Recent Advances and Innovations in Optical Coherence Tomography: Transforming Diagnosis and Management of Retinal Diseases

Authors

  • Salah hamoud Almotairi ksa , Ministry of National Guard Health Affairs

Keywords:

Optical Coherence Tomography, Retinal Diseases, Imaging Technology, Neovascular AMD, Intraoperative OCT

Abstract

Background: Optical coherence tomography (OCT) has revolutionized the field of ophthalmology since its introduction in 1991, providing high-resolution imaging of retinal and choroidal structures. This non-invasive imaging technique has become integral in diagnosing and managing various retinal diseases, including neovascular age-related macular degeneration (AMD) and central serous chorioretinopathy (CSCR).

Methods: This review synthesizes recent advancements in OCT technology and methodologies, categorizing them into clinical applications, scientific developments, and technological innovations. The review covers various OCT modalities, including time-domain OCT, spectral-domain OCT, swept-source OCT, visible light OCT, adaptive optics OCT, and polarization-sensitive OCT, as well as portable and intraoperative OCT devices.

Results: The findings demonstrate that advancements in OCT technologies have significantly enhanced the detection and monitoring of retinal diseases. Key developments include improved imaging resolution, speed, and the ability to visualize previously obscured choroidal structures. Innovations such as home-based OCT devices and intraoperative OCT (iOCT) have further improved patient care, allowing for real-time imaging during surgical procedures and facilitating daily monitoring for at-risk individuals.

Conclusion: The evolution of OCT technology continues to enhance our understanding of retinal pathologies and improve clinical outcomes. The integration of advanced imaging techniques promises to refine diagnostic accuracy and therapeutic interventions, heralding a new era in the management of retinal diseases. Future research should focus on the widespread implementation of these technologies in clinical settings to maximize their potential benefits.

 

 

References

References

1. Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181.

2. Stahl, A. The Diagnosis and Treatment of Age-Related Macular Degeneration. Dtsch Arztebl Int. 2020, 117, 513–520.

3. Semeraro, F.; Morescalchi, F.; Russo, A.; Gambicorti, E.; Pilotto, A.; Parmeggiani, F.; Bartollino, S.; Costagliola, C. Central Serous Chorioretinopathy: Pathogenesis and Management. Clin. Ophthalmol. 2019, 13, 2341–2352.

4. Boned-Murillo, A.; Albertos-Arranz, H.; Diaz-Barreda, M.D.; Orduna-Hospital, E.; Sánchez-Cano, A.; Ferreras, A.; Cuenca, N.; Pinilla, I. Optical Coherence Tomography Angiography in Diabetic Patients: A Systematic Review. Biomedicines 2021, 10, 88.

5. Majumdar, S.; Tripathy, K. Macular Hole. In StatPearls; StatPearls: Treasure Island, FL, USA, 2022.

6. Metrangolo, C.; Donati, S.; Mazzola, M.; Fontanel, L.; Messina, W.; D’Alterio, G.; Rubino, M.; Radice, P.; Premi, E.; Azzolini, C. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J. Ophthalmol. 2021, 2021, 9994098.

7. Dhurandhar, D.S.; Singh, S.R.; Sahoo, N.K.; Goud, A.; Lupidi, M.; Chhablani, J. Identifying central serous chorioretinopathy biomarkers in coexisting diabetic retinopathy: A multimodal imaging study. Br. J. Ophthalmol. 2020, 104, 904–909.

8. Sahoo, N.K.; Ong, J.; Selvam, A.; Maltsev, D.; Sacconi, R.; Venkatesh, R.; Reddy, N.G.; Madan, S.; Tombolini, B.; Lima, L.H.; et al. Longitudinal follow-up and outcome analysis in central serous chorioretinopathy. Eye 2022, 1–7.

9. Corradetti, G.; Corvi, F.; Nittala, M.G.; Nassisi, M.; Alagorie, A.R.; Scharf, J.; Lee, M.Y.; Sadda, S.R.; Sarraf, D. Natural history of incomplete retinal pigment epithelial and outer retinal atrophy in age-related macular degeneration. Can. J. Ophthalmol. 2021, 56, 325–334.

