R. (2020). Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. The Lancet, 395(10224), 575-590.
Kassa, R. N., Shifti, D. M., Alemu, K., & Omigbodun, A. O. (2024). Integration of cervical cancer screening into healthcare facilities in low-and middle-income countries: A scoping review. PLOS Global Public Health, 4(5), e0003183.
Han, J., Zhang, L., Chen, Y., Zhang, Y., Wang, L., Cai, R., ... & Zhu, L. (2025). Global HPV vaccination programs and coverage rates: a systematic review. EClinicalMedicine, 84.
Goetschius, D. J., Hartmann, S. R., Subramanian, S., Bator, C. M., Christensen, N. D., & Hafenstein, S. L. (2021). High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility. Scientific reports, 11(1), 3498.
Modis, Y., Trus, B. L., & Harrison, S. C. (2002). Atomic model of the papillomavirus capsid. The EMBO journal.
Pal, A., & Kundu, R. (2020). Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Frontiers in microbiology, 10, 3116.
Zheng, Z. M., & Baker, C. C. (2006). Papillomavirus genome structure, expression, and post-transcriptional regulation. Frontiers in bioscience : a journal and virtual library, 11, 2286–2302. https://doi.org/10.2741/1971
Wang X, Liu H, Ge H, Ajiro M, Sharma NR, Meyers C, Morozov P, Tuschl T, Klar ACourt D, Zheng Z. 2017. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter. mBio 8:10.1128/mbio.00713-17. https://doi.org/10.1128/mbio.00713-17
Pitta, D. R., Sarian, L. O., Campos, E. A., Rabelo-Santos, S. H., Syrjänen, K., & Derchain, S. F. (2009). Phylogenetic classification of human papillomavirus genotypes in high-grade cervical intraepithelial neoplasia in women from a densely populated Brazilian urban region. Sao Paulo medical journal = Revista paulista de medicina, 127(3), 122–127. https://doi.org/10.1590/s1516-31802009000300003
Farzan, S. F., Waterboer, T., Gui, J., Nelson, H. H., Li, Z., Michael, K. M., Perry, A. E., Spencer, S. K., Demidenko, E., Green, A. C., Pawlita, M., & Karagas, M. R. (2013). Cutaneous alpha, beta and gamma human papillomaviruses in relation to squamous cell carcinoma of the skin: a population-based study. International journal of cancer, 133(7), 1713–1720. https://doi.org/10.1002/ijc.28176
Ahmed, H. G., Bensumaidea, S. H., Alshammari, F. D., Alenazi, F. S. H., ALmutlaq, B. A., Alturkstani, M. Z., & Aladani, I. A. (2017). Prevalence of Human Papillomavirus subtypes 16 and 18 among Yemeni Patients with Cervical Cancer. Asian Pacific journal of cancer prevention : APJCP, 18(6), 1543–1548. https://doi.org/10.22034/APJCP.2017.18.6.1543
Wei, W., Zhang, M., Lin, Y., Li, Z., Luo, W., Zhao, W., ... & Li, G. (2025). Cohort analysis of high-risk HPV infection in adult women in Dapeng New District, Shenzhen, Guangdong Province, China. Frontiers in microbiology, 16, 1539209.
Gheit, T. (2019). Mucosal and cutaneous human papillomavirus infections and cancer biology. Frontiers in oncology, 9, 355.
Sibeko, S., Sanderson, M., Moyo, S., & Botha, M. H. (2024). Role of the epithelium in human papillomavirus and human immunodeficiency virus infections in the female genital tract. Frontiers in reproductive health, 6, 1408198. https://doi.org/10.3389/frph.2024.1408198
DiGiuseppe, S., Bienkowska-Haba, M., Hilbig, L., & Sapp, M. (2014). The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network. Virology, 458-459, 93–105. https://doi.org/10.1016/j.virol.2014.04.024
Aydin, I., Weber, S., Snijder, B., Samperio Ventayol, P., Kühbacher, A., Becker, M., ... & Schelhaas, M. (2014). Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS pathogens, 10(5), e1004162.
