The Impact of Electronic Health Records on Healthcare Quality, Patient Safety, and Clinical Decision-Making
Abstract
Electronic Health Records (EHRs) have transformed the healthcare service delivery system through centralization of patient information, improved clinical decision making, and patient-centered care. This study examines the historical development of health records, the main characteristics of the EHR systems today, how they are implemented in healthcare facilities and how they enhance patient care in a variety of ways. The paper presents the advantages of EHRs to patient safety, providers-provider communication, chronic disease management, and evidence-based practice. It also contains solutions to EHR adoption obstacles, such as technical, financial, and human factors, data privacy, and security issues. It also focuses on the future trends, including artificial intelligence integration, telemedicine, interoperability, and patient engagement tools, in the research. The results show that EHRs are cost-efficient, enhance healthcare quality indicators, and allow managing population health. Training programs, strong support, and technological innovations are some of the key factors towards the maximum utility of the EHRs. In general, EHRs are at the center of enhancing healthcare efficiency, safety, and outcomes.
Full text article
References
Adibi, S., Li, M., Salazar, N., et al. (2020). Medical and dental electronic health record reporting discrepancies in integrated patient care. JDR Clinical & Translational Research, 5(3), 278–283.
Acharya, A., Schroeder, D., Schwei, K., & Chyou, P. H. (2017). Update on electronic dental record and clinical computing adoption among dental practices in the United States. Clinical Medicine & Research, 15(3–4), 59–74.
Fragidis, L. L., & Chatzoglou, P. D. (2018). Implementation of a nationwide electronic health record (EHR). International Journal of Health Care Quality Assurance, 31(2), 116–130.
Schwendicke, F., & Krois, J. (2021). Data dentistry: How data are changing clinical care and research. Journal of Dental Research.
Walji, M. F., Spallek, H., Kookal, K. K., et al. (2022). BigMouth: Development and maintenance of a successful dental data repository. Journal of the American Medical Informatics Association, 29(4), 701–706.
Ducret, M., Wahal, E., Gruson, D., et al. (2024). Trustworthy artificial intelligence in dentistry: Learnings from the EU AI Act. Journal of Dental Research.
Yan, Q., Jiang, Z., Harbin, Z., Tolbert, P. H., & Davies, M. G. (2021). Exploring the relationship between electronic health records and provider burnout: A systematic review. Journal of the American Medical Informatics Association, 28(5), 1009–1021.
Rajkumar, N. M. R., Muzoora, M. R., & Thun, S. (2022). Dentistry and interoperability. Journal of Dental Research, 101(11), 1258–1262.
Cowie, M. R., Blomster, J. I., Curtis, L. H., et al. (2017). Electronic health records to facilitate clinical research. Clinical Research in Cardiology, 106, 1–9. https://doi.org/10.1007/s00392-016-1025-6
Kim, E., Rubinstein, S. M., Nead, K. T., Wojcieszynski, A. P., Gabriel, P. E., & Warner, J. L. (2019). The evolving use of electronic health records for research. Seminars in Radiation Oncology, 29, 354–361. https://doi.org/10.1016/j.semradonc.2019.05.010
Goldstein, B. A., Navar, A. M., Pencina, M. J., & Ioannidis, J. P. A. (2017). Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. Journal of the American Medical Informatics Association, 24, 198–208. https://doi.org/10.1093/jamia/ocw042
Hernandez-Boussard, T., Monda, K. L., Crespo, B. C., & Riskin, D. (2019). Real-world evidence in cardiovascular medicine: Ensuring data validity in electronic health record-based studies. Journal of the American Medical Informatics Association, 26, 1189–1194. https://doi.org/10.1093/jamia/ocz119
Tapuria, A., Porat, T., Kalra, D., Dsouza, G., Xiaohui, S., & Curcin, V. (2021). Impact of patient access to their electronic health record: Systematic review. Information, Communication & Society Care, 46, 192–204. https://doi.org/10.1080/17538157.2021.1879810
Pawelek, J., Baca-Motes, K., Pandit, J. A., Berk, B. B., & Ramos, E. (2022). The power of patient engagement with electronic health records as research participants. JMIR Medical Informatics, 10, e39145. https://doi.org/10.2196/39145
Sauer, C. M., Chen, L. C., Hyland, S. L., Girbes, A., Elbers, P., & Celi, L. A. (2022). Leveraging electronic health records for data science: Common pitfalls and how to avoid them. The Lancet Digital Health, 4, e893–e898. https://doi.org/10.1016/S2589-7500(22)00154-6
Hemingway, H., Asselbergs, F. W., Danesh, J., et al. (2018). Big data from electronic health records for early and late translational cardiovascular research: Challenges and potential. European Heart Journal, 39, 1481–1495. https://doi.org/10.1093/eurheartj/ehx487
Romiti, S., Vinciguerra, M., Saade, W., Anso Cortajarena, I., & Greco, E. (2020). Artificial intelligence and cardiovascular diseases: An unexpected alliance. Cardiology Research and Practice, 2020, 4972346. https://doi.org/10.1155/2020/4972346
WHO CVD Risk Chart Working Group. (2019). World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. The Lancet Global Health, 7, e1332–e1345.
