The Front Line of Defense: Summary of the Efficacy of a Novel Intranasal Vaccine Formulation Against Respiratory Threats in a Forward Deployed Military Setting
Abstract
Background: Forward-deployed military troops are at high risk for acute respiratory infections (ARIs), an age-old and continuing challenge to operational readiness. Conventional intramuscular (IM) vaccines, which induce mostly systemic immunity, offer less than optimal protection at the mucosal portals of pathogen entry.
Aim: This review synthesizes current evidence of the effectiveness of novel intranasal (IN) vaccine technologies against respiratory threats, with specific focus on their application in a forward-deployed military environment.
Methods: A Systematic literature review was conducted in PubMed, Scopus, and Web of Science (2000-2024). Key search terms utilized were "intranasal vaccine," "mucosal immunity," "military personnel," "respiratory infection," "serological testing," and "PCR."
Results: Research has demonstrated that IN vaccines, particularly the live-attenuated and adenoviral vector vaccines, have a strong mucosal immune response characterized by tissue-resident memory T-cells and secretory IgA. Such a response outperforms IM vaccines in primary infection and transmission prevention. Logistically, IN delivery has numerous advantages of deployment, including simplicity of use and absence of needles. Evaluating effectiveness requires an integrated model that combines laboratory aspects (serology and PCR) with nursing activities (administration, adverse event tracking, and disease surveillance).
Conclusion: New formulations for IN vaccines possess vast potential to protect forces in the field. Their sterilizing immunity and operational benefit make them an important future asset. Success depends on an entirely integrated framework that leverages diagnostics and clinical expertise to guard force health and mission preparedness.
Full text article
References
Abdu Asiri, B. A., Almutairi, R. M., Alfadhel, R. M., hawsawi, N. N. A., Faqeehi, S. M., & Alshammari, E. M. (2025). Technology-Driven Nursing Interventions to Support Telehealth in Cardiac Primary Care. Saudi Journal of Medicine and Public Health, *2*(2), 137–146. https://doi.org/10.64483/jmph-67
Alguacil-Ramos, A. M., Muelas-Tirado, J., Garrigues-Pelufo, T. M., Portero-Alonso, A., Diez-Domingo, J., Pastor-Villalba, E., & Lluch-Rodrigo, J. A. (2016). Surveillance for adverse events following immunization (AEFI) for 7 years using a computerised vaccination system. Public health, 135, 66-74. https://doi.org/10.1016/j.puhe.2015.11.010
Ascough, S., Vlachantoni, I., Kalyan, M., Haijema, B. J., Wallin-Weber, S., Dijkstra-Tiekstra, M., ... & Chiu, C. (2019). Local and systemic immunity against respiratory syncytial virus induced by a novel intranasal vaccine. A randomized, double-blind, placebo-controlled clinical trial. American journal of respiratory and critical care medicine, 200(4), 481-492. https://doi.org/10.1164/rccm.201810-1921OC
Baguelin, M., Flasche, S., Camacho, A., Demiris, N., Miller, E., & Edmunds, W. J. (2013). Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study. PLoS medicine, 10(10), e1001527. https://doi.org/10.1371/journal.pmed.1001527
Bezbaruah, R., Chavda, V. P., Nongrang, L., Alom, S., Deka, K., Kalita, T., ... & Vora, L. (2022). Nanoparticle-based delivery systems for vaccines. Vaccines, 10(11), 1946. https://doi.org/10.3390/vaccines10111946
Belyakov, I. M., & Ahlers, J. D. (2009). What role does the route of immunization play in the generation of protective immunity against mucosal pathogens?. The Journal of immunology, 183(11), 6883-6892.
