The Impact of Automation on Clinical Laboratory Efficiency and Error Reduction

Omar mohamed alqadi (1) , Majed Musa Saad Alsuwairi  (2) , Dalal Murdhi Alshammari (3) , Abdulrahman Saeed Alshehri  (2) , Torki Nasser Aloraifi (4) , Reada Nasser Alsayegh (5) , Alaa Ahmed Abdulaziz Alraddadi (6) , Anas Mohammed ALiabal (2)
(1) second cluster- laboratory- Blood bank, Ministry of Health, Saudi Arabia,
(2) Riyadh Forensic Texicology services Administeration, Ministry of Health, Saudi Arabia,
(3) ministry of health- Chemistry Laboratory, Saudi Arabia,
(4) Ad Diriyah hospital-microbiology , Ministry of Health, Saudi Arabia,
(5) Ad Airiyah hospital-microbiology, Ministry of Health, Saudi Arabia,
(6) second cluster- labaratory, Ministry of Health, Saudi Arabia

Abstract

Clinical laboratories have been transformed through automation; it has improved accuracy, efficiency, and patient safety and minimized human error and operational expenses. The study examines the application of automation in all pre-analytical, analytical and post-analytical stages with a special focus on the application of robotics, automated analyzers and Laboratory Information Systems (LIS). The main points of interest are the historical development of automation, system types, workflow optimization, reduction of errors, workflow quality, financial benefits, effects on the workforce, cybersecurity, and the future trends. Best practices in prominent organizations demonstrate the real returns of automation in enhancing turnaround times, standardization of processes and offering high volume testing. The results indicate that automation Is the key to the contemporary laboratory activity delivering the objective gains in the diagnostic reliability, productivity, and patient outcomes. Issues like high initial expenditure, integration problems, and employee adaptation are discussed with the main point being that special attention is to be paid to planning and training. All in all, the study identifies automation as the revolutionary technology that enhances the performance of the laboratory and facilitates the provision of healthcare sustainably.

Full text article

Generated from XML file

References

Aamir, A., Iqbal, A., Jawed, F., Ashfaque, F., Hafsa, H., Anas, Z., … et al. (2024). Exploring the current and prospective role of artificial intelligence in disease diagnosis. Annals of Medicine and Surgery, 86, 943–949.

Ahn, S. (2022). Building and analyzing machine learning–based warfarin dose prediction models using scikit-learn. Translational and Clinical Pharmacology, 30(4), 172–181.

Armeni, P., Polat, I., De Rossi, L. M., Diaferia, L., Meregalli, S., & Gatti, A. (2022). Digital twins in healthcare: Is it the beginning of a new era of evidence-based medicine? A critical review. Journal of Personalized Medicine, 12(8), 1255. https://doi.org/10.3390/jpm12081255

Björnsson, B., Borrebaeck, C., Elander, N., Gasslander, T., Gawel, D. R., Gustafsson, M., … et al. (2019). Digital twins to personalize medicine. Genome Medicine, 12, 4.

Clavijo, A., Fallaw, D., Coule, P., & Singh, G. (2020). Communication of critical laboratory values: Optimization of the process through secure messaging. Lab Medicine, 51(1), e6–e11.

Curtis, R. G., Bartel, B., Ferguson, T., Blake, H. T., Northcott, C., Virgara, R., … et al. (2021). Improving user experience of virtual health assistants: Scoping review. Journal of Medical Internet Research, 23(12), e31737.

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98.

Desiere, F., Kowalik, K., Fassbind, C., Assaad, R. S., Fuzery, A. K., Gruson, D., … et al. (2021). Digital diagnostics and mobile health in laboratory medicine: An International Federation of Clinical Chemistry and Laboratory Medicine survey on current practice and future perspectives. Journal of Applied Laboratory Medicine, 6(4), 969–979.

Duan, B., Xu, Z., Pan, L., Chen, W., & Qiao, Z. (2022). Prediction of hearing prognosis of large vestibular aqueduct syndrome based on the PyTorch deep-learning model. Journal of Healthcare Engineering, 2022, Article 4814577. https://doi.org/10.1155/2022/4814577

Eccher, A., Scarpa, A., & Dei Tos, A. P. (2023). Impact of a centralized archive for pathology laboratories on the health system. Pathology Research and Practice, 245, 154488.

Eminaga, O., Abbas, M., Kunder, C., Tolkach, Y., Han, R., Brooks, J. D., … et al. (2024). Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology. Scientific Reports, 14, 5284.