10. Nassisi, M.; Fan, W.; Shi, Y.; Lei, J.; Borrelli, E.; Ip, M.; Sadda, S.R. Quantity of Intraretinal Hyperreflective Foci in Patients With Intermediate Age-Related Macular Degeneration Correlates With 1-Year Progression. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3431–3439.

11. Lei, J.; Balasubramanian, S.; Abdelfattah, N.S.; Nittala, M.G.; Sadda, S.R. Proposal of a simple optical coherence tomography-based scoring system for progression of age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1551–1558.

12. Nassisi, M.; Lei, J.; Abdelfattah, N.S.; Karamat, A.; Balasubramanian, S.; Fan, W.; Uji, A.; Marion, K.M.; Baker, K.; Huang, X.; et al. OCT Risk Factors for Development of Late Age-Related Macular Degeneration in the Fellow Eyes of Patients Enrolled in the HARBOR Study. Ophthalmology 2019, 126, 1667–1674.

13. Gabriele, M.L.; Wollstein, G.; Ishikawa, H.; Kagemann, L.; Xu, J.; Folio, L.S.; Schuman, J.S. Optical coherence tomography: History, current status, and laboratory work. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2425–2436.

14. Aumann, S.; Donner, S.; Fischer, J.; Muller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Bille, J.F., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 59–85.

15. Ohno-Matsui, K.; Fang, Y.; Morohoshi, K.; Jonas, J.B. Optical Coherence Tomographic Imaging of Posterior Episclera and Tenon’s Capsule. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3389–3394.

16. Zhang, Y.; Wang, Y.; Shi, C.; Shen, M.; Lu, F. Advances in retina imaging as potential biomarkers for early diagnosis of Alzheimer’s disease. Transl. Neurodegener. 2021, 10, 6.

17. Povazay, B.; Bizheva, K.; Unterhuber, A.; Hermann, B.; Sattmann, H.; Fercher, A.F.; Drexler, W.; Apolonski, A.; Wadsworth, W.J.; Knight, J.C.; et al. Submicrometer axial resolution optical coherence tomography. Opt. Lett. 2002, 27, 1800–1802. [Google Scholar] [CrossRef]

18. Zhang, T.; Kho, A.M.; Yiu, G.; Srinivasan, V.J. Visible Light Optical Coherence Tomography (OCT) Quantifies Subcellular Contributions to Outer Retinal Band 4. Transl. Vis. Sci. Technol. 2021, 10, 30.

19. Miller, D.T.; Kocaoglu, O.P.; Wang, Q.; Lee, S. Adaptive optics and the eye (super resolution OCT). Eye 2011, 25, 321–330.

20. Zawadzki, R.J.; Jones, S.M.; Olivier, S.S.; Zhao, M.; Bower, B.A.; Izatt, J.A.; Choi, S.; Laut, S.; Werner, J.S. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express 2005, 13, 8532–8546.

21. Sayegh, R.G.; Zotter, S.; Roberts, P.K.; Kandula, M.M.; Sacu, S.; Kreil, D.P.; Baumann, B.; Pircher, M.; Hitzenberger, C.K.; Schmidt-Erfurth, U. Polarization-Sensitive Optical Coherence Tomography and Conventional Retinal Imaging Strategies in Assessing Foveal Integrity in Geographic Atrophy. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5246–5255.

22. De Boer, J.F.; Hitzenberger, C.K.; Yasuno, Y. Polarization sensitive optical coherence tomography—A review. Biomed. Opt. Express 2017, 8, 1838–1873.

23. Imaging that Enlightens. Deeper insights into retinal structures with High-Resolution OCT. Ophthalmologist. 2020.

24. Spaide, R.F.; Lally, D.R. High Resolution Spectral Domain Optical Coherence Tomography of Multiple Evanescent White Dot Syndrome. Retin. Cases Brief Rep. 2021.

25. Grieve, K.; Thouvenin, O.; Sengupta, A.; Borderie, V.M.; Paques, M. Appearance of the Retina With Full-Field Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT96–OCT104.

