Artificial Intelligence and Robotics in Surgery: The Future of Precision Medicine

Authors

  • SAMI MOHAMMED ALHARBI Kingdom of Saudi Arabia, King Abdulaziz University Hospital,KSA,MINISTRY OF EDUCATION
  • Tariq Mohammed al harish Kingdom of Saudi Arabia, King abdulaziz university hospital,Jeddah
  • Eman Attyah Zead Alqurashi Ministry of Health - King Abdulaziz Hospital , Jeddah - Alfadilah PHC
  • Maha Dhuwihi Alsubaie Maternity and Children's Hospital in Hafar Al-Batin
  • Njah Mohammad Alanazi Maternity and Children's Hospital in Hafar Al-Batin
  • Batool Alhamidi Almutairi King Saud University Dental Hospital
  • Hadeel Motlaq Almotlaq Primary Health Care Center, Al-Sahafa
  • HUSSAIN ALI KHABRANI King Khalid University Hospital
  • Sayer Hamdan Salem Alsharari Al-Jouf Health Cluster, Al Qurayyat General Hospital
  • Tariq Maqbul Awadh Alsharari Al-Jouf Health Cluster, Al Qurayyat General Hospital
  • Yousef Dhaifallah Dabi Alsharari Al-Jouf Health Cluster, Al Qurayyat General Hospital

DOI:

https://doi.org/10.64483/jmph-69

Keywords:

adolescents, behavioral emergencies, de-escalation, emergency department, pharmacological interventions.

Abstract

Artificial intelligence (AI) and robotics signal a new domain for precision medicine and have fundamentally reformulated surgery into a new disciplinary lens that provides surgical practice with greater accuracy, efficiency, and outcomes. AI-powered systems, such as machine learning algorithms and computer vision, allow for real-time analysis of medical and surgical data, predictive modeling of patient outcomes, and personalization of treatment plans for each patient. In parallel, AI-powered robotic tools, such as the da Vinci Surgical System, offer surgeons a level of precision, control, and cognitive stimulation that rarely equates to manual techniques. This paper will outline the ongoing advancements, challenges, and potential opportunities that AI and robotics have in surgery. Also explored will be the implications for improved patient care relating to minimally invasive procedures, training for surgery, and patient safety. Significant applications of AI and robotics in surgery include autonomous surgical robots, image-guided robotic interventions, and advanced decision-support systems. Collectively, these clinical applications diminish opportunities for human mistakes and improve patient outcomes. However, the broad application of AI and robotics in surgery will depend on acting on ethical questions, regulatory legislation that is forward-thinking, and technical challenges, such as data and image quality, interoperability issues of robotic devices, and surgeon accountability. The challenges that impede the integration of AI and robotics in surgery can be addressed, but a successful practice application equates to future developments that produce the safest, most affordable, and individualized practice of surgery in the world. With the benefits of surgery supported by AI and robots being postulated, there remains a discipline-wide need for research, collaboration, and ethical accountability. This paper will therefore explore the advances of AI and robotics and conclude by emphasizing the importance of research on these approaches to shape the future of precision medicine.

References

Alotaibi, F. E., Al-Jehani, H., & Pinsker, M. O. (2015). Virtual reality simulation in neurosurgery: Technologies and evolution. Neurosurgery, 77(Suppl 1), S31–S38. https://doi.org/10.1227/NEU.0000000000000923

Atallah, S., Martin-Perez, B., & Schoonyoung, H. (2016). Wearable technology in the operating room: A systematic review. Surgical Innovation, 23(3), 306–315. https://doi.org/10.1177/1553350615616283

Barbash, G. I., & Glied, S. A. (2010). New technology and health care costs—The case of robot-assisted surgery. New England Journal of Medicine, 363(8), 701–704. https://doi.org/10.1056/NEJMp1006602

Bates, D. W., Saria, S., & Ohno-Machado, L. (2014). Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 1123–1131. https://doi.org/10.1377/hlthaff.2014.0041

Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391

Chen, J. H., & Asch, S. M. (2017). Machine learning and prediction in medicine—Beyond the peak of inflated expectations. New England Journal of Medicine, 376(26), 2507–2509. https://doi.org/10.1056/NEJMp1702071

Cohen, I. G., Amarasingham, R., & Shah, A. (2018). The ethics of artificial intelligence in health care: A roadmap for research and policy. Health Affairs, 37(10), 1599–1605. https://doi.org/10.1377/hlthaff.2018.0066

Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793–795. https://doi.org/10.1056/NEJMp1500523