Beshbishy, A. M. (2024). Advancements in Vaccination Tracking and Delivery Systems through Health Informatics: A Review of Digital Innovations and COVID-19 Impact. Saudi Journal of Medicine and Public Health, *1*(1), 16 – 26 . https://doi.org/10.64483/jmph-16
Biselli, R., Nisini, R., Lista, F., Autore, A., Lastilla, M., De Lorenzo, G., ... & D’Amelio, R. (2022). A historical review of military medical strategies for fighting infectious diseases: From battlefields to global health. Biomedicines, 10(8), 2050. https://doi.org/10.3390/biomedicines10082050
Blackbourne, L. H., Baer, D. G., Eastridge, B. J., Renz, E. M., Chung, K. K., DuBose, J., ... & Holcomb, J. B. (2012). Military medical revolution: Deployed hospital and: en route: care. Journal of Trauma and Acute Care Surgery, 73(6), S378-S387. DOI: 10.1097/TA.0b013e3182754900
Brekke, K., Lind, A., Holm-Hansen, C., Haugen, I. L., Sørensen, B., Sommerfelt, M., & Kvale, D. (2014). Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PloS one, 9(11), e112556. https://doi.org/10.1371/journal.pone.0112556
Ceglia, S., Berthelette, A., Howley, K., Li, Y., Mortzfeld, B., Bhattarai, S. K., ... & Reboldi, A. (2023). An epithelial cell-derived metabolite tunes immunoglobulin A secretion by gut-resident plasma cells. Nature immunology, 24(3), 531-544. https://doi.org/10.1038/s41590-022-01413-w
Chen, J., Qin, Z., & Jia, Z. (2024). The application status of sequencing technology in global respiratory infectious disease diagnosis. Infection, 52(6), 2169-2181. https://doi.org/10.1007/s15010-024-02360-4
Cheon, I. S., Son, Y. M., & Sun, J. (2023). Tissue‐resident memory T cells and lung immunopathology. Immunological reviews, 316(1), 63-83. https://doi.org/10.1111/imr.13201
de Silva, T. I., Gould, V., Mohammed, N. I., Cope, A., Meijer, A., Zutt, I., ... & Tregoning, J. S. (2017). Comparison of mucosal lining fluid sampling methods and influenza-specific IgA detection assays for use in human studies of influenza immunity. Journal of immunological methods, 449, 1-6. https://doi.org/10.1016/j.jim.2017.06.008
Fallatah, A. R., Hawsawi, A. M. T., Makrami, R. A. H., Makrami, M. A. H., Jaber, S. A. H., Alanazi, K. S. sweet, … Al-Dosari, N. M. H. (2024). The Effect of Climate Change on Nursing: Climate Health Emergencies Preparedness Amidst Extreme Weather Conditions. Saudi Journal of Medicine and Public Health, *1*(1), 123–130. https://doi.org/10.64483/jmph-54
Feng, Y., Shi, J., Liu, J., Yuan, Z., & Gao, S. (2025). Advancing Food Safety Surveillance: Rapid and Sensitive Biosensing Technologies for Foodborne Pathogenic Bacteria. Foods, 14(15), 2654. https://doi.org/10.3390/foods14152654
Grabenstein, J. D., & Winkenwerder Jr, W. (2003). US military smallpox vaccination program experience. Jama, 289(24), 3278-3282. doi:10.1001/jama.289.24.3278
Hazazi, Y. O. (2025). Strengthening Postpartum Depression Screening and Treatment within Primary Healthcare Centers in Riyadh 1st Cluster. Saudi Journal of Medicine and Public Health, *2*(2), 105–113. https://doi.org/10.64483/jmph-56
Heaney, C. D., Hempel, H., DeRosa, K. L., Pinto, L. A., & Mantis, N. J. (2024). Clinical assessment of SARS-CoV-2 antibodies in oral fluids following infection and vaccination. Clinical chemistry, 70(4), 589-596. https://doi.org/10.1093/clinchem/hvad169
Kiyono, H., & Fukuyama, S. (2004). NALT-versus Peyer's-patch-mediated mucosal immunity. Nature reviews immunology, 4(9), 699-710. https://doi.org/10.1038/nri1439
Korzeniewski, K., Nitsch-Osuch, A., Konior, M., & Lass, A. (2015). Respiratory tract infections in the military environment. Respiratory physiology & neurobiology, 209, 76-80. https://doi.org/10.1016/j.resp.2014.09.016
Lalani, T., Lee, T. K., Laing, E. D., Ritter, A., Cooper, E., Lee, M., ... & Kronmann, K. C. (2021, February). SARS-CoV-2 infections and serologic responses among military personnel deployed on the USNS COMFORT to New York City during the COVID-19 pandemic. In Open forum infectious diseases (Vol. 8, No. 2, p. ofaa654). US: Oxford University Press. https://doi.org/10.1093/ofid/ofaa654
Ledesma-Feliciano, C., Chapman, R., Hooper, J. W., Elma, K., Zehrung, D., Brennan, M. B., & Spiegel, E. K. (2023). Improved DNA vaccine delivery with needle-free injection systems. Vaccines, 11(2), 280. https://doi.org/10.3390/vaccines11020280
Liang, X., Zhou, J., Wang, M., Wang, J., Song, H., Xu, Y., & Li, Y. (2024). Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence, 15(1), 2435373. https://doi.org/10.1080/21505594.2024.2435373
Lund, F. E., & Randall, T. D. (2021). Scent of a vaccine. Science, 373(6553), 397-399. https://doi.org/10.1126/science.abg9857
Madkhali, A. M., Bouri, H. A., Alotaibi, F. O. E., ALMUTAIRI, A. M. M., Albalawi, T. suliman, Alotaibi, G. S., … Alotaibi, A. S. (2024). Potential Health Implications of Fifth Generation (5G) Wireless Communication Technology: A Review of Emerging Biological and Epidemiological Concerns. Saudi Journal of Medicine and Public Health, *1*(1), 94–105. https://doi.org/10.64483/jmph-53
Mestecky, J., Strober, W., Russell, M. W., Cheroutre, H., Lambrecht, B. N., & Kelsall, B. L. (Eds.). (2015). Mucosal immunology. Academic Press.