26. Mece, P.; Scholler, J.; Groux, K.; Boccara, C. High-resolution in-vivo human retinal imaging using full-field OCT with optical stabilization of axial motion. Biomed. Opt. Express 2020, 11, 492–504.

27. Povazay, B.; Hermann, B.; Hofer, B.; Kajić, V.; Simpson, E.; Bridgford, T.; Drexler, W. Wide-field optical coherence tomography of the choroid in vivo. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1856–1863.

28. Takahashi, H.; Tanaka, N.; Shinohara, K.; Yokoi, T.; Yoshida, T.; Uramoto, K.; Ohno-Matsui, K. Ultra-Widefield Optical Coherence Tomographic Imaging of Posterior Vitreous in Eyes With High Myopia. Am. J. Ophthalmol. 2019, 206, 102–112.

29. Ni, S.; Wei, X.; Ng, R.; Ostmo, S.; Chiang, M.F.; Huang, D.; Jia, Y.; Campbell, J.P.; Jian, Y. High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source. Biomed. Opt. Express 2021, 12, 3553–3570.

30. Ehlers, J.P.; Tao, Y.K.; Srivastava, S.K. The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery. Curr. Opin. Ophthalmol. 2014, 25, 221–227. [Google Scholar] [CrossRef]

31. Nahen, K.; Benyamini, G.; Loewenstein, A. Evaluation of a Self-Imaging SD-OCT System for Remote Monitoring of Patients with Neovascular Age Related Macular Degeneration. Klin. Mon. Für Augenheilkd. 2020, 237, 1410–1418.

32. Kim, J.E.; Tomkins-Netzer, O.; Elman, M.J.; Lally, D.R.; Goldstein, M.; Goldenberg, D.; Shulman, S.; Benyamini, G.; Loewenstein, A. Evaluation of a self-imaging SD-OCT system designed for remote home monitoring. BMC Ophthalmol. 2022, 22, 261. [Google Scholar] [CrossRef]

33. Shu, X.; Beckmann, L.; Zhang, H. Visible-light optical coherence tomography: A review. J. Biomed Opt. 2017, 22, 1–14.

34. Yi, J.; Wei, Q.; Liu, W.; Backman, V.; Zhang, H.F. Visibl.le-light optical coherence tomography for retinal oximetry. Opt. Lett. 2013, 38, 1796–1798.

35. Yi, J.; Liu, W.; Chen, S.; Backman, V.; Sheibani, N.; Sorenson, C.M.; Fawzi, A.A.; Linsenmeier, R.A.; Zhang, H.F. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light Sci. Appl. 2015, 4, e334.

36. Rubinoff, I.; Miller, D.A.; Kuranov, R.; Wang, Y.; Fang, R.; Volpe, N.J.; Zhang, H.F. High-speed balanced-detection visible-light optical coherence tomography in the human retina using subpixel spectrometer calibration. IEEE Trans. Med. Imaging 2022.

37. Rubinoff, I.; Beckmann, L.; Wang, Y.; Fawzi, A.A.; Liu, X.; Tauber, J.; Jones, K.; Ishikawa, H.; Schuman, J.S.; Kuranov, R.; et al. Speckle reduction in visible-light optical coherence tomography using scan modulation. Neurophotonics 2019, 6, 041107.

38. Pi, S.; Hormel, T.T.; Wei, X.; Cepurna, W.; Morrison, J.C.; Jia, Y. Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography. Opt. Lett. 2020, 45, 2107–2110.

39. Zhang, T.; Kho, A.M.; Srinivasan, V.J. Morphometry of Inner Plexiform Layer (IPL) Stratification in the Human Retina With Visible Light Optical Coherence Tomography. Front. Cell Neuro Sci. 2021, 15, 655096.

40. Zhang, T.; Kho, A.M.; Srinivasan, V.J. Water wavenumber calibration for visible light optical coherence tomography. J. Biomed. Opt. 2020, 25, 090501. [Google Scholar] [CrossRef]

41. Babcock, H.W. The possibility of compensating astronomical seeing. In Publications of the Astronomical Society of the Pacific, 386th ed.; The Astronomical Society of the Pacific: San Francisco, WI, USA, 1953; Volume 65, pp. 229–236.

