The Gut-Kidney Axis in Type 2 Diabetes: A Comprehensive Microbiological Perspective on Pathogenesis and Novel Therapeutic Avenues
Abstract
Background: The human gut microbiome is a dynamic ecosystem, playing a central role in host metabolism. In Type 2 Diabetes, gut dysbiosis-characterized by a reduction in microbial diversity and function-is now considered not only a consequence but also a major contributor to the development of complications such as Diabetic Kidney Disease. Indeed, the gut-kidney axis represents a key route through which microbial metabolites affect renal health.
Aim: The aim of this review is to collate recent evidence (2015-2025) on the mechanisms through which gut dysbiosis drives DKD pathogenesis and to assess novel, microbiome-targeted therapeutic strategies.
Methods: Extensive literature review focused on microbial taxonomic and functional shifts in T2D and DKD. Review design uses a microbiological approach to dissect the gut-kidney axis, focusing on specific microbial metabolites and pathways.
Results: Diabetic dysbiosis is characterized by the depletion of saccharolytic, SCFA-producing bacteria and the expansion of proteolytic pathobionts, which produce uremic toxins, such as indoxyl sulfate and TMAO. These metabolites foster renal inflammation, oxidative stress, and fibrosis. Therapeutic approaches using pre/probiotics, FMT, and microbial enzyme inhibitors have shown promising potential for the restoration of microbial ecology and mitigation of renal injury.
Conclusion: The gut-kidney axis requires a deep microbiological understanding for the elaboration of novel biomarkers and ecologically-based interventions, with the aim of reducing the burden of DKD in the T2D population.
Full text article
References
Asnicar, F., Berry, S. E., Valdes, A. M., Nguyen, L. H., Piccinno, G., Drew, D. A., ... & Segata, N. (2021). Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nature medicine, 27(2), 321-332. https://doi.org/10.1038/s41591-020-01183-8
Baxter, N. T., Schmidt, A. W., Venkataraman, A., Kim, K. S., Waldron, C., & Schmidt, T. M. (2019). Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio, 10(1), 10-1128. https://doi.org/10.1128/mbio.02566-18
Cani, P. D., & de Vos, W. M. (2017). Next-generation beneficial microbes: the case of Akkermansia muciniphila. Frontiers in microbiology, 8, 1765. https://doi.org/10.3389/fmicb.2017.01765
Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., ... & Gibson, G. R. (2021). Shaping the future of probiotics and prebiotics. Trends in microbiology, 29(8), 667-685. https://doi.org/10.1016/j.tim.2021.01.003
De La Cuesta-Zuluaga, J., Mueller, N. T., Corrales-Agudelo, V., Velásquez-Mejía, E. P., Carmona, J. A., Abad, J. M., & Escobar, J. S. (2017). Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut. Diabetes care, 40(1), 54-62. https://doi.org/10.2337/dc16-1324
Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., ... & Cani, P. D. (2019). Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature medicine, 25(7), 1096-1103. https://doi.org/10.1038/s41591-019-0495-2
Derrien, M., Van Baarlen, P., Hooiveld, G., Norin, E., Müller, M., & de Vos, W. M. (2011). Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Frontiers in microbiology, 2, 166. https://doi.org/10.3389/fmicb.2011.00166
Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., ... & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the national academy of sciences, 110(22), 9066-9071. https://doi.org/10.1073/pnas.1219451110
Fischbach, M. A. (2018). Microbiome: focus on causation and mechanism. Cell, 174(4), 785-790. https://doi.org/10.1016/j.cell.2018.07.038
Gilijamse, P. W., Hartstra, A. V., Levin, E., Wortelboer, K., Serlie, M. J., Ackermans, M. T., ... & Prodan, A. (2020). Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. npj Biofilms and Microbiomes, 6(1), 16. https://doi.org/10.1038/s41522-020-0127-0
Gryp, T., Huys, G. R., Joossens, M., Van Biesen, W., Glorieux, G., & Vaneechoutte, M. (2020). Isolation and quantification of uremic toxin precursor-generating gut bacteria in chronic kidney disease patients. International journal of molecular sciences, 21(6), 1986. https://doi.org/10.3390/ijms21061986
Gupta, S., Allen-Vercoe, E., & Petrof, E. O. (2016). Fecal microbiota transplantation: in perspective. Therapeutic advances in gastroenterology, 9(2), 229-239. https://doi.org/10.1177/1756283X15607414
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., ... & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology, 11(8), 506-514.
