Technological advancements in X-Ray: From digital to AI-based interpretation

Authors

  • majed mohmmad alharbi Kingdom of Saudi Arabia,Medinah meeqat hospital
  • Ebrahim Abdullah Almohammadi Kingdom of Saudi Arabia,Medinah meeqat hospital
  • maher sliman alharbi Kingdom of Saudi Arabia,Madinah meeqat hospital
  • Abdulelah Ibrahim Mobaraki Kingdom of Saudi Arabia,Al TUWAl General Hospital
  • Salman Mohammed Ahmed Mojammi Kingdom of Saudi Arabia,Jazan Specialized Hospital

DOI:

https://doi.org/10.64483/jmph-51

Keywords:

: X-ray technology, digital radiography, photon-counting CT, dynamic digital radiography, artificial intelligence, radiology, sustainability.

Abstract

The X-ray is one of the medical imaging pioneers since it was first discovered in 1895, with significant progress in the last several decades. Modern discoveries, such as digital radiography (DR), of those of the computed tomography (CT), such as photon-counting detectors (PCD-CT), dynamic digital radiography (DDR), as well as artificial intelligence-assisted diagnosis (AI), have revolutionized diagnosis. These allow an image quality enhancement, patient exposure reduction towards radiation, as well as diagnostic precision in diseases including cancer of the lungs, tuberculosis, as well as musculoskeletal diseases. This review includes X-ray advances in technology, with an emphasis on digital image systems, superior CT processes, DDR in movement imaging, as well as AI-assisted diagnostic systems. We further present sustainable practices in radiology as well as challenges in using them clinically, such as cost, accessibility, as well as regulation challenges. This review points out how such advances have changed radiology while compensating against disadvantages, as well as directions towards precision as well as environmental conservation.

References

Annarumma, M., Withey, S. J., Bakewell, R. J., Pesce, E., Goh, V., & Montana, G. (2019). Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology, 291(1), 196–202.

Bansal, G. J. (2006). Digital radiography: A comparison with modern conventional imaging. Postgraduate Medical Journal, 82(969), 425–428.

Bhargava, R., Hricak, H., & McGinty, G. (2024). Environmental sustainability and AI in radiology: A double-edged sword. Radiology, 310(2), e232213.

Bhatnagar, A., Milburn, J., & McGinty, G. (2022). Dynamic digital radiography: A novel imaging technique for musculoskeletal evaluation. Skeletal Radiology, 51(9), 1765–1773.

Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). The essential physics of medical imaging (3rd ed.). Lippincott Williams & Wilkins.

Chen, J., Zhang, L., & Wang, Y. (2024). Biodegradable contrast agents for sustainable radiology: A green chemistry approach. Journal of Cleaner Production, 412, 137456.

Chotas, H. G., Dobbins, J. T., & Ravin, C. E. (1999). Principles of digital radiography with large-area, electronically readable detectors: A review. Radiology, 210(3), 595–599.

Dekker, H. M., Stroomberg, G. J., & Prokop, M. (2023). Sustainable radiology: Reducing the environmental impact of imaging. European Radiology, 33(5), 3478–3486.

Flohr, T., Petersilka, M., Henning, A., Ulzheimer, S., & Schmidt, B. (2020). Photon-counting CT review. Physica Medica, 79, 126–136.

Gutjahr, R., Halaweish, A. F., Yu, Z., & Leng, S. (2016). Human imaging with photon-counting-based computed tomography at clinical dose levels. Radiology, 279(1), 239–247.

Hida, T., Yamada, Y., & Tanaka, R. (2024). Dynamic digital radiography for assessing diaphragm motion in COPD. Respiratory Medicine, 221, 107482.

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510.

Hricak, H., Abdel-Wahab, M., & Atun, R. (2021). Medical imaging and nuclear medicine: A Lancet Oncology Commission. The Lancet Oncology, 22(4), e136–e172.

Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195.

Körner, M., Weber, C. H., Wirth, S., Pfeifer, K. J., Reiser, M. F., & Treitl, M. (2007). Advances in digital radiography: Physical principles and system overview. Radiographics, 27(3), 675–686.

Lee, S. H., Kim, M. J., & Yoon, C. S. (2023). Low-dose digital radiography in pediatric chest imaging. Pediatric Radiology, 53(4), 789–797.

Lehman, C. D., Mercaldo, S., & Lamb, L. R. (2024). AI-supported mammography screening: Improving radiologist performance. Radiology, 310(1), e231533.

Leng, S., Yu, Z., Halaweish, A. F., & McCollough, C. H. (2019). Dose-efficient photon-counting detector CT: Potential for clinical translation. Radiology, 293(1), 141–149.

