Advancements in Deep Learning Techniques for Enhanced Assessment of Fetal Anomalies in Prenatal Imaging: Review of Current Applications and Future Directions

Bandr Abdullah Mohammed Al Jaloud (1) , Hussain Mohammed Khalawi Alruwily (2) , Atiah Abdularazq Abdullah Mohammed  (3) , Hesah Sayaf Al_Mohemede (4) , Mohammed Abdulrahman Obaid Alrowais (5) , Bassam Ali Tumayhi (6) , Mohammad Qassim Ahmad Hijri (7) , Khalid Ahmed Ali Maghfuri (8) , Hani Hossen Aseeri (9) , Mohammed Mnawer H Alrowaili (10) , Fahad Muteb Jaber Aljaber (10) , Mohammed Obaid Alharbi (11) , Abdulrahman Dhafi Sair Alanazi (12) , Sami Mohammed Saleh Alamri (13)
(1) Samira General Hospital,Ministry of Health, Saudi Arabia,
(2) King Salman Hospital ,Ministry of Health, Saudi Arabia,
(3) King Fahad Hospital Jazan,Ministry of Health, Saudi Arabia,
(4) Al_Miqatgeneral Hospital,Ministry of Health, Saudi Arabia,
(5) Diriyah Hospital, Ministry of Health, Saudi Arabia,
(6) Prince Mohammed Bin Nasser Hospital,Ministry of Health, Saudi Arabia,
(7) Prince Mohammad Bin Nasser Hospital At Jazan,Ministry of Health, Saudi Arabia,
(8)  King Fahd Central Hospital Jazan,Ministry of Health, Saudi Arabia,
(9) Ministry Of Health, Saudi Arabia,
(10) Swyer General Hospital,Ministry of Health, Saudi Arabia,
(11) Miqat General Hospital ,Ministry of Health, Saudi Arabia,
(12) Al Hamra Primary Health Care Center,Ministry of Health, Saudi Arabia,
(13) Tabuk Health Cluster King Fahad Multi-Specialty Hospital,Ministry of Health, Saudi Arabia

Abstract

Background: Deep learning (DL) has emerged as a transformative technology in the field of medical imaging, particularly in prenatal assessments. The application of DL algorithms in fetal imaging aims to address challenges such as human subjectivity and interobserver variability, while enhancing diagnostic accuracy.


Methods: This review synthesizes recent advancements in the application of deep learning techniques for evaluating fetal anomalies. A comprehensive literature search was conducted to gather evidence on the efficacy of DL in various aspects of prenatal imaging, including anatomical assessment, biometric measurements, and the detection of congenital abnormalities.


Results: The findings indicate that deep learning models exhibit superior performance in identifying normal and abnormal fetal anatomy compared to traditional methods. These models effectively classify images, localize anatomical structures, and segment key features, significantly reducing examination times and improving workflow. Furthermore, multiple studies demonstrate that DL can mitigate the impact of human error, achieving classifications that rival or exceed those of experienced sonographers.


Conclusion: The integration of deep learning into prenatal imaging holds considerable promise for enhancing diagnostic capabilities and improving patient outcomes. As these technologies evolve, they offer the potential to support clinicians, particularly in resource-limited settings where access to skilled sonographers is limited. Future research should focus on refining these models and ensuring their clinical applicability to maximize the benefits of deep learning in obstetric care.

Full text article

Generated from XML file

References

Drukker L, Noble JA, Papageorghiou AT. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet Gynecol 2020; 56: 498–505.

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60–88.

Hinton G. Deep Learning—A Technology With the Potential to Transform Health Care. JAMA 2018; 320: 1101.

Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, Mahendiran T, Moraes G, Shamdas M, Kern C, Ledsam JR, Schmid MK, Balaskas K, Topol EJ, Bachmann LM, Keane PA, Denniston AK. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Heal 2019; 1: e271–e297.

Fiorentino MC, Villani FP, Di Cosmo M, Frontoni E, Moccia S. A Review on Deep-Learning Algorithms for Fetal Ultrasound-Image Analysis. Med Image Anal 2023; 83: 102629.

Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, Ni D, Wang T. Deep Learning in Medical Ultrasound Analysis: A Review. Engineering 2019; 5: 261–275.

He F, Wang Y, Xiu Y, Zhang Y, Chen L. Artificial Intelligence in Prenatal Ultrasound Diagnosis. Front Med (Lausanne) 2021; 8: 729978.

Espinoza J, Good S, Russell E, Lee W. Does the Use of Automated Fetal Biometry Improve Clinical Work Flow Efficiency? J Ultrasound Med 2013; 32: 847–850.

Yazdi B, Zanker P, Wagner P, Sonek J, Pintoffl K, Hoopmann M, Kagan KO. Optimal caliper placement: manual vs automated methods. Ultrasound Obstet Gynecol 2014; 43: 170–175.

Matthew J, Skelton E, Day TG, Zimmer VA, Gomez A, Wheeler G, Toussaint N, Liu T, Budd S, Lloyd K, Wright R, Deng S, Ghavami N, Sinclair M, Meng Q, Kainz B, Schnabel JA, Rueckert D, Razavi R, Simpson J, Hajnal J. Exploring a new paradigm for the fetal anomaly ultrasound scan: Artificial intelligence in real time. Prenat Diagn 2022; 42: 49–59.

Zhang L, Portenier T, Paulus C, Goksel O. Deep Image Translation for Enhancing Simulated Ultrasound Images. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS 2020, PIPPI 2020. Lecture Notes in Computer Science, vol 12437. Springer: Cham, 2020; 85–94.

Zhao C, Droste R, Drukker L, Papageorghiou AT, Noble JA. Visual-Assisted Probe Movement Guidance for Obstetric Ultrasound Scanning Using Landmark Retrieval. Med Image Comput Comput Assist Interv 2021; 12908: 670–679.

Sakai A, Komatsu M, Komatsu R, Matsuoka R, Yasutomi S, Dozen A, Shozu K, Arakaki T, Machino H, Asada K, Kaneko S, Sekizawa A, Hamamoto R. Medical Professional Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac Ultrasound Screening. Biomedicines 2022; 10: 551.

Shazly SA, Trabuco EC, Ngufor CG, Famuyide AO. Introduction to Machine Learning in Obstetrics and Gynecology. Obstet Gynecol 2022; 139: 669–679.

Bakker MK, Bergman JEH, Krikov S, Amar E, Cocchi G, Cragan J, de Walle HEK, Gatt M, Groisman B, Liu S, Nembhard WN, Pierini A, Rissmann A, Chidambarathanu S, Sipek A, Szabova E, Tagliabue G, Tucker D, Mastroiacovo P, Botto LD. Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study. BMJ Open 2019; 9: e028139.

van Nisselrooij AEL, Teunissen AKK, Clur SA, Rozendaal L, Pajkrt E, Linskens IH, Rammeloo L, van Lith JMM, Blom NA, Haak MC. Why are congenital heart defects being missed? Ultrasound Obstet Gynecol 2020; 55: 747–757.

Pinto NM, Keenan HT, Minich LL, Puchalski MD, Heywood M, Botto LD. Barriers to prenatal detection of congenital heart disease: a population-based study. Ultrasound Obstet Gynecol 2012; 40: 418–425.

Fadda GM, Capobianco G, Balata A, Litta P, Ambrosini G, D'Antona D, Cosmi E, Dessole S. Routine second trimester ultrasound screening for prenatal detection of fetal malformations in Sassari University Hospital, Italy: 23 years of experience in 42,256 pregnancies. Eur J Obstet Gynecol Reprod Biol 2009; 144: 110–114.

Rydberg C, Tunón K. Detection of fetal abnormalities by second-trimester ultrasound screening in a non-selected population. Acta Obstet Gynecol Scand 2017; 96: 176–182.

Pramanik M, Gupta M, Krishnan KB. Enhancing reproducibility of ultrasonic measurements by new users, CK Abbey, CR Mello-Thoms (eds). SPIE Proceedings, vol 8673. Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, 2013; 6730Q.