Mutsch, M., Zhou, W., Rhodes, P., Bopp, M., Chen, R. T., Linder, T., ... & Steffen, R. (2004). Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. New England journal of medicine, 350(9), 896-903. DOI: 10.1056/NEJMoa030595
Nguyen, K. G., Mantooth, S. M., Vrabel, M. R., & Zaharoff, D. A. (2022). Intranasal delivery of thermostable subunit vaccine for cross-reactive mucosal and systemic antibody responses against SARS-CoV-2. Frontiers in Immunology, 13, 858904. https://doi.org/10.3389/fimmu.2022.858904
Plotkin, S. A. (2023). Recent updates on correlates of vaccine-induced protection. Frontiers in Immunology, 13, 1081107. https://doi.org/10.3389/fimmu.2022.1081107
Sanchez, J. L., Cooper, M. J., Myers, C. A., Cummings, J. F., Vest, K. G., Russell, K. L., ... & Gaydos, C. A. (2015). Respiratory infections in the US military: recent experience and control. Clinical microbiology reviews, 28(3), 743-800. https://doi.org/10.1128/cmr.00039-14
Schenkel, J. M., & Masopust, D. (2014). Tissue-resident memory T cells. Immunity, 41(6), 886-897. https://doi.org/10.1016/j.immuni.2014.12.007
Trombetta, C. M., & Montomoli, E. (2016). Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert review of vaccines, 15(8), 967-976. https://doi.org/10.1586/14760584.2016.1164046
Tsoi, S. K., Smeesters, P. R., Frost, H. R., Licciardi, P., & Steer, A. C. (2015). Correlates of Protection for M Protein‐Based Vaccines against Group A Streptococcus. Journal of immunology research, 2015(1), 167089. https://doi.org/10.1155/2015/167089
Wang, Y., Wei, X., Liu, Y., Li, S., Pan, W., Dai, J., & Yang, Z. (2024). Towards broad-spectrum protection: the development and challenges of combined respiratory virus vaccines. Frontiers in Cellular and Infection Microbiology, 14, 1412478. https://doi.org/10.3389/fcimb.2024.1412478
Ye, Z. W., Ong, C. P., Tang, K., Fan, Y., Luo, C., Zhou, R., ... & Jin, D. Y. (2022). Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 strain confers sterilizing immunity in animals. Cellular & molecular immunology, 19(5), 588-601. https://doi.org/10.1038/s41423-022-00855-4
Zhao, L., Seth, A., & Wibowo, N. (2022). Nanoparticle-based vaccines. Vaccine, 40(12), 1641-1651.
Authors
Copyright (c) 2025 Fayza Karman Nasha Al Hazmi, Amani Zaben Mashan Alanazi, Musa Samir Ayesh Al-Rakhimi, Shroq Hadi Hassan Hamzi, Khaled Mohammed Alamri, Abdullah Talaq ALnami , Nada Ahmad Awois, Hussam Ali Mohammed Alasam, Abdulrahman Abdullah Alashjaee, Mohammed Abdulrahman Almutairi

This work is licensed under a Creative Commons Attribution 4.0 International License.