Estiri, H., Klann, J. G., & Murphy, S. N. (2019). A clustering approach for detecting implausible observation values in electronic health records data. BMC Medical Informatics and Decision Making, 19(1), 142.

Golas, S. B., Nikolova-Simons, M., Palacholla, R., op den Buijs, J., Garberg, G., Orenstein, A., … et al. (2021). Predictive analytics and tailored interventions improve clinical outcomes in older adults: A randomized controlled trial. npj Digital Medicine, 4(1), 97.

Gopolang, F., Zulu-Mwamba, F., Nsama, D., Kruuner, A., Nsofwa, D., Kasvosve, I., … et al. (2021). Improving laboratory quality and capacity through leadership and management training: Lessons from Zambia 2016–2018. African Journal of Laboratory Medicine, 10(1), Article 1225.

Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (pp. 85–113).

Hanna, M. G., Parwani, A., & Sirintrapun, S. J. (2020). Whole-slide imaging: Technology and applications. Advances in Anatomic Pathology, 27(4), 251–259.

Hossain, E., Rana, R., Higgins, N., Soar, J., Barua, P. D., Pisani, A. R., … et al. (2023). Natural language processing in electronic health records in relation to healthcare decision-making: A systematic review. Computers in Biology and Medicine, 155, 106649.

Isom, J., Walsh, M., & Gardner, J. M. (2017). Social media and pathology: Where are we now and why does it matter? Advances in Anatomic Pathology, 24(5), 294–303.

Jørgensen, C. S., Shukla, A., & Katt, B. (2024). Digital twins in healthcare: Security, privacy, trust and safety challenges. In Computer Security – ESORICS 2023 International Workshops (pp. 140–153).

Joseph, A. L., Monkman, H., MacDonald, L., & Lai, C. (2024). Interpreting laboratory results with complementary health information: A human factors perspective. Studies in Health Technology and Informatics, 310, 1061–1065.

Kopanitsa, G. (2022). Study of patients’ attitude to automatic interpretation of laboratory test results and its influence on follow-up rate. BMC Medical Informatics and Decision Making, 22(1), 79.

Lee, T. H., McGlynn, E. A., & Safran, D. G. (2019). A framework for increasing trust between patients and the organizations that care for them. JAMA, 321(6), 539–540.

Li, Y.-H., Li, Y.-L., Wei, M.-Y., & Li, G.-Y. (2024). Innovation and challenges of artificial intelligence technology in personalized healthcare. Scientific Reports, 14(1), 18994.

Lujan, G., Quigley, J. C., Hartman, D., Parwani, A., Roehmholdt, B., Van Meter, B., … et al. (2021). Dissecting the business case for adoption and implementation of digital pathology: A white paper from the Digital Pathology Association. Journal of Pathology Informatics, 12, 17.

Merrill, A. E., Durant, T. J. S., Baron, J., Klutts, J. S., Obstfeld, A. E., Peaper, D., … et al. (2023). Data analytics in clinical laboratories: Advancing diagnostic medicine in the digital age. Clinical Chemistry, 69(12), 1333–1341.

Montezuma, D., Monteiro, A., Fraga, J., Ribeiro, L., Gonçalves, S., & Tavares, A., … et al. (2022). Digital pathology implementation in private practice: Specific challenges and opportunities. Diagnostics, 12.

Peshkova, M., Yumasheva, V., Rudenko, E., Kretova, N., Timashev, P., & Demura, T. (2023). Digital twin concept: Healthcare, education, research. Journal of Pathology Informatics, 14, 100313.

Rostamzadeh, N., Abdullah, S. S., Sedig, K., Garg, A. X., & McArthur, E. (2022). Visual analytics for predicting disease outcomes using laboratory test results. Informatics, 9(1), Article 17. https://doi.org/10.3390/Informatics9010017

Sahal, R., Alsamhi, S. H., & Brown, K. N. (2022). Personal digital twin: A close look into the present and a step towards the future of personalised healthcare industry. Sensors, 22, 5918. https://doi.org/10.3390/s22155918

Sheng, B., Wang, Z., Qiao, Y., Xie, S. Q., Tao, J., & Duan, C. (2023). Detecting latent topics and trends of digital twins in healthcare: A structural topic model–based systematic review. Digital Health, 9, Article 20552076231203672.

Spies, N. C., Farnsworth, C. W., & Jackups, R., Jr. (2023). Data-driven anomaly detection in laboratory medicine: Past, present, and future. Journal of Applied Laboratory Medicine, 8(1), 162–179.