SCORE2 Working Group & ESC Cardiovascular Risk Collaboration. (2021). SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. European Heart Journal, 42, 2439–2454. https://doi.org/10.1093/eurheartj/ehab309
van Daalen, K. R., Zhang, D., Kaptoge, S., Paige, E., Di Angelantonio, E., & Pennells, L. (2024). Risk estimation for the primary prevention of cardiovascular disease. The Lancet Global Health, 12, e1343–e1358. https://doi.org/10.1016/S2214-109X(24)00210-9
Hippisley-Cox, J., Coupland, C., & Brindle, P. (2017). Development and validation of QRISK3 risk prediction algorithms. BMJ, 357, j2099. https://doi.org/10.1136/bmj.j2099
Hippisley-Cox, J., Coupland, C. A. C., Bafadhel, M., et al. (2024). Development and validation of a new algorithm for improved cardiovascular risk prediction. Nature Medicine, 30, 1440–1447. https://doi.org/10.1038/s41591-024-02905-y
Khan, S. S., Coresh, J., Pencina, M. J., et al. (2023). Novel prediction equations for absolute risk assessment of total cardiovascular disease. Circulation, 148, 1982–2004. https://doi.org/10.1161/CIR.0000000000001191
Khan, S. S., Matsushita, K., Sang, Y., et al. (2024). Development and validation of the American Heart Association PREVENT equations. Circulation, 149, 430–449. https://doi.org/10.1161/CIRCULATIONAHA.123.067626
Larkin, H. (2024). What to know about PREVENT, the AHA’s new cardiovascular disease risk calculator. JAMA, 331, 277–279. https://doi.org/10.1001/jama.2023.25115
Dey, D., Slomka, P. J., Leeson, P., Comaniciu, D., Shrestha, S., Sengupta, P. P., & Marwick, T. H. (2019). Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. Journal of the American College of Cardiology, 73, 1317–1335. https://doi.org/10.1016/j.jacc.2018.12.054
Dhingra, L. S., Shen, M., Mangla, A., & Khera, R. (2023). Cardiovascular care innovation through data-driven discoveries in the electronic health record. American Journal of Cardiology, 203, 136–148. https://doi.org/10.1016/j.amjcard.2023.06.104
Zhang, D., Yin, C., Zeng, J., Yuan, X., & Zhang, P. (2020). Combining structured and unstructured data for predictive models: A deep learning approach. BMC Medical Informatics and Decision Making, 20, 280. https://doi.org/10.1186/s12911-020-01297-6
Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2020). A systematic review on supervised and unsupervised machine learning algorithms for data science. In M. Berry, A. Mohamed, & B. Yap (Eds.), Supervised and unsupervised learning for data science (pp. 3–21). Springer. https://doi.org/10.1007/978-3-030-22475-2_1
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 160. https://doi.org/10.1007/s42979-021-00592-x
Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H. F., & van der Schaar, M. (2019). Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLOS ONE, 14, e0213653. https://doi.org/10.1371/journal.pone.0213653
Yasmin, F., Shah, S. M. I., Naeem, A., et al. (2021). Artificial intelligence in the diagnosis and detection of heart failure: The past, present, and future. Reviews in Cardiovascular Medicine, 22, 1095–1113. https://doi.org/10.31083/j.rcm2204121
Kagiyama, N., Shrestha, S., Farjo, P. D., & Sengupta, P. P. (2019). Artificial intelligence: Practical primer for clinical research in cardiovascular disease. Journal of the American Heart Association, 8, e012788. https://doi.org/10.1161/JAHA.119.012788
Sevakula, R. K., Au-Yeung, W. M., Singh, J. P., Heist, E. K., Isselbacher, E. M., & Armoundas, A. A. (2020). State-of-the-art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system. Journal of the American Heart Association, 9, e013924. https://doi.org/10.1161/JAHA.119.013924