Hussein, N. R., Abozait, H. J., Ibrahim, N. M., Khalid, F. K., & Balatay, A. A. (2025). Prevalence, genotype distribution and clearance time of human papillomavirus infection: A retrospective study. Medicine, 104(43), e45318. https://doi.org/10.1097/MD.0000000000045318
Teka, B., Addissie, A., Mihret, A., Gizaw, M., Shiferaw, W., Chanyalew, Z., Kaufmann, A. M., Kantelhardt, E. J., & Abebe, T. (2025). High-Risk HPV Persistence and Clearance Patterns Among Women in Ethiopia: A Longitudinal Study. International journal of women's health, 17, 3799–3810. https://doi.org/10.2147/IJWH.S544062
Kiamba, E. W., Goodier, M. R., & Clarke, E. (2025). Immune responses to human papillomavirus infection and vaccination. Frontiers in immunology, 16, 1591297. https://doi.org/10.3389/fimmu.2025.1591297
Shah, P. T., Wu, Z., Ma, R., & Wu, C. (2024). Genetic diversity, variation and recombination among the human papillomaviruses (HPVs) genomes isolated in China: a comparative genomic and phylogenetic analysis. Pathogens and global health, 118(6), 505–518. https://doi.org/10.1080/20477724.2024.2401273
Pyeon, D., Pearce, S. M., Lank, S. M., Ahlquist, P., & Lambert, P. F. (2009). Establishment of human papillomavirus infection requires cell cycle progression. PLoS pathogens, 5(2), e1000318.
Kajitani, N., Satsuka, A., Kawate, A., & Sakai, H. (2012). Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Frontiers in microbiology, 3, 152.
Chojnacki, M., & Melendy, T. (2018). The human papillomavirus DNA helicase E1 binds, stimulates, and confers processivity to cellular DNA polymerase epsilon. Nucleic acids research, 46(1), 229-241.
Thomas, J. T., Hubert, W. G., Ruesch, M. N., & Laimins, L. A. (1999). Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proceedings of the National Academy of Sciences, 96(15), 8449-8454.
Maglennon, G. A., McIntosh, P., & Doorbar, J. (2011). Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology, 414(2), 153–163. https://doi.org/10.1016/j.virol.2011.03.019
Li, S., Hong, X., Wei, Z., Xie, M., Li, W., Liu, G., ... & Zhang, S. (2019). Ubiquitination of the HPV oncoprotein E6 is critical for E6/E6AP-mediated p53 degradation. Frontiers in microbiology, 10, 2483.
Bernard, X., Robinson, P., Nomine, Y., Masson, M., Charbonnier, S., Ramirez-Ramos, J. R., ... & Orfanoudakis, G. (2011). Proteasomal degradation of p53 by human papillomavirus E6 oncoprotein relies on the structural integrity of p53 core domain. PloS one, 6(10), e25981.
Ding, W., Cai, W., & Wang, H. (2024). P53 and pRB induction improves response to radiation therapy in HPV-positive laryngeal squamous cell carcinoma. Clinics, 79, 100415.
Helt, A. M., & Galloway, D. A. (2003). Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis, 24(2), 159-169.
Williams, V. M., Filippova, M., Soto, U., & Duerksen-Hughes, P. J. (2011). HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future virology, 6(1), 45–57. https://doi.org/10.2217/fvl.10.73
Warburton, A., Markowitz, T. E., Katz, J. P., Pipas, J. M., & McBride, A. A. (2021). Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ Genomic Medicine, 6(1), 101.
Williams, V. M., Filippova, M., Soto, U., & Duerksen-Hughes, P. J. (2011). HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future virology, 6(1), 45–57. https://doi.org/10.2217/fvl.10.73
Warburton, A., Markowitz, T. E., Katz, J. P., Pipas, J. M., & McBride, A. A. (2021). Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ genomic medicine, 6(1), 101. https://doi.org/10.1038/s41525-021-00264-y
Mallick, S., Choi, Y., Taylor, A. M., & Cosper, P. F. (2024). Human Papillomavirus-Induced Chromosomal Instability and Aneuploidy in Squamous Cell Cancers. Viruses, 16(4), 501. https://doi.org/10.3390/v16040501
Kuguyo, O., Dube Mandishora, R. S., Soko, N. D., Magwaku, T., Matimba, A., & Dandara, C. (2024). GSTP, GSTT1, XRCC1 and CASP8 genetic variations are associated with human papillomavirus in women with cervical cancer from Zimbabwe. Future Virology, 19(1), 19-32.