Meng L, Zhao D, Yang Z, Wang B. Automatic display of fetal brain planes and automatic measurements of fetal brain parameters by transabdominal three-dimensional ultrasound. J Clin Ultrasound 2020; 48: 82–88.

Sarris I, Ioannou C, Chamberlain P, Ohuma E, Roseman F, Hoch L, Altman DG, Papageorghiou AT, International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). Intra- and interobserver variability in fetal ultrasound measurements. Ultrasound Obstet Gynecol 2012; 39: 266–273.

Wright D, Wright A, Smith E, Nicolaides KH. Impact of biometric measurement error on identification of small- and large-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2020; 55: 170–176.

Drukker L. Real-time identification of fetal anomalies on ultrasound using artificial intelligence: what's next? Ultrasound Obstet Gynecol 2022; 59: 285–287.

Salomon LJ, Alfirevic Z, Da Silva Costa F, Deter RL, Figueras F, Ghi T, Glanc P, Khalil A, Lee W, Napolitano R, Papageorghiou A, Sotiriadis A, Stirnemann J, Toi A, Yeo G. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol 2019; 53: 715–723.

Hadlock FP, Harrist RB, Carpenter RJ, Deter RL, Park SK. Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements. Radiology 1984; 150: 535–540.

Snijders RJM, Nicolaides KH. Fetal biometry at 14–40 weeks' gestation. Ultrasound Obstet Gynecol 1994; 4: 34–48.

Industry Standards for the Prevention of Work Related Musculoskeletal Disorders in Sonography. J Diagnostic Med Sonogr 2017; 33: 370–391.

Gibbs V, Young P. A study of the experiences of participants following attendance at a workshop on methods to prevent or reduce work-related musculoskeletal disorders amongst sonographers. Radiography 2011; 17: 223–229.

Sinclair M, Baumgartner CF, Matthew J, Bai W, Martinez JC, Li Y, Smith S, Knight CL, Kainz B, Hajnal J, King AP, Rueckert D. Human-level Performance On Automatic Head Biometrics In Fetal Ultrasound Using Fully Convolutional Neural Networks. 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018; 714–717.

Li P, Zhao H, Liu P, Cao F. Automated measurement network for accurate segmentation and parameter modification in fetal head ultrasound images. Med Biol Eng Comput 2020; 58: 2879–2892.

Rasheed K, Junejo F, Malik A, Saqib M. Automated Fetal Head Classification and Segmentation Using Ultrasound Video. IEEE Access 2021; 9: 160249–160267.

Zhu F, Liu M, Wang F, Qiu D, Li R, Dai C. Automatic measurement of fetal femur length in ultrasound images: a comparison of random forest regression model and SegNet. Math Biosci Eng 2021; 18: 7790–7805.

Jang J, Park Y, Kim B, Lee SM, Kwon J-Y, Seo JK. Automatic Estimation of Fetal Abdominal Circumference From Ultrasound Images. IEEE J Biomed Heal Informatics 2018; 22: 1512–1520.

Kim B, Kim KC, Park Y, Kwon J-Y, Jang J, Seo JK. Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images. Physiol Meas 2018; 39: 105007.

Bano S, Dromey B, Vasconcelos F, Napolitano R, David AL, Peebles DM, Stoyanov D. AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound Planes, M Bruijne, P Cattin, S Cotin, N Padoy, S Speidel, Y Zheng, C Essert (eds). Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. Lecture Notes in Computer Science, Vol 12907. Springer: Cham, 2021; 228–238.

Płotka S, Włodarczyk T, Klasa A, Lipa M, Sitek A, Trzciński T. FetalNet: Multi-task Deep Learning Framework for Fetal Ultrasound Biometric Measurements, T Mantoro, M Lee, MA Ayu, KW Wong, AN Hidayanto (eds). Neural Information Processing, ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer: Cham, 2021; 257–265.

