A Biopsychosocial-Systems Analysis of the Tuberculosis Continuum: Integrating Diagnostic Technology, Clinical Management, Health Informatics, and Social Determinants from Detection to Reintegration

Eshtyaq Hussain Assiri (1) , Ali Abdalaziz Ibrahim Alrayes (2) , Sultan Mousa Wasili (3) , Ali Mousa Nushayli (4) , Sultan Khader Al-Anzi (5) , Juhaina Ali Alaliwi (6) , Fatimah Haidar Hussein Abutalib (7) , Nora Ali Albishy (8) , Muhammed Abdulaziz Almuteri (9) , Awadh Bader Alotaibi (10) , Khalid Abdullah Mohammad Alshammari (11) , Ali Mohammed Al Amer (12)
(1) Muhayil General Hospital,Ministry of Health, Saudi Arabia,
(2) Tumair General Hospital,Ministry of Health, Saudi Arabia,
(3) Abuareash General Hospital, Ministry of Health, Saudi Arabia,
(4) Sultan Khader Al-Anzi,Ministry of Health, Saudi Arabia,
(5) King Fahad Hospital Qassim Health Cluster,Ministry of Health, Saudi Arabia,
(6) Al-Omran General Hospital,Ministry of Health, Saudi Arabia,
(7) Erada Hospital for Mental Health, Jazan,Ministry of Health, Saudi Arabia,
(8) Tuwaiq General Health Center, Riyadh,Ministry of Health, Saudi Arabia,
(9) Madinah,Ministry of Health, Saudi Arabia,
(10) Sanam  Phc,Ministry of Health, Saudi Arabia,
(11) West Janadriyah Health Center,Ministry of Health, Saudi Arabia,
(12) Al Ha'ir Health Center,Ministry of Health, Saudi Arabia

Abstract

Background: Tuberculosis (TB) management is characterized by a protracted patient journey through complex, often fragmented health systems. While the biomedical cascade—from screening to treatment—is well-described, critical gaps persist at the intersections of clinical practice, health information systems, and the social ecology of illness. The integration of health informatics within this continuum remains underexplored as a pivotal mediator of care quality and patient trajectory. Aim: This narrative review synthesizes interdisciplinary evidence to construct an integrated model of the TB patient pathway.  Methods: A comprehensive literature analysis was conducted across PubMed, Scopus, CINAHL, IEEE Xplore, and Sociological Abstracts (2010–2024). Search terms included tuberculosis care cascade, health information systems, electronic health records, diagnostic delay, data interoperability, social stigma, and structural vulnerability. Results: The analysis reveals that advances in rapid molecular diagnostics and digital radiology are frequently undermined by weak health information systems that fail to ensure timely result communication and care coordination. Nursing-led adherence support is critical but often operates without integrated patient data. Sociological factors, particularly stigma and economic precarity, function as systemic barriers exacerbated by informational gaps. Health informatics emerges not merely as a tool for surveillance but as a crucial infrastructure for linking diagnostic, clinical, and social support services. Conclusion: Effective TB care requires a paradigm shift toward a digitally enabled, person-centered continuum. This necessitates interoperable health information systems that unify diagnostic, therapeutic, and social data, empowering providers and patients while mitigating structural vulnerabilities. Future programs must co-design technological and social interventions to bridge the persistent divides between data, care, and context.

Full text article

Generated from XML file

References

Addo, J., Pearce, D., Metcalf, M., Lundquist, C., Thomas, G., Barros-Aguirre, D., ... & Strange, M. (2022). Living with tuberculosis: a qualitative study of patients’ experiences with disease and treatment. BMC Public Health, 22(1), 1717. https://doi.org/10.1186/s12889-022-14115-7

Allwood, B. W., Byrne, A., Meghji, J., Rachow, A., Van Der Zalm, M. M., & Schoch, O. D. (2021). Post-tuberculosis lung disease: clinical review of an under-recognised global challenge. Respiration, 100(8), 751-763. https://doi.org/10.1159/000512531

Blaya, J. A., Fraser, H. S., & Holt, B. (2010). E-health technologies show promise in developing countries. Health affairs, 29(2), 244-251. https://doi.org/10.1377/hlthaff.2009.0894

Brenas, J. H., Al-Manir, M. S., Baker, C. J., & Shaban-Nejad, A. (2017). A malaria analytics framework to support evolution and interoperability of global health surveillance systems. IEEE Access, 5, 21605-21619.

