The Role of Nutritional Ketosis in Managing Neurological Symptoms in Long COVID Patients: A Systematic Review
Abstract
Background: Long COVID is characterized by persistent neurological symptoms, which include cognitive dysfunction, fatigue, and memory problems. It is considered to be caused by chronic neuroinflammation and mitochondrial dysfunction. Current therapies are very unsatisfactory; therefore, there is an urgent need for novel therapeutic options. Among potential non-pharmacological strategies, nutritional ketosis induced by a ketogenic diet represents an appealing approach thanks to its neuroprotective and anti-inflammatory properties.
Aim: This systematic review will provide a critical appraisal of the evidence and theoretical rationale on the use of nutritional ketosis in the management of neurological symptoms among Long COVID patients.
Methods: A systematic search was performed in the databases PubMed, Scopus, Web of Science, PsycINFO, and Cochrane Library for studies published between 2013 and 2025. Keywords included "Long COVID", "ketogenic diet", "nutritional ketosis", "brain fog", and "neuroinflammation". Included studies were clinical trials, observational studies, or relevant preclinical research.
Results: Synthesis of the emerging evidence indicates that nutritional ketosis targets key mechanisms in Long COVID. Ketone bodies represent an efficient alternative cerebral fuel and may thereby bypass glycolytic impairment and improve mitochondrial bioenergetics. In addition, beta-hydroxybutyrate has potent anti-inflammatory and epigenetic effects.
Conclusion: Nutritional ketosis has emerged as a very compelling, mechanism-driven dietary intervention to alleviate the neurological burden of Long COVID. Initial results are promising, but it is expected that large-scale, robust randomized controlled trials are required to confirm efficacy, establish protocols, and identify responsive patient subgroups. To date, the ketogenic diet represents one of the few potential patient-empowerment tools within a comprehensive management strategy.
Full text article
References
Achanta, L. B., & Rae, C. D. (2017). β-Hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochemical research, 42(1), 35-49. https://doi.org/10.1007/s11064-016-2099-2
Ajaz, S., McPhail, M. J., Singh, K. K., Mujib, S., Trovato, F. M., Napoli, S., & Agarwal, K. (2021). Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. American Journal of Physiology-Cell Physiology. https://doi.org/10.1152/ajpcell.00426.2020
Bostock, E., Kirkby, K. C., Taylor, B. V., & Hawrelak, J. A. (2020). Consumer reports of “keto flu” associated with the ketogenic diet. Frontiers in nutrition, 7, 511082. https://doi.org/10.3389/fnut.2020.00020
Ceban, F., Ling, S., Lui, L. M., Lee, Y., Gill, H., Teopiz, K. M., ... & McIntyre, R. S. (2022). Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain, behavior, and immunity, 101, 93-135. https://doi.org/10.1016/j.bbi.2021.12.020
Cossington, J., Coe, D. S., Liu, Y., & Dawes, H. (2019). Potential benefits of a ketogenic diet to improve response and recovery from physical exertion in people with Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a feasibility study. Int. J. Sport Exerc. Health Res, 3, 33-39.