Ghelich Oghli M, Shabanzadeh A, Moradi S, Sirjani N, Gerami R, Ghaderi P, Sanei Taheri M, Shiri I, Arabi H, Zaidi H. Automatic fetal biometry prediction using a novel deep convolutional network architecture. Phys Medica 2021; 88: 127–137.

Prieto JC, Shah H, Rosenbaum AJ, Jiang X, Musonda P, Price JT, Stringer EM, Vwalika B, Stamilio DM, Stringer JSA. An automated framework for image classification and segmentation of fetal ultrasound images for gestational age estimation. Proc SPIE Int Soc Opt Eng 2021; 11596.

Płotka S, Klasa A, Lisowska A, Seliga-Siwecka J, Lipa M, Trzciński T, Sitek A. Deep learning fetal ultrasound video model match human observers in biometric measurements. Phys Med Biol 2022; 67: 045013.

International Society of Ultrasound in Obstetrics and Gynecology; Bilardo CM, Chaoui R, Hyett JA, Kagan KO, Karim JN, Papageorghiou AT, Poon LC, Salomon LJ, Syngelaki A, Nicolaides KH. ISUOG Practice Guidelines (updated): performance of 11–14-week ultrasound scan. Ultrasound Obstet Gynecol 2023; 61: 127–143.

Ryou H, Yaqub M, Cavallaro A, Papageorghiou AT, Alison Noble J. Automated 3D ultrasound image analysis for first trimester assessment of fetal health. Phys Med Biol 2019; 64: 185010.

Cengiz S, Yaqub M. Automatic Fetal Gestational Age Estimation from First Trimester Scans, JA Noble, S Aylward, A Grimwood, Z Min, S-L Lee, Y Hu (eds). Simplifying Medical Ultrasound, ASMUS 2021. Lecture Notes in Computer Science, vol 12967. Springer: Cham, 2021; 220–227. https://doi.org/10.1007/978-3-030-87583-1_22.

Nie S, Yu J, Chen P, Wang Y, Zhang JQ. Automatic Detection of Standard Sagittal Plane in the First Trimester of Pregnancy Using 3-D Ultrasound Data. Ultrasound Med Biol 2017; 43: 286–300.

Kwitt R, Vasconcelos N, Razzaque S, Aylward S. Localizing target structures in ultrasound video – A phantom study. Med Image Anal 2013; 17: 712–722.

Burgos-Artizzu XP, Coronado-Gutiérrez D, Valenzuela-Alcaraz B, Bonet-Carne E, Eixarch E, Crispi F, Gratacós E. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci Rep 2020; 10: 10200.

Baumgartner CF, Kamnitsas K, Matthew J, Fletcher TP, Smith S, Koch LM, Kainz B, Rueckert D. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound. IEEE Trans Med Imaging 2017; 36: 2204–2215.

Chen H, Wu L, Dou Q, Qin J, Li S, Cheng J-Z, Ni D, Heng P-A. Ultrasound Standard Plane Detection Using a Composite Neural Network Framework. IEEE Trans Cybern 2017; 47: 1576–1586.

Zhang B, Liu H, Luo H, Li K. Automatic quality assessment for 2D fetal sonographic standard plane based on multitask learning. Medicine (Baltimore) 2021; 100: e24427.

Yaqub M, Kelly B, Papageorghiou AT, Noble JA. A Deep Learning Solution for Automatic Fetal Neurosonographic Diagnostic Plane Verification Using Clinical Standard Constraints. Ultrasound Med Biol 2017; 43: 2925–2933.

Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans Pattern Anal Mach Intell 2022; 44: 3523–3542.

Salomon LJ, Alfirevic Z, Berghella V, Bilardo CM, Chalouhi GE, Da Silva Costa F, Hernandez-Andrade E, Malinger G, Munoz H, Paladini D, Prefumo F, Sotiriadis A, Toi A, Lee W. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 2022; 59: 840–856.

Malinger G, Paladini D, Haratz KK, Monteagudo A, Pilu GL, Timor-Tritsch IE. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet Gynecol 2020; 56: 476–484.