Esteva, A., Kuprel, B., & Novoa, R. A. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

Esteva, A., Robicquet, A., & Ramsundar, B. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Ficarra, V., Novara, G., & Artibani, W. (2011). Retropubic, laparoscopic, and robot-assisted radical prostatectomy: A systematic review and cumulative analysis of comparative studies. European Urology, 59(5), 788–800. https://doi.org/10.1016/j.eururo.2011.01.036

Ghezzi, T. L., & Corleta, O. C. (2016). 30 years of robotic surgery. World Journal of Surgery, 40(10), 2550–2557. https://doi.org/10.1007/s00268-016-3543-9

Hashimoto, D. A., Rosman, G., & Rus, D. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268(1), 70–76. https://doi.org/10.1097/SLA.0000000000002693

Lanfranco, A. R., Castellanos, A. E., & Desai, J. P. (2004). Robotic surgery: A current perspective. Annals of Surgery, 239(1), 14–21. https://doi.org/10.1097/01.sla.0000103020.19595.7d

Litjens, G., Kooi, T., & Bejnordi, B. E. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Maier-Hein, L., Vedula, S. S., & Speidel, S. (2017). Augmented reality and virtual reality in surgery. Medical Image Analysis, 42, 220–234. https://doi.org/10.1016/j.media.2017.08.002

Marescaux, J., Leroy, J., & Gagner, M. (2001). Transatlantic robot-assisted telesurgery. Nature, 413(6854), 379–380. https://doi.org/10.1038/35096636

Obermeyer, Z., Powers, B., & Vogeli, C. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347–1358. https://doi.org/10.1056/NEJMra1814259

Satava, R. M., Stefanidis, D., & Levy, J. S. (2013). Surgical simulation and training: A perspective on the future. Surgical Endoscopy, 27(8), 2703–2708. https://doi.org/10.1007/s00464-013-2878-4

Shademan, A., Decker, R. S., & Opfermann, J. D. (2016). Supervised autonomous robotic soft tissue surgery. Science Translational Medicine, 8(337), 337ra64. https://doi.org/10.1126/scitranslmed.aad9398

Sheetz, K. H., Claflin, J., & Dimick, J. B. (2020). Trends in the adoption of robotic surgery for common surgical procedures. JAMA Network Open, 3(1), e1918911. https://doi.org/10.1001/jamanetworkopen.2019.18911

Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

Sridhar, A. N., Briggs, T. P., & Kelly, J. D. (2017). Training in robotic surgery—An overview. Current Urology Reports, 18(11), 87. https://doi.org/10.1007/s11934-017-0739-7

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

Van Norman, G. A. (2016). Drugs, devices, and the FDA: Part 2: An overview of approval processes: FDA approval of medical devices. JACC: Basic to Translational Science, 1(4), 277–287. https://doi.org/10.1016/j.jacbts.2016.06.001

Yang, G.-Z., Cambias, J., & Cleary, K. (2017). Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, 2(4), eaam8638. https://doi.org/10.1126/scirobotics.aam8638

Beam, A. L., & Kohane, I. S. (2016). Translating artificial intelligence into clinical care. JAMA, 316(22), 2368–2369. https://doi.org/10.1001/jama.2016.17217

Chen, J. H., & Asch, S. M. (2018). Artificial intelligence in clinical care: Practical considerations. New England Journal of Medicine, 379(14), 1383–1385. https://doi.org/10.1056/NEJMe1809730

Esteva, A., & Topol, E. J. (2019). Can artificial intelligence make medicine more precise? The Lancet, 393(10169), 143–144. https://doi.org/10.1016/S0140-6736(18)33107-9

Hashimoto, D. A., & Rus, D. (2019). Artificial intelligence and surgical decision-making. JAMA Surgery, 155(2), 147–148. https://doi.org/10.1001/jamasurg.2019.4069

Litjens, G., & Ciompi, F. (2018). Deep learning for medical image analysis: A review. IEEE Transactions on Medical Imaging, 37(4), 1003–1015. https://doi.org/10.1109/TMI.2017.2785877

Maier-Hein, L., & Speidel, S. (2018). Surgical data science: Enabling next-generation surgery. Nature Biomedical Engineering, 2(10), 691–692. https://doi.org/10.1038/s41551-018-0301-7

Marescaux, J., & Rubino, F. (2003). Telesurgery, telementoring, and teleconsultation. Surgical Clinics of North America, 83(6), 1293–1307. https://doi.org/10.1016/S0039-6109(03)00161-8