Crunfli, F., Carregari, V. C., Veras, F. P., Silva, L. S., Nogueira, M. H., Antunes, A. S. L. M., ... & Martins-de-Souza, D. (2022). Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proceedings of the National Academy of Sciences, 119(35), e2200960119. https://doi.org/10.1073/pnas.2200960119
Davis, H. E., McCorkell, L., Vogel, J. M., & Topol, E. J. (2023). Long COVID: major findings, mechanisms and recommendations. Nature Reviews Microbiology, 21(3), 133-146. https://doi.org/10.1038/s41579-022-00846-2
Demko, Z. O., Yu, T., Mullapudi, S. K., Varela Heslin, M. G., Dorsey, C. A., Payton, C. B., ... & OutSMART Study Team. (2022). Post-acute sequelae of SARS-CoV-2 (PASC) impact quality of life at 6, 12 and 18 months post-infection. MedRxiv, 2022-08. https://doi.org/10.1101/2022.08.08.22278543
Graham, E. L., Clark, J. R., Orban, Z. S., Lim, P. H., Szymanski, A. L., Taylor, C., ... & Koralnik, I. J. (2021). Persistent neurologic symptoms and cognitive dysfunction in non‐hospitalized Covid‐19 “long haulers”. Annals of clinical and translational neurology, 8(5), 1073-1085. https://doi.org/10.1002/acn3.51350
Juby, A. G., Cunnane, S. C., & Mager, D. R. (2023). Refueling the post COVID-19 brain: Potential role of ketogenic medium chain triglyceride supplementation: An hypothesis. Frontiers in Nutrition, 10, 1126534. https://doi.org/10.3389/fnut.2023.1126534
Kosinski, C., & Jornayvaz, F. R. (2017). Effects of ketogenic diets on cardiovascular risk factors: evidence from animal and human studies. Nutrients, 9(5), 517. https://doi.org/10.3390/nu9050517
Laudanski, K., Hajj, J., Restrepo, M., Siddiq, K., Okeke, T., & Rader, D. J. (2021). Dynamic changes in central and peripheral neuro-injury vs. neuroprotective serum markers in COVID-19 are modulated by different types of anti-viral treatments but do not affect the incidence of late and early strokes. Biomedicines, 9(12), 1791. https://doi.org/10.3390/biomedicines9121791
Mikami, D., Kobayashi, M., Uwada, J., Yazawa, T., Kamiyama, K., Nishimori, K., ... & Iwano, M. (2019). β-Hydroxybutyrate, a ketone body, reduces the cytotoxic effect of cisplatin via activation of HDAC5 in human renal cortical epithelial cells. Life Sciences, 222, 125-132. https://doi.org/10.1016/j.lfs.2019.03.008
Möller, M., Borg, K., Janson, C., Lerm, M., Normark, J., & Niward, K. (2023). Cognitive dysfunction in post‐COVID‐19 condition: Mechanisms, management, and rehabilitation. Journal of internal medicine, 294(5), 563-581. https://doi.org/10.1111/joim.13720
Monje, M., & Iwasaki, A. (2022). The neurobiology of long COVID. Neuron, 110(21), 3484-3496. https://doi.org/10.1016/j.neuron.2022.10.006
Needham, N., Campbell, I. H., Grossi, H., Kamenska, I., Rigby, B. P., Simpson, S. A., ... & Smith, D. J. (2023). Pilot study of a ketogenic diet in bipolar disorder. BJPsych Open, 9(6), e176. doi:10.1192/bjo.2023.568
Neves, G. S., Lunardi, M. S., Lin, K., Rieger, D. K., Ribeiro, L. C., & Moreira, J. D. (2021). Ketogenic diet, seizure control, and cardiometabolic risk in adult patients with pharmacoresistant epilepsy: a review. Nutrition reviews, 79(8), 931-944. https://doi.org/10.1093/nutrit/nuaa112
Newman, J. C., & Verdin, E. (2017). β-Hydroxybutyrate: a signaling metabolite. Annual review of nutrition, 37(1), 51-76. https://doi.org/10.1146/annurev-nutr-071816-064916
Paoli, A., & Cerullo, G. (2023). Investigating the link between ketogenic diet, NAFLD, mitochondria, and oxidative stress: a narrative review. Antioxidants, 12(5), 1065. https://doi.org/10.3390/antiox12051065
Phillips, M. C., Deprez, L. M., Mortimer, G. M., Murtagh, D. K., McCoy, S., Mylchreest, R., ... & Schepel, J. A. (2021). Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimer's research & therapy, 13(1), 51. https://doi.org/10.1186/s13195-021-00783-x
Pinto, A., Bonucci, A., Maggi, E., Corsi, M., & Businaro, R. (2018). Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants, 7(5), 63. https://doi.org/10.3390/antiox7050063
Proal, A. D., & VanElzakker, M. B. (2021). Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Frontiers in microbiology, 12, 698169. https://doi.org/10.3389/fmicb.2021.698169
Ricci, A., Idzikowski, M. A., Soares, C. N., & Brietzke, E. (2020). Exploring the mechanisms of action of the antidepressant effect of the ketogenic diet. Reviews in the Neurosciences, 31(6), 637-648. https://doi.org/10.1515/revneuro-2019-0073
Risbano, M. G., Kliment, C. R., Dunlap, D. G., Koch, C., Yoney, K., Nouraie, S. M., ... & Morris, A. (2023). Post-acute Sequelae of SARS-CoV-2 Infection Patients Have Metabolic Reprogramming and Reduced Mitochondrial Function at Peak Exercise. In B97. RISKY BUSINESS: TREATMENTS AND CLINICAL TARGETS IN PULMONARY HYPERTENSION (pp. A4231-A4231). American Thoracic Society.