Qu R, Xu G, Ding C, Jia W, Sun M. Standard Plane Identification in Fetal Brain Ultrasound Scans Using a Differential Convolutional Neural Network. IEEE Access 2020; 8: 83821–83830.

Cai Y, Droste R, Sharma H, Chatelain P, Drukker L, Papageorghiou AT, Noble JA. Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med Image Anal 2020; 65: 101762.

Huang R, Xie W, Alison Noble J. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography. Med Image Anal 2018; 47: 127–139.

Wyburd MK, Jenkinson M, Namburete AIL. Cortical Plate Segmentation Using CNNs in 3D Fetal Ultrasound, B Papież, A Namburete, M Yaqub, J Noble (eds). Medical Image Understanding and Analysis MIUA 2020. Conference Proceedings. Communications in Computer and Information Science, Vol 1248. Springer: Cham, 2020; 56–68.

Venturini L, Papageorghiou AT, Noble JA, Namburete AIL. Multi-task CNN for Structural Semantic Segmentation in 3D Fetal Brain Ultrasound, Y Zheng, B Williams, K Chen (eds). Medical Image Understanding and Analysis, MIUA 2019. Conference Proceedings. Communications in Computer and Information Science, Vol 1065. Springer: Cham; 2020: 164–173.

Hesse LS, Aliasi M, Moser F, Haak MC, Xie W, Jenkinson M, Namburete AIL. Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning. Neuroimage 2022; 254: 119117.

Lin M, He X, Guo H, He M, Zhang L, Xian J, Lei T, Xu Q, Zheng J, Feng J, Hao C, Yang Y, Wang N, Xie H. Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obstet Gynecol 2022; 59: 304–316.

Patra A, Noble JA. Multi-anatomy localization in fetal echocardiography videos. In 2019 IEEE 16th International Symposium on Biomedical Imaging, 2019; 1761–1764.

Nurmaini S, Rachmatullah MN, Sapitri AI, Darmawahyuni A, Tutuko B, Firdaus F, Partan RU, Bernolian N. Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection. Sensors (Basel) 2021; 21: 8007.

Dozen A, Komatsu M, Sakai A, Komatsu R, Shozu K, Machino H, Yasutomi S, Arakaki T, Asada K, Kaneko S, Matsuoka R, Aoki D, Sekizawa A, Hamamoto R. Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information. Biomolecules 2020; 10: 1526.

Ramirez Zegarra R, Dall'Asta A, Ghi T. Mechanisms of Fetal Adaptation to Chronic Hypoxia following Placental Insufficiency: A Review. Fetal Diagn Ther 2022; 49: 279–292.

Sulas E, Ortu E, Raffo L, Urru M, Tumbarello R, Pani D. Automatic Recognition of Complete Atrioventricular Activity in Fetal Pulsed-Wave Doppler Signals. Annu Int Conf IEEE Eng Med Biol Soc 2018; 2018: 917–920.

Lakra PP, Kumar A, Mohanram N, Krishnamurthi G, Thittai AK. Deep-Learning based Identification of Frames Containing Foetal Gender Region During Early Second Trimester Ultrasound Scanning. 2019 IEEE International Ultrasonics Symposium (IUS) IEEE, 2019: 471–474.

GE Healthcare. SCANNAV™ Assist. https://www.intelligentultrasound.com/scannav-assist/.

Eggebø TM, Heien C, Økland I, Gjessing LK, Romundstad P, Salvesen KÅ. Ultrasound assessment of fetal head–perineum distance before induction of labor. Ultrasound Obstet Gynecol 2008; 32: 199–204.

Barbera AF, Pombar X, Perugino G, Lezotte DC, Hobbins JC. A new method to assess fetal head descent in labor with transperineal ultrasound. Ultrasound Obstet Gynecol 2009; 33: 313–319.

Chen P, Chen Y, Deng Y, Wang Y, He P, Lv X, Yu J. A preliminary study to quantitatively evaluate the development of maturation degree for fetal lung based on transfer learning deep model from ultrasound images. Int J Comput Assist Radiol Surg 2020; 15: 1407–1415.