Ito, S., & Yoshida, M. (2014). Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins, 6(2), 665-678. https://doi.org/10.3390/toxins6020665
Jiang, H., Wang, X., Zhou, W., Huang, Z., & Zhang, W. (2025). Gut microbiota dysbiosis in diabetic nephropathy: mechanisms and therapeutic targeting via the gut-kidney axis. Frontiers in Endocrinology, 16, 1661037. https://doi.org/10.3389/fendo.2025.1661037
Kashyap, P. C., Chia, N., Nelson, H., Segal, E., & Elinav, E. (2017, December). Microbiome at the frontier of personalized medicine. In Mayo Clinic Proceedings (Vol. 92, No. 12, pp. 1855-1864). Elsevier. https://doi.org/10.1016/j.mayocp.2017.10.004
Kootte, R. S., Levin, E., Salojärvi, J., Smits, L. P., Hartstra, A. V., Udayappan, S. D., ... & Nieuwdorp, M. (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell metabolism, 26(4), 611-619. https://doi.org/10.1016/j.cmet.2017.09.008
Lee, D. M., Battson, M. L., Jarrell, D. K., Hou, S., Ecton, K. E., Weir, T. L., & Gentile, C. L. (2018). SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovascular diabetology, 17(1), 62.
Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A., & Urquhart, B. L. (2021). Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins, 13(2), 142. https://doi.org/10.3390/toxins13020142
Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A. B., ... & Huttenhower, C. (2017). Strains, functions and dynamics in the expanded Human Microbiome Project. Nature, 550(7674), 61-66. https://doi.org/10.1038/nature23889
Matsui, A., Yoshifuji, A., Irie, J., Tajima, T., Uchiyama, K., Itoh, T., ... & Itoh, H. (2023). Canagliflozin protects the cardiovascular system through effects on the gut environment in non-diabetic nephrectomized rats. Clinical and experimental nephrology, 27(4), 295-308. https://doi.org/10.1007/s10157-022-02312-y
Naseri, K., Saadati, S., Ghaemi, F., Ashtary-Larky, D., Asbaghi, O., Sadeghi, A., ... & de Courten, B. (2023). The effects of probiotic and synbiotic supplementation on inflammation, oxidative stress, and circulating adiponectin and leptin concentration in subjects with prediabetes and type 2 diabetes mellitus: A GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. European journal of nutrition, 62(2), 543-561. https://doi.org/10.1007/s00394-022-03012-9
Organ, C. L., Otsuka, H., Bhushan, S., Wang, Z., Bradley, J., Trivedi, R., ... & Lefer, D. J. (2016). Choline diet and its gut microbe–derived metabolite, trimethylamine N-oxide, exacerbate pressure overload–induced heart failure. Circulation: Heart Failure, 9(1), e002314. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002314
Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., ... & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in immunology, 10, 277. https://doi.org/10.3389/fimmu.2019.00277
Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., ... & Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature medicine, 23(1), 107-113. http://dx.doi.org/10.1038/nm.4236
Relman, D. A. (2020). Thinking about the microbiome as a causal factor in human health and disease: philosophical and experimental considerations. Current opinion in microbiology, 54, 119-126. https://doi.org/10.1016/j.mib.2020.01.018
Roberts, A. B., Gu, X., Buffa, J. A., Hurd, A. G., Wang, Z., Zhu, W., ... & Hazen, S. L. (2018). Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nature medicine, 24(9), 1407-1417. https://doi.org/10.1038/s41591-018-0128-1
Romano, K. A., Vivas, E. I., Amador-Noguez, D., & Rey, F. E. (2015). Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio, 6(2), 10-1128. https://doi.org/10.1128/mbio.02481-14
Saito, Y., Sato, T., Nomoto, K., & Tsuji, H. (2018). Identification of phenol-and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS microbiology ecology, 94(9), fiy125. https://doi.org/10.1093/femsec/fiy125
Sampaio-Maia, Á., Simões-Silva, Á., Pestana, Á., Araujo, R., & Soares-Silva, I. J. (2016). The role of the gut microbiome on chronic kidney disease. Advances in Applied Microbiology, 96, 65-94. https://doi.org/10.1016/bs.aambs.2016.06.002