Mohd Faizal, A. S., Thevarajah, T. M., Khor, S. M., & Chang, S. W. (2021). A review of risk prediction models in cardiovascular disease: Conventional approach versus artificial intelligence approach. Computer Methods and Programs in Biomedicine, 207, 106190. https://doi.org/10.1016/j.cmpb.2021.106190
Liu, W., Laranjo, L., Klimis, H., et al. (2023). Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication: A systematic review and meta-analysis. European Heart Journal – Quality of Care and Clinical Outcomes, 9, 310–322. https://doi.org/10.1093/ehjqcco/qcad017
Petrazzini, B. O., Chaudhary, K., Marquez-Luna, C., et al. (2022). Coronary risk estimation based on clinical data in electronic health records. Journal of the American College of Cardiology, 79, 1155–1166. https://doi.org/10.1016/j.jacc.2022.01.021
Betancur, J., Otaki, Y., Motwani, M., et al. (2018). Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC: Cardiovascular Imaging, 11, 1000–1009. https://doi.org/10.1016/j.jcmg.2017.07.024
Li, Y., Salimi-Khorshidi, G., Rao, S., et al. (2022). Validation of risk prediction models applied to longitudinal electronic health record data. European Heart Journal – Digital Health, 3, 535–547. https://doi.org/10.1093/ehjdh/ztac061
Krittanawong, C., Johnson, K. W., Choi, E., et al. (2022). Artificial intelligence and cardiovascular genetics. Life, 12, 279. https://doi.org/10.3390/life12020279
Motwani, M., Dey, D., Berman, D. S., et al. (2017). Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease. European Heart Journal, 38, 500–507. https://doi.org/10.1093/eurheartj/ehw188
Nakanishi, R., Dey, D., Commandeur, F., et al. (2018). Machine learning in predicting coronary heart disease events: Results from the MESA study. Journal of the American College of Cardiology, 71, A1483. https://doi.org/10.1016/S0735-1097(18)32024-2
Kwon, J., Kim, K. H., Jeon, K. H., & Park, J. (2019). Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography. Echocardiography, 36, 213–218. https://doi.org/10.1111/echo.14220
Li, Y., Rao, S., Solares, J. R. A., et al. (2020). BEHRT: Transformer for electronic health records. Scientific Reports, 10, 7155. https://doi.org/10.1038/s41598-020-62922-y
Liu, K. H., Chiang, C. Y., Wang, H. Y., & Tseng, Y. J. (2023). Temporal phenotype matrix engineering for electronic health records. In 2023 IEEE EMBS International Conference on Biomedical and Health Informatics (pp. 1–4). IEEE. https://doi.org/10.1109/BHI58575.2023.10313504
Sun, X., Yin, Y., Yang, Q., & Huo, T. (2023). Artificial intelligence in cardiovascular diseases: Diagnostic and therapeutic perspectives. European Journal of Medical Research, 28, 242. https://doi.org/10.1186/s40001-023-01065-y
Yu, J., Yang, X., Deng, Y., et al. (2024). Incorporating longitudinal history of risk factors into ASCVD risk prediction using deep learning. Scientific Reports, 14, 2554. https://doi.org/10.1038/s41598-024-51685-5
Gianfrancesco, M. A., & Goldstein, N. D. (2021). A narrative review on the validity of electronic health record–based research in epidemiology. BMC Medical Research Methodology, 21, 234. https://doi.org/10.1186/s12874-021-01416-5
McGuckin, T., Crick, K., Myroniuk, T. W., et al. (2022). Understanding challenges of using routinely collected health data. BMJ Open Quality, 11, e001491. https://doi.org/10.1136/bmjoq-2021-001491
Tang, F., & Ishwaran, H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining, 10, 363–377. https://doi.org/10.1002/sam.11348
Ayaz, M., Pasha, M. F., Alzahrani, M. Y., Budiarto, R., & Stiawan, D. (2021). The Fast Healthcare Interoperability Resources (FHIR) standard: Systematic literature review of implementations, applications, challenges and opportunities. JMIR Medical Informatics, 9, e21929. https://doi.org/10.2196/21929