Steimetz, E., Minkowitz, J., Gabutan, E. C., Ngichabe, J., Attia, H., Hershkop, M., … et al. (2024). Use of artificial intelligence chatbots in interpretation of pathology reports. JAMA Network Open, 7(5), e2412767.

Transforming research: Laboratories with connected digital twins. (2024). Nexus, 1, 100004.

Varga, A. I., Spehar, I., & Skirbekk, H. (2023). Trustworthy management in hospital settings: A systematic review. BMC Health Services Research, 23(1), 662.

Venkatesh, K. P., Raza, M. M., & Kvedar, J. C. (2022). Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation. npj Digital Medicine, 5, 150.

Wieland, M. L., Vickery, K. D., Hernandez, V., Ford, B. R., Gonzalez, C., Kavistan, S., … et al. (2024). Digital storytelling intervention for hemoglobin A1c control among Hispanic adults with type 2 diabetes: A randomized clinical trial. JAMA Network Open, 7(8), e2424781.

Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9, e14534.

Munari, E., Scarpa, A., Cima, L., Pozzi, M., Pagni, F., Vasuri, F., … et al. (2024). Cutting-edge technology and automation in the pathology laboratory. Virchows Archiv, 484, 555–566.

Rodziewicz, T. L., Houseman, B., Vaqar, S., & Hipskind, J. E. (2024). Medical error reduction and prevention. In StatPearls. StatPearls Publishing.

Sarkar, S., Alurwar, A., Ly, C., Piao, C., Donde, R., Wang, C. J., et al. (2024). A machine learning model to predict risk for hepatocellular carcinoma in patients with metabolic dysfunction-associated steatotic liver disease. Gastro Hep Advances, 3(4), 498–505. https://doi.org/10.1016/j.gastha.2024.01.007

Bhattarai, K., Oh, I. Y., Sierra, J. M., Tang, J., Payne, P. R. O., Abrams, Z., et al. (2024). Leveraging GPT-4 for identifying cancer phenotypes in electronic health records: A performance comparison between GPT-4, GPT-3.5-turbo, Flan-T5, Llama-3-8B, and spaCy’s rule-based and machine learning–based methods. JAMIA Open, 7(3), ooae060. https://doi.org/10.1093/jamiaopen/ooae060

Cai, T., Zhang, L., Yang, N., Kumamaru, K. K., Rybicki, F. J., Cai, T., et al. (2019). EXTraction of EMR numerical data: An efficient and generalizable tool to EXTEND clinical research. BMC Medical Informatics and Decision Making, 19(1), 226. https://doi.org/10.1186/s12911-019-0970-1

Hatz, S., Spangler, S., Bender, A., Studham, M., Haselmayer, P., Lacoste, A. M. B., et al. (2019). Identification of pharmacodynamic biomarker hypotheses through literature analysis with IBM Watson. PLoS ONE, 14(4), e0214619. https://doi.org/10.1371/journal.pone.0214619

Aleksandrenko, H. D., & Shevchenko, M. V. (2024). Using a chatbot as a digital tool at the primary health care level. Wiadomości Lekarskie, 77(4), 523–628. https://doi.org/10.36740/WLek202404101

Luo, M. X., Lyle, A., Bennett, P., Albertson, D., Sirohi, D., Maughan, B. L., et al. (2024). Artificial intelligence chatbot vs pathology faculty and residents: Real-world clinical questions from a genitourinary treatment planning conference. American Journal of Clinical Pathology. https://doi.org/10.1093/ajcp/aqae078

Jungmann, S. M., Klan, T., Kuhn, S., & Jungmann, F. (2019). Accuracy of a chatbot (Ada) in the diagnosis of mental disorders: Comparative case study with lay and expert users. JMIR Formative Research, 3(4), e13863. https://doi.org/10.2196/13863

Davis, C. R., Murphy, K. J., Curtis, R. G., & Maher, C. A. (2020). A process evaluation examining the performance, adherence, and acceptability of a physical activity and diet artificial intelligence virtual health assistant. International Journal of Environmental Research and Public Health, 17(23), 9137. https://doi.org/10.3390/ijerph17239137

SAS. (2024). SAS Viya capabilities. Retrieved July 18, 2024, from https://www.sas.com/en_za/software/viya/offerings-capabilities.html

Tableau. (2024). Explore data, deliver insights and take action with Tableau AI. Retrieved July 18, 2024, from https://www.tableau.com/en-gb

Microsoft. (2024). Power BI. Retrieved July 18, 2024, from https://www.microsoft.com/en-us/power-platform/products/power-bi