Vaze S, Namburete AIL. Segmentation of Fetal Adipose Tissue Using Efficient CNNs for Portable Ultrasound, A Melbourne, R Licandro, M DiFranco, P Rota, M Gau, M Kampel, R Aughwane, P Moeskops, E Schwartz, E Robinson, A Makropoulos (eds). Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis. PIPPI 2018, DATRA 2018. Lecture Notes in Computer Science, vol 11076. Springer: Cham, 2018; 55–65.

Hermawati FA, Tjandrasa H, Suciati N. Phase-based thresholding schemes for segmentation of fetal thigh cross-sectional region in ultrasound images. J King Saud Univ - Comput Inf Sci 2022; 34: 4448–4460.

Dall'Asta A, Rizzo G, Masturzo B, Di Pasquo E, Schera GBL, Morganelli G, Ramirez Zegarra R, Maqina P, Mappa I, Parpinel G, Attini R, Roletti E, Menato G, Frusca T, Ghi T. Intrapartum sonographic assessment of the fetal head flexion in protracted active phase of labor and association with labor outcome: a multicenter, prospective study. Am J Obstet Gynecol 2021; 225: 171. e1–12.

Ghi T, Bellussi F, Eggebø T, Tondi F, Pacella G, Salsi G, Cariello L, Piastra A, Youssef A, Pilu G, Rizzo N. Sonographic assessment of fetal occiput position during the second stage of labor: how reliable is the transperineal approach? J Matern Neonatal Med 2015; 28: 1985–1988.

Ghi T, Eggebø T, Lees C, Kalache K, Rozenberg P, Youssef A, Salomon LJ, Tutschek B. ISUOG Practice Guidelines: intrapartum ultrasound. Ultrasound Obstet Gynecol 2018; 52: 128–139.

Ghi T, Conversano F, Ramirez Zegarra R, Pisani P, Dall'Asta A, Lanzone A, Lau W, Vimercati A, Iliescu DG, Mappa I, Rizzo G, Casciaro S, International Study group on Labor ANd Delivery Sonography (ISLANDS). Novel artificial intelligence approach for automatic differentiation of fetal occiput anterior and non-occiput anterior positions during labor. Ultrasound Obstet Gynecol 2022; 59: 93–99.

Ramirez Zegarra R, Dall'Asta A, Conversano F, Dr Trani MG, Morello R, Pisani P, Di Paola M, Casciaro S, Ghi T. Artificial Intelligence Algorithm for the automatic classification of anterior/posterior/transverse fetal occiput positions during labor. Dreiländertreffen 2022

Authors

Bandr Abdullah Mohammed Al Jaloud
banderr31410@gmail.com (Primary Contact)
Hussain Mohammed Khalawi Alruwily
Atiah Abdularazq Abdullah Mohammed 
Hesah Sayaf Al_Mohemede
Mohammed Abdulrahman Obaid Alrowais
Bassam Ali Tumayhi
Mohammad Qassim Ahmad Hijri
Khalid Ahmed Ali Maghfuri
Hani Hossen Aseeri
Mohammed Mnawer H Alrowaili
Fahad Muteb Jaber Aljaber
Mohammed Obaid Alharbi
Abdulrahman Dhafi Sair Alanazi
Sami Mohammed Saleh Alamri
Al Jaloud, B. A. M., Hussain Mohammed Khalawi Alruwily, Atiah Abdularazq Abdullah Mohammed , Hesah Sayaf Al_Mohemede, Mohammed Abdulrahman Obaid Alrowais, Bassam Ali Tumayhi, … Sami Mohammed Saleh Alamri. (2025). Advancements in Deep Learning Techniques for Enhanced Assessment of Fetal Anomalies in Prenatal Imaging: Review of Current Applications and Future Directions. Saudi Journal of Medicine and Public Health, 2(2), 2863–2870. https://doi.org/10.64483/202522488

Article Details

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)