Vorisek, C. N., Lehne, M., Klopfenstein, S. A. I., Mayer, P. J., Bartschke, A., Haese, T., & Thun, S. (2022). Fast Healthcare Interoperability Resources (FHIR) for interoperability in health research: Systematic review. JMIR Medical Informatics, 10, e35724. https://doi.org/10.2196/35724
Rudrapatna, V. A., Glicksberg, B. S., Avila, P., Harding-Theobald, E., Wang, C., & Butte, A. J. (2020). Accuracy of medical billing data against the electronic health record in the measurement of colorectal cancer screening rates. BMJ Open Quality, 9, e000856. https://doi.org/10.1136/bmjoq-2019-000856
Lopez-Neyman, S. M., Davis, K., Zohoori, N., Broughton, K. S., Moore, C. E., & Miketinas, D. (2022). Racial disparities and prevalence of cardiovascular disease risk factors, cardiometabolic risk factors, and cardiovascular health metrics among U.S. adults: NHANES 2011–2018. Scientific Reports, 12, 19475. https://doi.org/10.1038/s41598-022-21878-x
Hong, C., Pencina, M. J., Wojdyla, D. M., Hall, J. L., Judd, S. E., Cary, M., Engelhard, M. M., Berchuck, S., Xian, Y., & D’Agostino, R. B. Sr. (2023). Predictive accuracy of stroke risk prediction models across race, sex, and age groups. JAMA, 329, 306–317. https://doi.org/10.1001/jama.2022.24683
Thomas Craig, K. J., Fusco, N., Gunnarsdottir, T., Chamberland, L., Snowdon, J. L., & Kassler, W. J. (2021). Leveraging data and digital health technologies to assess and impact social determinants of health: A state-of-the-art review. Online Journal of Public Health Informatics, 13, e14. https://doi.org/10.5210/ojphi.v13i3.11081
McNeill, E., Lindenfeld, Z., Mostafa, L., Zein, D., Silver, D., Pagan, J., Weeks, W. B., Aerts, A., Des Rosiers, S., Boch, J., et al. (2023). Uses of social determinants of health data to address cardiovascular disease and health equity: A scoping review. Journal of the American Heart Association, 12, e030571. https://doi.org/10.1161/JAHA.123.030571
Olsavszky, V., Dosius, M., Vladescu, C., & Benecke, J. (2020). Time series analysis and forecasting with automated machine learning on a national ICD-10 database. International Journal of Environmental Research and Public Health, 17, 4979. https://doi.org/10.3390/ijerph17144979
van Smeden, M., Heinze, G., Van Calster, B., Asselbergs, F. W., Vardas, P. E., Bruining, N., de Jaegere, P., Moore, J. H., Denaxas, S., Boulesteix, A. L., et al. (2022). Critical appraisal of artificial intelligence–based prediction models for cardiovascular disease. European Heart Journal, 43, 2921–2930. https://doi.org/10.1093/eurheartj/ehac238
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., et al. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education, 23, 689. https://doi.org/10.1186/s12909-023-04698-z
Sadeghi, Z., Alizadehsani, R., Cifci, M. A., Kausar, S., Rehman, R., Mahanta, P., Bora, P. K., Almasri, A., Alkhawaldeh, R. S., & Hussain, S. (2024). A review of explainable artificial intelligence in healthcare. Computers & Electrical Engineering, 118, 109370. https://doi.org/10.1016/j.compeleceng.2024.109370
Hussain, L., Awan, I. A., Aziz, W., Saeed, S., Ali, A., Zeeshan, F., & Kwak, K. S. (2020). Detecting congestive heart failure by extracting multimodal features and employing machine learning techniques. Biomedical Research International, 2020, 4281243. https://doi.org/10.1155/2020/4281243
Wang, F., & Preininger, A. (2019). Artificial intelligence in health: State of the art, challenges, and future directions. Yearbook of Medical Informatics, 28, 16–26.