Afonso, M. Q. L., da Fonseca, N. J., Junior, Miranda, T. G., & Bleicher, L. (2022). Naview: A d3.js based JavaScript library for drawing and annotating voltage-gated sodium channels membrane diagrams. Frontiers in Bioinformatics, 2, 774417. https://doi.org/10.3389/fbinf.2022.774417

Chishtie, J., Bielska, I. A., Barrera, A., Marchand, J. S., Imran, M., Tirmizi, S. F. A., et al. (2022). Interactive visualization applications in population health and health services research: Systematic scoping review. Journal of Medical Internet Research, 24(2), e27534. https://doi.org/10.2196/27534

MedAware. (2024). Your safety layer within. Retrieved July 18, 2024, from https://www.medaware.com/

Rozenblum, R., Rodriguez‐Monguio, R., Volk, L. A., Forsythe, K. J., Myers, S., McGurrin, M., et al. (2020). Using a machine learning system to identify and prevent medication prescribing errors: A clinical and cost analysis evaluation. The Joint Commission Journal on Quality and Patient Safety, 46(1), 3–10. https://doi.org/10.1016/j.jcjq.2019.09.008

Schiff, G. D., Volk, L. A., Volodarskaya, M., Williams, D. H., Walsh, L., Myers, S. G., et al. (2017). Screening for medication errors using an outlier detection system. Journal of the American Medical Informatics Association, 24(2), 281–287. https://doi.org/10.1093/jamia/ocw171

Martinez-Franco, A. I., Sanchez-Mendiola, M., Mazon-Ramirez, J. J., Hernandez-Torres, I., Rivero-Lopez, C., Spicer, T., et al. (2018). Diagnostic accuracy in family medicine residents using a clinical decision support system (DXplain): A randomized-controlled trial. Diagnosis, 5(2), 71–76. https://doi.org/10.1515/dx-2017-0045

Foundation Medicine. (2024). Foundation Medicine. Retrieved July 18, 2024, from https://www.foundationmedicine.com/

Vidal, G. A., Jain, N., Fisher, A., Sheinson, D., Lofgren, K. T., Ma, E., et al. (2024). Racial and ethnic inequities at the practice and physician levels in timely next-generation sequencing for patients with advanced non-small-cell lung cancer in the US community setting. JCO Oncology Practice, 20(3), 370–377. https://doi.org/10.1200/OP.23.00253

Sivakumar, S., Lee, J. K., Moore, J. A., Hopkins, J., Newberg, J. Y., Madison, R., et al. (2023). Comprehensive genomic profiling and treatment patterns across ancestries in advanced prostate cancer: A large-scale retrospective analysis. Lancet Digital Health, 5(6), e380–e389. https://doi.org/10.1016/S2589-7500(23)00053-5

Flatiron. (2024). Machine learning. Retrieved July 18, 2024, from https://resources.flatiron.com/tag/machine-learning

Bio-Rad. (2024). Unity Real Time online. Retrieved July 18, 2024, from https://www.bio-rad.com/en-za/product/unity-real-time-online

Abbott. (2024). AliniQ Clinical Decision Support. Retrieved July 18, 2024, from https://www.corelaboratory.abbott/us/en/offerings/brands/aliniq/aliniq-cds

Jackson, B. R., Ye, Y., Crawford, J. M., Becich, M. J., Roy, S., Botkin, J. R., et al. (2021). The ethics of artificial intelligence in pathology and laboratory medicine: Principles and practice. Academic Pathology, 8, Article 2374289521990784. https://doi.org/10.1177/2374289521990784

Chauhan, C., & Gullapalli, R. R. (2021). Ethics of AI in pathology: Current paradigms and emerging issues. American Journal of Pathology, 191(10), 1673–1683. https://doi.org/10.1016/j.ajpath.2021.06.011

Fang, Y.-T., & Rau, H. (2017). Optimal consumer electronics product take-back time with consideration of consumer value. Sustainability, 9(3), 385. https://doi.org/10.3390/su9030385

Williams, B. J., Bottoms, D., & Treanor, D. (2017). Future-proofing pathology: The case for clinical adoption of digital pathology. Journal of Clinical Pathology, 70(12), 1010–1018. https://doi.org/10.1136/jclinpath-2017-204552

Hanna, M. G., et al. (2019). Implementation of digital pathology offers clinical and operational increase in efficiency and cost savings. Archives of Pathology & Laboratory Medicine, 143(12), 1545–1555. https://doi.org/10.5858/arpa.2018-0565-OA