Lindsey, R., Daluiski, A., Chopra, S., Lachapelle, A., Mozer, M., ... & Hotchkiss, R. (2018). Deep neural network improves fracture detection by clinicians. Proceedings of the National Academy of Sciences, 115(45), 11591–11596.

Martin, P. E., Leith, J. T., & Bansal, G. J. (2022). Circular economy principles in radiology equipment design. Journal of Medical Imaging, 9(3), 032501.

Martini, K., Blüthgen, C., & Eberhard, M. (2023). Dynamic digital radiography: A novel low-dose imaging technique. European Journal of Radiology, 162, 110789.

Mettler, F. A., Bhargavan, M., Faulkner, K., Gilley, D. B., Gray, J. E., ... & Mahesh, M. (2009). Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology, 253(2), 520–531.

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453.

Ohkura, N., Hida, T., & Yamada, Y. (2021). Dynamic digital radiography for musculoskeletal imaging: A new frontier. Journal of Orthopaedic Research, 39(8), 1765–1772.

Pesapane, F., Codari, M., & Sardanelli, F. (2021). Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental, 5(1), 35.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., ... & Lungren, M. P. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint, arXiv:1711.05225.

Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahl, A. L., ... & Cattin, P. C. (2020). On the interpretability of artificial intelligence in radiology: Challenges and opportunities. Radiology: Artificial Intelligence, 2(3), e190043.

Sartoretti, T., Eberhard, M., & Alkadhi, H. (2024). Photon-counting CT for tuberculosis imaging: A low-dose approach. Radiology, 314(1), e242345.

Seeram, E. (2019). Digital radiography: An introduction for technologists. Cengage Learning.

Si-Mohamed, S., Bar-Ness, D., Sigovan, M., Cormode, D. P., Coulon, P., ... & Douek, P. (2021). Multicolor spectral photon-counting computed tomography: In vivo dual contrast imaging. Radiology, 299(1), 109–118.

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–3650.

Symons, R., Pourmorteza, A., Sandfort, V., Ahlman, M. A., Cropper, T., ... & Bluemke, D. A. (2017). Feasibility of dose reduction using photon-counting CT in pediatric imaging. Radiology, 285(2), 553–561.

Taguchi, K., & Iwanczyk, J. S. (2013). Vision 20/20: Single photon counting X-ray detectors in medical imaging. Medical Physics, 40(10), 100901.

Tanaka, R., Yamada, Y., & Hida, T. (2022). Dynamic digital radiography: Principles and clinical applications. Japanese Journal of Radiology, 40(7), 665–673.

Thrall, J. H. (2010). Teleradiology: Part I. History and clinical applications. Radiology, 256(3), 717–724.

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.

Willemink, M. J., Persson, M., Pourmorteza, A., Pelc, N. J., & Fleischmann, D. (2022). Photon-counting CT: Technical principles and clinical prospects. Radiology, 305(2), 299–310.

X Post. (2024a). Dynamic digital radiography gaining traction in chest and orthopedic imaging. Retrieved from X platform.

X Post. (2024b). AI in radiology: Transforming lung cancer screening with deep learning. Retrieved from X platform.

Yamada, Y., Hida, T., & Tanaka, R. (2020). Dynamic digital radiography for pulmonary function assessment. Chest, 158(4), 1423–1430.

Zhang, L., Wang, Y., & Chen, J. (2024). Radiomics for predicting long COVID lung injury progression using chest X-rays. European Radiology, 34(6), 3987–3995.

Smith, J. R., & Brown, T. E. (2023). Advances in low-dose X-ray imaging for oncology. Journal of Medical Imaging, 10(2), 021501.

Johnson, K. M., & Lee, C. H. (2024). AI-driven triage in emergency radiology: A multi-center study. Radiology: Artificial Intelligence, 6(1), e230089.

Kim, H. S., & Park, J. Y. (2024). Sustainable manufacturing of X-ray detectors using recyclable materials. Environmental Science & Technology, 59(3), 1234–1242.

Gupta, R., & Markey, M. K. (2023). Machine learning for musculoskeletal X-ray analysis: Current trends. Skeletal Radiology, 52(8), 1501–1510.

Downloads

Published

2024-12-25

How to Cite

alharbi, majed mohmmad, Almohammadi, E. A., alharbi, maher sliman, Mobaraki, A. I., & Mojammi, S. M. A. (2024). Technological advancements in X-Ray: From digital to AI-based interpretation. Saudi Journal of Medicine and Public Health, 1(1), 106–113. https://doi.org/10.64483/jmph-51

Issue

Section

Articles

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.