42. Liang, J.; Williams, D.R.; Miller, D.T. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1997, 14, 2884–2892.

43. Roorda, A.; Romero-Borja, F.; Donnelly Iii, W.; Queener, H.; Hebert, T.; Campbell, M. Adaptive optics scanning laser ophthalmoscopy. Opt. Express 2002, 10, 405–412.

44. Akyol, E.; Hagag, A.M.; Sivaprasad, S.; Lotery, A.J. Adaptive optics: Principles and applications in ophthalmology. Eye 2021, 35, 244–264.

45. Jonnal, R.S.; Kocaoglu, O.P.; Zawadzki, R.J.; Liu, Z.; Miller, D.T.; Werner, J.S. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT51-68.

46. Roorda, A.; Williams, D.R. The arrangement of the three cone classes in the living human eye. Nature 1999, 397, 520–522.

47. Kadomoto, S.; Muraoka, Y.; Uji, A.; Ooto, S.; Kawai, K.; Ishikura, M.; Nishigori, N.; Akagi, T.; Tsujikawa, A. Human Foveal Cone and Müller Cells Examined by Adaptive Optics Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2021, 10, 17.

48. Fernández, E.; Drexler, W. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography. Opt. Express 2005, 13, 8184–8197.

49. Shirazi, M.F.; Brunner, E.; Laslandes, M.; Pollreisz, A.; Hitzenberger, C.K.; Pircher, M. Visualizing human photoreceptor and retinal pigment epithelium cell mosaics in a single volume scan over an extended field of view with adaptive optics optical coherence tomography. Biomed. Opt. Express 2020, 11, 4520–4535.

50. Liu, Z.; Kurokawa, K.; Zhang, F.; Lee, J.J.; Miller, D.T. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc. Natl. Acad. Sci. USA 2017, 114, 12803–12808.

51. Adie, S.G.; Graf, B.W.; Ahmad, A.; Carney, P.S.; Boppart, S.A. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Natl. Acad. Sci. USA 2012, 109, 7175–7180. [Google Scholar] [CrossRef]

52. Ralston, T.S.; Marks, D.L.; Carney, P.S.; Boppart, S.A. Interferometric synthetic aperture microscopy. Nat. Phys. 2007, 3, 129–134.

53. Lee, B.; Lee, J.; Jeong, S.; Kang, W.; Oh, W.-Y. Video-rate computational adaptive optics optical coherence tomography with a stretched-pulse mode-locked laser. In European Conference on Biomedical Optics; Optical Society of America: Washington, DC, USA, 2021.

54. Wang, J.; Chaney, E.J.; Aksamitiene, E.; Marjanovic, M.; Boppart, S.A. Computational adaptive optics for polarization-sensitive optical coherence tomography. Opt. Lett. 2021, 46, 2071–2074.

55. Ruiz-Lopera, S.; Restrepo, R.; Cuartas-Vélez, C.; Bouma, B.E.; Uribe-Patarroyo, N. Computational adaptive optics in phase-unstable optical coherence tomography. Opt. Lett. 2020, 45, 5982–5985.

56. Liu, L.; Wu, Z.; Qi, M.; Li, Y.; Zhang, M.; Liao, D.; Gao, P. Application of Adaptive Optics in Ophthalmology. Photonics 2022, 9, 288.

57. Camino, A.; Ng, R.; Huang, J.; Guo, Y.; Ni, S.; Jia, Y.; Huang, D.; Jian, Y. Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography. Opt. Lett. 2020, 45, 2612–2615.

58. Zhu, D.; Wang, R.; Žurauskas, M.; Pande, P.; Bi, J.; Yuan, Q.; Wang, L.; Gao, Z.; Boppart, S.A. Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm. Opt. Express 2020, 28, 23306–23319.

59. Hofer, H.; Sredar, N.; Queener, H.; Li, C.; Porter, J. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye. Opt. Express 2011, 19, 14160–14171.