Shabani, Z., Liu, J., & Su, H. (2023). Vascular dysfunctions contribute to the long-term cognitive deficits following COVID-19. Biology, 12(8), 1106. https://doi.org/10.3390/biology12081106
Shimazu, T., Hirschey, M. D., Newman, J., He, W., Shirakawa, K., Le Moan, N., ... & Verdin, E. (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 339(6116), 211-214. https://doi.org/10.1126/science.1227166
Simonin, Y. (2023). Neurobiology of long-COVID: Hypotheses and unanswered questions. Anaesthesia, Critical Care & Pain Medicine, 42(3), 101201. https://doi.org/10.1016/j.accpm.2023.101201
Stefano, G. B., Büttiker, P., Weissenberger, S., Martin, A., Ptacek, R., & Kream, R. M. (2021). the pathogenesis of long-term neuropsychiatric COVID-19 and the role of microglia, mitochondria, and persistent neuroinflammation: a hypothesis. Medical science monitor: international medical journal of experimental and clinical research, 27, e933015-1. https://doi.org/10.12659/MSM.933015
Stubbs, B. J., Cox, P. J., Evans, R. D., Santer, P., Miller, J. J., Faull, O. K., ... & Clarke, K. (2017). On the metabolism of exogenous ketones in humans. Frontiers in physiology, 8, 300397. https://doi.org/10.3389/fphys.2017.00848
Taeschler, P., Cervia, C., Zurbuchen, Y., Hasler, S., Pou, C., Tan, Z., ... & Boyman, O. (2022). Autoantibodies in COVID‐19 correlate with antiviral humoral responses and distinct immune signatures. Allergy, 77(8), 2415-2430. https://doi.org/10.1111/all.15302
Veech, R. L. (2004). The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, leukotrienes and essential fatty acids, 70(3), 309-319. https://doi.org/10.1016/j.plefa.2003.09.007
Wang, L., Chen, P., & Xiao, W. (2021). β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients, 13(10), 3420. https://doi.org/10.3390/nu13103420
Youm, Y. H., Nguyen, K. Y., Grant, R. W., Goldberg, E. L., Bodogai, M., Kim, D., ... & Dixit, V. D. (2015). The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature medicine, 21(3), 263-269. https://doi.org/10.1038/nm.3804
Zhou, T., Cheng, X., He, Y., Xie, Y., Xu, F., Xu, Y., & Huang, W. (2022). Function and mechanism of histone β-hydroxybutyrylation in health and disease. Frontiers in Immunology, 13, 981285. https://doi.org/10.3389/fimmu.2022.981285
Zhu, H., Bi, D., Zhang, Y., Kong, C., Du, J., Wu, X., ... & Qin, H. (2022). Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal transduction and targeted therapy, 7(1), 11. https://doi.org/10.1038/s41392-021-00831-w
Authors
Copyright (c) 2025 Khalid Abdulaziz Almehamad, Khaled Saleh Alkhaleefah, Yazeed Abdularahman Juwaid , Mohammed Ahmed Alzahrani, Abdulaziz Saad Alhazzaa, Mohammed Moteq Alharbi, Abdulaziz Mohammad Alarfaj, Saleh Ibrahim Mohammed Alhabib, Abdulrahman Nasser Aleid, Emad Abdullah Alreshoodi

This work is licensed under a Creative Commons Attribution 4.0 International License.