Obermeyer, Z., & Lee, T. H. (2017). Lost in thought—The limits of the human mind and the future of medicine. New England Journal of Medicine, 377(13), 1209–1211. https://doi.org/10.1056/NEJMp1705348

Rajkomar, A., Oren, E., & Chen, K. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 18. https://doi.org/10.1038/s41746-018-0029-1

Satava, R. M. (2014). Emerging technologies for surgery in the 21st century. Surgical Innovation, 21(2), 117–120. https://doi.org/10.1177/1553350613513604

Shademan, A., & Krieger, A. (2017). Autonomous robotic surgery: The next frontier. Science Robotics, 2(5), eaan6435. https://doi.org/10.1126/scirobotics.aan6435

Sheetz, K. H., & Dimick, J. B. (2019). Is robotic surgery cost-effective? JAMA Surgery, 154(5), 391–392. https://doi.org/10.1001/jamasurg.2018.5079

Shen, D., & Zhang, M. (2018). Deep learning in medical imaging: Opportunities and challenges. Radiology, 288(3), 642–645. https://doi.org/10.1148/radiol.2018180680

Sridhar, A. N., & Kelly, J. D. (2018). Robotic surgery: Current perceptions and future potential. BJU International, 122(2), 179–181. https://doi.org/10.1111/bju.14392

Topol, E. J., & Verghese, A. (2020). The coming of age of artificial intelligence in medicine. Annals of Internal Medicine, 172(2), 134–135. https://doi.org/10.7326/M19-3682

Van Norman, G. A. (2017). Overcoming the regulatory hurdles for medical device innovation. JACC: Basic to Translational Science, 2(3), 346–351. https://doi.org/10.1016/j.jacbts.2017.04.002

Yang, G.-Z., & Dario, P. (2018). Robotics in surgery: The quest for autonomy. Nature Reviews Bioengineering, 1(3), 165–166. https://doi.org/10.1038/s44222-018-0001-3

Alotaibi, F. E., & Sutherland, G. R. (2016). The role of simulation in neurosurgical education. World Neurosurgery, 86, 25–29. https://doi.org/10.1016/j.wneu.2015.10.081

Atallah, S., & Parra-Davila, E. (2017). The future of wearable technology in surgery. Surgical Endoscopy, 31(7), 2627–2628. https://doi.org/10.1007/s00464-016-5288-6

Barbash, G. I., & Glied, S. A. (2011). Cost-effectiveness of robotic surgery: A systematic review. Health Affairs, 30(8), 1503–1510. https://doi.org/10.1377/hlthaff.2011.0423

Bates, D. W., & Gawande, A. A. (2015). Big data in health care: Opportunities and challenges. New England Journal of Medicine, 373(17), 1595–1597. https://doi.org/10.1056/NEJMp1508253

Chen, J. H., & Topol, E. J. (2019). AI in surgery: The next frontier. The Lancet Digital Health, 1(4), e150–e151. https://doi.org/10.1016/S2589-7500(19)30078-8

Cohen, I. G., & Evgeniou, T. (2019). The ethics of AI in health care: A mapping review. Nature Machine Intelligence, 1(11), 496–504. https://doi.org/10.1038/s42256-019-0111-7

Esteva, A., & Chou, K. (2020). Deep learning in healthcare: Opportunities and challenges. Nature Reviews Bioengineering, 2(4), 223–225. https://doi.org/10.1038/s44222-020-0002-2

Ficarra, V., & Mottrie, A. (2012). Robotic surgery in urology: Facts and reality. European Urology, 61(4), 674–676. https://doi.org/10.1016/j.eururo.2011.12.024

Ghezzi, T. L., & Campos Corleta, O. (2017). The evolution of robotic surgery: A historical perspective. Surgical Endoscopy, 31(3), 987–989. https://doi.org/10.1007/s00464-016-5243-6

Hashimoto, D. A., & Meireles, O. (2020). Artificial intelligence in minimally invasive surgery. Surgical Clinics of North America, 100(2), 305–317. https://doi.org/10.1016/j.suc.2019.12.006

Downloads

Published

2025-08-20

How to Cite

ALHARBI, S. M., al harish, T. M., Attyah Zead Alqurashi, E., Alsubaie, M. D., Alanazi , N. M., Almutairi, B. A., … Alsharari, Y. D. D. (2025). Artificial Intelligence and Robotics in Surgery: The Future of Precision Medicine. Saudi Journal of Medicine and Public Health, 2(2), 159–170. https://doi.org/10.64483/jmph-69

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.