60. Durech, E.; Newberry, W.; Franke, J.; Sarunic, M.V. Wavefront sensor-less adaptive optics using deep reinforcement learning. Biomed. Opt. Express 2021, 12, 5423–5438.

61. Iyer, R.R.; Sorrells, J.E.; Yang, L.; Chaney, E.J.; Spillman, D.R.; Tibble, B.E.; Renteria, C.A.; Tu, H.; Žurauskas, M.; Marjanovic, M.; et al. Label-free metabolic and structural profiling of dynamic biological samples using multimodal optical microscopy with sensorless adaptive optics. Sci. Rep. 2022, 12, 3438.

62. Pircher, M.; Zawadzki, R.J. Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging [Invited]. Biomed. Opt. Express 2017, 8, 2536–2562.

63. Hee, M.R.; Huang, D.; Swanson, E.A.; Fujimoto, J.G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. JOSA B 1992, 9, 903–908.

64. Pircher, M.; Hitzenberger, C.K.; Schmidt-Erfurth, U. Polarization sensitive optical coherence tomography in the human eye. Prog. Retin. Eye Res. 2011, 30, 431–451.

65. Ueno, Y.; Mori, H.; Kikuchi, K.; Yamanari, M.; Oshika, T. Visualization of Anterior Chamber Angle Structures With Scattering- and Polarization-Sensitive Anterior Segment Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2021, 10, 29.

66. Baumann, B.; Gotzinger, E.; Pircher, M.; Sattmann, H.; Schuutze, C.; Schlanitz, F.; Ahlers, C.; Schmidt-Erfurth, U.; Hitzenberger, C.K. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 2010, 15, 061704.

67. Sharma, S.; Hartl, G.; Naveed, S.K.; Blessing, K.; Sharma, G.; Singh, K. Input polarization-independent polarization-sensitive optical coherence tomography using a depolarizer. Rev. Sci. Instrum. 2020, 91, 043706.

68. Tang, P.; Wang, R. Stable fiber-based polarization-sensitive optical coherence tomography using polarization maintaining common-path interferometer. J. Biomed. Opt. 2020, 25, 116009.

69. Abouraddy, A.F.; Nasr, M.B.; Saleh, B.E.A.; Sergienko, A.V.; Teich, M.C. Quantum-Optical Coherence Tomography with Dispersion Cancellation; American Physical Society: College Park, MD, USA, 2002.

70. Booth, M.C.; Di Giuseppe, G.; Saleh, B.E.A.; Sergienko, A.V.; Teich, M.C. Polarization-sensitive quantum-optical coherence tomography. Phys. Rev. A 2004, 69, 043815.

71. Sukharenko, V.; Bikorimana, S.; Dorsinville, R. Birefringence and scattering characterization using polarization sensitive quantum optical coherence tomography. Opt. Lett. 2021, 46, 2799–2802.

72. Schutze, C.; Teleky, K.; Baumann, B.; Pircher, M.; Gotzinger, E.; Hitzenberger, C.K.; Schmidt-Erfurth, U. Polarisation-sensitive OCT is useful for evaluating retinal pigment epithelial lesions in patients with neovascular AMD. Br. J. Ophthalmol. 2016, 100, 371–377.

73. Liu, Y.; Holekamp, N.M.; Heier, J.S. Prospective, Longitudinal Study: Daily Self-Imaging with Home OCT for Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2022.

74. Chakravarthy, U.; Goldenberg, D.; Young, G.; Havilio, M.; Rafaeli, O.; Benyamini, G.; Loewenstein, A. Automated Identification of Lesion Activity in Neovascular Age-Related Macular Degeneration. Ophthalmology 2016, 123, 1731–1736.

Published

2024-11-25

How to Cite

Almotairi , S. hamoud. (2024). Recent Advances and Innovations in Optical Coherence Tomography: Transforming Diagnosis and Management of Retinal Diseases. Saudi Journal of Medicine and Public Health, 1(2). Retrieved from https://saudijmph.com/index.php/pub/article/view/7

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.