Andersson, S., Rylander, E., Strand, A. et al. The significance of p53 codon 72 polymorphism for the development of cervical adenocarcinomas. Br J Cancer 85, 1153–1156 (2001). https://doi.org/10.1054/bjoc.2001.2085
Zhang X-Q, Bai X-H, Zhang H-Z and He X-F (2025) Association between the p53 polymorphisms and cervical cancer risk: an updated meta-analysis. Front. Oncol. 15:1461737. doi: 10.3389/fonc.2025.1461737
Adebamowo, S. N., Adeyemo, A., Adebayo, A., Achara, P., Alabi, B., Bakare, R. A., ... & Adebamowo, C. A. (2024). Genome, HLA and polygenic risk score analyses for prevalent and persistent cervical human papillomavirus (HPV) infections. European Journal of Human Genetics, 32(6), 708-716.
Yang, X., Cheng, Y., & Li, C. (2017). The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduction and Targeted Therapy, 2(1), 1-10.
Lai, C. H., Chang, S. W., Yang, L. Y., Hung, S. I., Lin, C. Y., Chao, A., ... & Fann, C. S. (2020). Genome-wide association analysis in host genetic characteristics of progression to high-grade cervical intraepithelial neoplasia or higher for women with human papillomavirus infection and normal cytology.
Ye, J., & Qi, X. (2024). Vaginal microecology and its role in human papillomavirus infection and human papillomavirus associated cervical lesions. Apmis, 132(12), 928-947.
Follador K, Viçosa Pires L, Corbellini APZ, Zwir Poli JH, Jara Reis R, Suñé MdS, Wink PL, Cabrera G, Rosin GF, Uratani F, Kreitchmann R, Mansur HM and Pasqualotto AC (2025) High frequency of sexually transmitted infections in patients with precancerous cervical lesions in Brazil. Front. Public Health. 13:1480959. doi: 10.3389/fpubh.2025.1480959
Westrich, J. A., Warren, C. J., & Pyeon, D. (2017). Evasion of host immune defenses by human papillomavirus. Virus research, 231, 21–33. https://doi.org/10.1016/j.virusres.2016.11.023
Westrich, J. A., Warren, C. J., & Pyeon, D. (2017). Evasion of host immune defenses by human papillomavirus. Virus research, 231, 21–33. https://doi.org/10.1016/j.virusres.2016.11.023
Uhlorn, B. L., Jackson, R., Li, S., Bratton, S. M., Van Doorslaer, K., & Campos, S. K. (2020). Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS pathogens, 16(11), e1009028. https://doi.org/10.1371/journal.ppat.1009028
Raikhy, G., Woodby, B. L., Scott, M. L., Shin, G., Myers, J. E., Scott, R. S., & Bodily, J. M. (2019). Suppression of Stromal Interferon Signaling by Human Papillomavirus 16. Journal of virology, 93(19), e00458-19. https://doi.org/10.1128/JVI.00458-19
Li, Y., & Zhu, L. (2025). The influence of nutrition on HPV-associated inflammation: a systematic review and meta-analysis. Frontiers in nutrition, 12, 1612919. https://doi.org/10.3389/fnut.2025.1612919
Simms, K. T., Keane, A., Nguyen, D. T. N., Caruana, M., Hall, M. T., Lui, G., ... & Canfell, K. (2023). Benefits, harms and cost-effectiveness of cervical screening, triage and treatment strategies for women in the general population. Nature Medicine, 29(12), 3050-3058.
Saeed, N. K., Alshaikh, S., & Al-Beltagi, M. (2025). Comparative study of pap smear and polymerase chain reaction tests for human papillomavirus screening in Bahrain. Eastern Mediterranean Health Journal, 31(7).