Chidambaram, V., Tun, N. L., Majella, M. G., Ruelas Castillo, J., Ayeh, S. K., Kumar, A., ... & Karakousis, P. C. (2021). Male sex is associated with worse microbiological and clinical outcomes following tuberculosis treatment: a retrospective cohort study, a systematic review of the literature, and meta-analysis. Clinical Infectious Diseases, 73(9), 1580-1588. https://doi.org/10.1093/cid/ciab527

Courtwright, A., & Turner, A. N. (2010). Tuberculosis and stigmatization: pathways and interventions. Public health reports, 125(4_suppl), 34-42. https://doi.org/10.1177/00333549101250S407

Craig, G. M., Daftary, A., Engel, N., O’driscoll, S., & Ioannaki, A. (2017). Tuberculosis stigma as a social determinant of health: a systematic mapping review of research in low incidence countries. International Journal of Infectious Diseases, 56, 90-100. https://doi.org/10.1016/j.ijid.2016.10.011

Daftary, A. (2012). HIV and tuberculosis: the construction and management of double stigma. Social science & medicine, 74(10), 1512-1519. https://doi.org/10.1016/j.socscimed.2012.01.027

Daftary, A., Mitchell, E. M., Reid, M. J., Fekadu, E., & Goosby, E. (2018). To end TB, first-ever high-level meeting on tuberculosis must address stigma. The American Journal of Tropical Medicine and Hygiene, 99(5), 1114. https://doi.org/10.4269/ajtmh.18-0591

Dorman, S. E., Schumacher, S. G., Alland, D., Nabeta, P., Armstrong, D. T., King, B., ... & Xie, Y. (2018). Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. The Lancet infectious diseases, 18(1), 76-84. https://doi.org/10.1016/S1473-3099(17)30691-6

Deriel, E., Puttkammer, N., Hyppolite, N., Diallo, J., Wagner, S., Honoré, J. G., ... & Barnhart, S. (2018). Success factors for implementing and sustaining a mature electronic medical record in a low-resource setting: a case study of iSanté in Haiti. Health policy and planning, 33(2), 237-246. https://doi.org/10.1093/heapol/czx171

Hargreaves, J. R., Boccia, D., Evans, C. A., Adato, M., Petticrew, M., & Porter, J. D. (2011). The social determinants of tuberculosis: from evidence to action. American journal of public health, 101(4), 654-662. https://doi.org/10.2105/AJPH.2010.199505

Hassane-Harouna, S., Gils, T., Decroo, T., Ortuño-Gutiérrez, N., Delamou, A., Cherif, G. F., ... & de Jong, B. C. (2023). Community-supported self-administered tuberculosis treatment combined with active tuberculosis screening: a pilot experience in Conakry, Guinea. Global Health Action, 16(1), 2262134. https://doi.org/10.1080/16549716.2023.2262134

Jung, M. K., Lee, S. Y., Min, E. J., & Ko, J. M. (2023). CT scan differences of pulmonary TB according to presence of pleural effusion. Chest, 164(6), 1387-1395. https://doi.org/10.1016/j.chest.2023.06.043

Kasaie, P., Pennington, J., Gupta, A., Dowdy, D. W., & Kendall, E. A. (2023). Trials underestimate the impact of preventive treatment for household contacts exposed to multidrug-resistant tuberculosis: a simulation study. medRxiv, 2023-02. https://doi.org/10.1101/2023.02.06.23285528

Köser, C. U., Robledo, J., Shubladze, N., Schön, T., Dolinger, D. L., & Salfinger, M. (2021). Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. The International Journal of Tuberculosis and Lung Disease, 25(10), 791-794. https://doi.org/10.5588/ijtld.21.0428

Kruk, M. E., Gage, A. D., Arsenault, C., Jordan, K., Leslie, H. H., Roder-DeWan, S., ... & Pate, M. (2018). High-quality health systems in the Sustainable Development Goals era: time for a revolution. The Lancet global health, 6(11), e1196-e1252. https://doi.org/10.1016/S2214-109X(18)30386-3

Manyazewal, T., Woldeamanuel, Y., Blumberg, H. M., Fekadu, A., & Marconi, V. C. (2021). The potential use of digital health technologies in the African context: a systematic review of evidence from Ethiopia. NPJ digital medicine, 4(1), 125. https://doi.org/10.1038/s41746-021-00487-4