Retamero, J. A., Aneiros-Fernandez, J., & del Moral, R. G. (2019). Complete digital pathology for routine histopathology diagnosis in a multicenter hospital network. Archives of Pathology & Laboratory Medicine, 144(2), 221–228. https://doi.org/10.5858/arpa.2018-0052-OA

Stathonikos, N., et al. (2019). Being fully digital: Perspective of a Dutch academic pathology laboratory. Histopathology, 75(5), 621–635. https://doi.org/10.1111/his.13961

Pell, R., et al. (2019). The use of digital pathology and image analysis in clinical trials. Journal of Pathology: Clinical Research, 5(2), 81–90. https://doi.org/10.1002/cjp2.125

Kather, J. N., et al. (2019). Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Medicine, 16(1), e1002730. https://doi.org/10.1371/journal.pmed.1002730

Kather, J. N., et al. (2019). Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nature Medicine, 25(7), 1054–1056. https://doi.org/10.1038/s41591-019-0462-y

Kather, J. N., et al. (2020). Pan-cancer image-based detection of clinically actionable genetic alterations. Nature Cancer, 1(8), 789–799. https://doi.org/10.1038/s43018-020-0087-6

Hanna, M. G., Parwani, A., & Sirintrapun, S. J. (2020). Whole slide imaging: Technology and applications. Advances in Anatomic Pathology, 27(4), 251–259. https://doi.org/10.1097/PAP.0000000000000262

Eloy, C., et al. (2021). Digital pathology workflow implementation at IPATIMUP. Diagnostics, 11(11), 2111. https://doi.org/10.3390/diagnostics11112111

Fraggetta, F., et al. (2021). A survival guide for the rapid transition to a fully digital workflow: The “Caltagirone example.” Diagnostics, 11(10), 1916. https://doi.org/10.3390/diagnostics11101916

Schüffler, P. J., et al. (2021). Integrated digital pathology at scale: A solution for clinical diagnostics and cancer research. Journal of the American Medical Informatics Association, 28(9), 1874–1884. https://doi.org/10.1093/jamia/ocab106

Lujan, G., et al. (2021). Dissecting the business case for adoption and implementation of digital pathology. Journal of Pathology Informatics, 12, 17. https://doi.org/10.4103/jpi.jpi_90_20

Evans, A. J., et al. (2021). Establishment of a remote diagnostic histopathology service using whole slide imaging. Journal of Clinical Pathology, 74(7), 421–424. https://doi.org/10.1136/jclinpath-2020-206898

Montezuma, D., et al. (2022). Digital pathology implementation in private practice: Specific challenges and opportunities. Diagnostics, 12(2), 529. https://doi.org/10.3390/diagnostics12020529

Hanna, M. G., & Ardon, O. (2023). Digital pathology systems enabling quality patient care. Genes, Chromosomes & Cancer, 62(11), 685–697. https://doi.org/10.1002/gcc.23206

Sajjadi, E., et al. (2023). Computational pathology to improve biomarker testing in breast cancer: How close are we? European Journal of Cancer Prevention, 32(5), 460–467. https://doi.org/10.1097/CEJ.0000000000000763

Ardon, O., et al. (2023). Digital pathology operations at a tertiary cancer center: Infrastructure requirements and operational cost. Journal of Pathology Informatics, 14, 100318. https://doi.org/10.1016/j.jpi.2023.100318

Ivanova, M., et al. (2024). Early breast cancer risk assessment: Integrating histopathology with artificial intelligence. Cancers, 16(11). https://doi.org/10.3390/cancers16110100

Cyrta, J., et al. (2024). Multi-site European study of a fully automated AI solution for HER2 scoring in breast cancer..

World Health Organization. (2024). Global cancer burden growing, amidst mounting need for services. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing

Authors

Omar mohamed alqadi
oalqadi@kfmc.med.sa (Primary Contact)
Majed Musa Saad Alsuwairi 
Dalal Murdhi Alshammari
Abdulrahman Saeed Alshehri 
Torki Nasser Aloraifi
Reada Nasser Alsayegh
Alaa Ahmed Abdulaziz Alraddadi
Anas Mohammed ALiabal
alqadi, O. mohamed, Majed Musa Saad Alsuwairi , Dalal Murdhi Alshammari, Abdulrahman Saeed Alshehri , Torki Nasser Aloraifi, Reada Nasser Alsayegh, … Anas Mohammed ALiabal. (2024). The Impact of Automation on Clinical Laboratory Efficiency and Error Reduction. Saudi Journal of Medicine and Public Health, 1(2), 927–939. https://doi.org/10.64483/202412249

Article Details

Similar Articles

<< < 16 17 18 

You may also start an advanced similarity search for this article.