Gala, D., Behl, H., Shah, M., & Makaryus, A. N. (2024). The role of artificial intelligence in improving patient outcomes and the future of healthcare delivery in cardiology: A narrative review. Healthcare, 12, 481. https://doi.org/10.3390/healthcare12040481
Shu, S., Ren, J., & Song, J. (2021). Clinical application of machine learning-based artificial intelligence in the diagnosis, prediction, and classification of cardiovascular diseases. Circulation Journal, 85, 1416–1425. https://doi.org/10.1253/circj.CJ-20-1121
Preechakul, K., Sriswasdi, S., Kijsirikul, B., & Chuangsuwanich, E. (2022). Improved image classification explainability with high-accuracy heatmaps. iScience, 25, 103933. https://doi.org/10.1016/j.isci.2022.103933
Akbilgic, O. (2024). Principles of artificial intelligence for medicine. Journal of the American Heart Association, 13, e035815. https://doi.org/10.1161/JAHA.124.035815
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2, 56–67. https://doi.org/10.1038/s42256-019-0138-9
Cruz Rivera, S., Liu, X., Chan, A. W., Denniston, A. K., Calvert, M. J., & SPIRIT-AI Group. (2020). Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nature Medicine, 26, 1351–1363. https://doi.org/10.1038/s41591-020-1037-7
Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J., Denniston, A. K., & CONSORT-AI Group. (2020). Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. Nature Medicine, 26, 1364–1374. https://doi.org/10.1038/s41591-020-1034-x
Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digital Medicine, 3, 17. https://doi.org/10.1038/s41746-020-0221-y
Kulkarni, P. A., & Singh, H. (2023). Artificial intelligence in clinical diagnosis: Opportunities, challenges, and hype. JAMA, 330(4), 317–318. https://doi.org/10.1001/jama.2023.11440
Peng, C., Yang, X., Chen, A., Smith, K. E., PourNejatian, N., Costa, A. B., Martin, C., Flores, M. G., Zhang, Y., Magoc, T., et al. (2023). A study of generative large language models for medical research and healthcare. NPJ Digital Medicine, 6, 210. https://doi.org/10.1038/s41746-023-00958-w
Nolin-Lapalme, A., Theriault-Lauzier, P., Corbin, D., Tastet, O., Sharma, A., Hussin, J. G., Kadoury, S., Jiang, R., Krahn, A. D., Gallo, R., et al. (2024). Maximising large language model utility in cardiovascular care: A practical guide. Canadian Journal of Cardiology, 40, 1774–1787. https://doi.org/10.1016/j.cjca.2024.05.024
Authors
Copyright (c) 2024 Mane Mohammed alamery, Haifa Oudah Eid Alatawi, Ibtihaj Daham Alruwaili, Hana Dali Sabti Alanazi, Sameer Saeed M Alsumairy, Amani Abdullah Yahya Gharawi, Abeer Nasser A .Aldossary, Hissah Mohammed Yahya Alwayni, Sakhr Sahal Sannat Al Thiyabi, Aziza Eid alinazy

This work is licensed under a Creative Commons Attribution 4.0 International License.