Skye, S. M., Zhu, W., Romano, K. A., Guo, C. J., Wang, Z., Jia, X., ... & Hazen, S. L. (2018). Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circulation research, 123(10), 1164-1176. https://doi.org/10.1161/CIRCRESAHA.118.313142
Smits, L. P., Bouter, K. E., De Vos, W. M., Borody, T. J., & Nieuwdorp, M. (2013). Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 145(5), 946-953. https://doi.org/10.1053/j.gastro.2013.08.058
Swanson, K. S., Gibson, G. R., Hutkins, R., Reimer, R. A., Reid, G., Verbeke, K., ... & Sanders, M. E. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature reviews Gastroenterology & hepatology, 17(11), 687-701. https://doi.org/10.1038/s41575-020-0344-2
Tamanai-Shacoori, Z., Smida, I., Bousarghin, L., Loreal, O., Meuric, V., Fong, S. B., ... & Jolivet-Gougeon, A. (2017). Roseburia spp.: a marker of health?. Future microbiology, 12(2), 157-170. https://doi.org/10.2217/fmb-2016-0130
Tang, W. W., Li, D. Y., & Hazen, S. L. (2019). Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 16(3), 137-154. https://doi.org/10.1038/s41569-018-0108-7
Tilg, H., Zmora, N., Adolph, T. E., & Elinav, E. (2020). The intestinal microbiota fuelling metabolic inflammation. Nature Reviews Immunology, 20(1), 40-54. https://doi.org/10.1038/s41577-019-0198-4
Tonucci, L. B., Dos Santos, K. M. O., de Oliveira, L. L., Ribeiro, S. M. R., & Martino, H. S. D. (2017). Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clinical nutrition, 36(1), 85-92. https://doi.org/10.1016/j.clnu.2015.11.011
Van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E. G., de Vos, W. M., ... & Keller, J. J. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. New England Journal of Medicine, 368(5), 407-415. DOI: 10.1056/NEJMoa1205037
Vital, M., Karch, A., & Pieper, D. H. (2017). Colonic butyrate-producing communities in humans: an overview using omics data. Msystems, 2(6), 10-1128. https://doi.org/10.1128/msystems.00130-17
Wu, I. W., Lin, C. Y., Chang, L. C., Lee, C. C., Chiu, C. Y., Hsu, H. J., ... & Su, S. C. (2020). Gut microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease: discovery and validation study. International journal of biological sciences, 16(3), 420. https://doi.org/10.7150/ijbs.37421
Wu, W., Kaicen, W., Bian, X., Yang, L., Ding, S., Li, Y., ... & Li, L. (2023). Akkermansia muciniphila alleviates high‐fat‐diet‐related metabolic‐associated fatty liver disease by modulating gut microbiota and bile acids. Microbial biotechnology, 16(10), 1924-1939. https://doi.org/10.1111/1751-7915.14293
Xiang, X., Peng, B., Liu, K., Wang, T., Ding, P., Li, H., ... & Ming, Y. (2023). Association between salivary microbiota and renal function in renal transplant patients during the perioperative period. Frontiers in Microbiology, 14, 1122101. https://doi.org/10.3389/fmicb.2023.1122101
Yu, E. W., Gao, L., Stastka, P., Cheney, M. C., Mahabamunuge, J., Torres Soto, M., ... & Hohmann, E. L. (2020). Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS medicine, 17(3), e1003051. https://doi.org/10.1371/journal.pmed.1003051
Zeevi, D., Korem, T., Godneva, A., Bar, N., Kurilshikov, A., Lotan-Pompan, M., ... & Segal, E. (2019). Structural variation in the gut microbiome associates with host health. Nature, 568(7750), 43-48. https://doi.org/10.1038/s41586-019-1065-y
Zeng, X., Li, X., Li, X., Wei, C., Shi, C., Hu, K., ... & Qian, P. (2023). Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood, 141(14), 1691-1707. https://doi.org/10.1182/blood.2022017514
Zhang, P. P., Li, L. L., Han, X., Li, Q. W., Zhang, X. H., Liu, J. J., & Wang, Y. (2020). Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice. Acta Pharmacologica Sinica, 41(5), 678-685. https://doi.org/10.1038/s41401-019-0330-9
Authors
Copyright (c) 2025 Najat Aljohani, Ahmed Aljohani, Nabil Abdullah Yahya Alamir, Mohammed Hussain Ali Al jarah, Kamal Ahmed Aljohani, Hamood Mohammed Hassan

This work is licensed under a Creative Commons Attribution 4.0 International License.