Kleppe, S. N., Andersson, H., Elfström, K. M., & Dillner, J. (2023). Evaluation of co-testing with cytology and human papillomavirus testing in cervical screening. Preventive Medicine, 166, 107364.
Bao, H., Ma, L., Zhao, Y., Song, B., Di, J., Wang, L., Gao, Y., Ren, W., Wang, S., Wu, J., & Wang, H. J. (2022). Age-specific effectiveness of primary human papillomavirus screening versus cytology in a cervical cancer screening program: a nationwide cross-sectional study. Cancer communications (London, England), 42(3), 191–204. https://doi.org/10.1002/cac2.12256
Harper, D. M., Paczos, T., Ridder, R., & Huh, W. K. (2025). p16/ki-67 dual stain triage of individuals positive for HPV to detect cervical precancerous lesions. International journal of cancer, 156(12), 2257–2264. https://doi.org/10.1002/ijc.35353
Derbie, A., Mekonnen, D., Woldeamanuel, Y., Van Ostade, X., & Abebe, T. (2020). HPV E6/E7 mRNA test for the detection of high grade cervical intraepithelial neoplasia (CIN2+): a systematic review. Infectious agents and cancer, 15, 9. https://doi.org/10.1186/s13027-020-0278-x
Rozemeijer, K., Penning, C., Siebers, A. G., Naber, S. K., Matthijsse, S. M., van Ballegooijen, M., van Kemenade, F. J., & de Kok, I. M. (2016). Comparing SurePath, ThinPrep, and conventional cytology as primary test method: SurePath is associated with increased CIN II+ detection rates. Cancer causes & control : CCC, 27(1), 15–25. https://doi.org/10.1007/s10552-015-0678-1
Zhang, Z., Zhang, J., Xia, N., & Zhao, Q. (2017). Expanded strain coverage for a highly successful public health tool: Prophylactic 9-valent human papillomavirus vaccine. Human vaccines & immunotherapeutics, 13(10), 2280–2291. https://doi.org/10.1080/21645515.2017.1346755
Harper, D. M., Navarro-Alonso, J. A., Bosch, F. X., Paavonen, J., Stanley, M., Sasieni, P., … Ruiz García, Y. (2025). Impact of human papillomavirus vaccines in the reduction of infection, precursor lesions, and cervical cancer: A systematic literature review. Human Vaccines & Immunotherapeutics, 21(1). https://doi.org/10.1080/21645515.2025.2497608
Mwale, M. (2019). Persistent Measles Immunisation Gaps in LMICs: Insights from the 2024 Revision of the WHO/UNICEF Estimates of National Immunization Coverage. UNICEF Estimates of National Immunization Coverage.
Smalley Rumfield, C., Roller, N., Pellom, S. T., Schlom, J., & Jochems, C. (2020). Therapeutic Vaccines for HPV-Associated Malignancies. ImmunoTargets and therapy, 9, 167–200. https://doi.org/10.2147/ITT.S273327
Saglam, O., & Conejo-Garcia, J. (2018). PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integrative cancer science and therapeutics, 5(2), 10.15761/ICST.1000272. https://doi.org/10.15761/ICST.1000272
Lindel, K., Burri, P., Studer, H. U., Altermatt, H. J., Greiner, R. H., & Gruber, G. (2005). Human papillomavirus status in advanced cervical cancer: predictive and prognostic significance for curative radiation treatment. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society, 15(2), 278–284. https://doi.org/10.1111/j.1525-1438.2005.15216.x
Xu, Y., Qiu, Y., Yuan, S., & Wang, H. (2020). Prognostic implication of human papillomavirus types in cervical cancer patients: a systematic review and meta-analysis. Infectious agents and cancer, 15(1), 66. https://doi.org/10.1186/s13027-020-00332-5
Xu, Y., Qiu, Y., Yuan, S., & Wang, H. (2020). Prognostic implication of human papillomavirus types in cervical cancer patients: a systematic review and meta-analysis. Infectious agents and cancer
Authors
Copyright (c) 2025 Ohoud Ibrahim fallata

This work is licensed under a Creative Commons Attribution 4.0 International License.