Ngwatu, B. K., Nsengiyumva, N. P., Oxlade, O., Mappin-Kasirer, B., Nguyen, N. L., Jaramillo, E., ... & Yassin, M. (2018). The impact of digital health technologies on tuberculosis treatment: a systematic review. European Respiratory Journal, 51(1). https://doi.org/10.1183/13993003.01596-2017

Pellison, F. C., Rijo, R. P. C. L., Lima, V. C., Crepaldi, N. Y., Bernardi, F. A., Galliez, R. M., ... & Alves, D. (2020). Data integration in the Brazilian Public Health System for Tuberculosis: use of the semantic web to establish interoperability. JMIR Medical Informatics, 8(7), e17176. https://doi.org/10.2196/17176

Qin, Z. Z., Barrett, R., Ahmed, S., Sarker, M. S., Paul, K., Adel, A. S. S., ... & Creswell, J. (2022). Comparing different versions of computer-aided detection products when reading chest X-rays for tuberculosis. PLOS Digital Health, 1(6), e0000067. https://doi.org/10.1371/journal.pdig.0000067

Sant´ Anna, F. M., Araújo-Pereira, M., Schmaltz, C. A., Arriaga, M. B., Andrade, B. B., & Rolla, V. C. (2023). Impact of adverse drug reactions on the outcomes of tuberculosis treatment. PLoS One, 18(2), e0269765. https://doi.org/10.1371/journal.pone.0269765

Siyam, A., Ir, P., York, D., Antwi, J., Amponsah, F., Rambique, O., ... & O’Neill, K. (2021). The burden of recording and reporting health data in primary health care facilities in five low-and lower-middle income countries. BMC health services research, 21(Suppl 1), 691. https://doi.org/10.1186/s12913-021-06652-5

Sreeramareddy, C. T., Qin, Z. Z., Satyanarayana, S., Subbaraman, R., & Pai, M. (2014). Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review. The International Journal of Tuberculosis and Lung Disease, 18(3), 255-266. https://doi.org/10.5588/ijtld.13.0585

Storla, D. G., Yimer, S., & Bjune, G. A. (2008). A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC public health, 8(1), 15. https://doi.org/10.1186/1471-2458-8-15

Subbaraman, R., de Mondesert, L., Musiimenta, A., Pai, M., Mayer, K. H., Thomas, B. E., & Haberer, J. (2018). Digital adherence technologies for the management of tuberculosis therapy: mapping the landscape and research priorities. BMJ global health, 3(5), e001018. https://doi.org/10.1136/bmjgh-2018-001018

Sweetland, A. C., Kritski, A., Oquendo, M. A., Sublette, M. E., Norcini Pala, A., Silva, L. R., ... & Wainberg, M. L. (2017). Addressing the tuberculosis–depression syndemic to end the tuberculosis epidemic. The International Journal of Tuberculosis and Lung Disease, 21(8), 852-861. https://doi.org/10.5588/ijtld.16.0584

Westgard, C., & Fleming, W. O. (2020). The use of implementation science tools to design, implement, and monitor a community-based mHealth intervention for child health in the Amazon. Frontiers in public health, 8, 411. https://doi.org/10.3389/fpubh.2020.00411

World Health Organization. (2024). WHO consolidated guidelines on tuberculosis. Module 3: diagnosis–rapid diagnostics for tuberculosis detection. World Health Organization.

World Health Organization, & World Health Organization Staff. (2013). Global tuberculosis report 2013. World health organization.

Authors

Eshtyaq Hussain Assiri
ashtyaqasiri532@gmail.com (Primary Contact)
Ali Abdalaziz Ibrahim Alrayes
Sultan Mousa Wasili
Ali Mousa Nushayli
Sultan Khader Al-Anzi
Juhaina Ali Alaliwi
Fatimah Haidar Hussein Abutalib
Nora Ali Albishy
Muhammed Abdulaziz Almuteri
Awadh Bader Alotaibi
Khalid Abdullah Mohammad Alshammari
Ali Mohammed Al Amer
Assiri, E. H., Ali Abdalaziz Ibrahim Alrayes, Sultan Mousa Wasili, Ali Mousa Nushayli, Sultan Khader Al-Anzi, Juhaina Ali Alaliwi, … Ali Mohammed Al Amer. (2024). A Biopsychosocial-Systems Analysis of the Tuberculosis Continuum: Integrating Diagnostic Technology, Clinical Management, Health Informatics, and Social Determinants from Detection to Reintegration. Saudi Journal of Medicine and Public Health, 1(2), 1306–1312. https://doi.org/10.64483/202412359

Article Details

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)