Sustaining Operational Readiness by Microbial Resilience: A New Paradigm for Predictive and Preventive Disease in Austere Military Operating Environments
Abstract
Background: Military personnel face extreme physical and psychological stressors that disrupt the human microbiome, leading to dysbiosis. This imbalance is increasingly linked to serious health issues—including infectious diseases, skin and soft tissue infections (SSTIs), and mental health disorders—that directly compromise operational readiness.
Aim: This review synthesizes evidence from 2014 to 2024 on the role of the gut and skin microbiomes in soldier health. It further aims to outline a collaborative framework where nursing, laboratory, and radiological medicine are integral to the predictive and preventive application of microbiome science.
Methods: We conducted a narrative review of the scientific literature, examining foundational research on dysbiosis and evaluating intervention studies in military and comparable high-stress populations.
Results: Pre-deployment gut and skin microbiome profiles can predict vulnerability to diarrheal disease, SSTIs, and stress-induced mental health changes. Probiotic, prebiotic, and synbiotic interventions show promise in maintaining microbial homeostasis. The successful implementation of these strategies hinges on a multidisciplinary team: nursing for patient-centered monitoring and education, laboratory medicine for robust field and in-garrison diagnostics, and radiology for advanced imaging to rule out non-microbiome-related pathologies and assess systemic inflammation.
Conclusion: The integration of microbiome analysis into Force Health Protection represents a paradigm shift toward anticipatory, individualized medicine. Nursing, laboratory, and radiological medicine are not supportive but central to executing this vision, ensuring that microbiome science translates into tangible health benefits for warfighters in austere operating environments.
Full text article
References
Aamot, H. V., Eskonsipo, P. K. J., Jørgensen, S. B., & Blomfeldt, A. (2018). Staphylococcus aureus colonization during military service: a prospective cohort study. Clinical Microbiology and Infection, 24(7), 744-748. https://doi.org/10.1016/j.cmi.2017.10.012
Bae, J. M. (2018). Prophylactic efficacy of probiotics on travelers’ diarrhea: an adaptive meta-analysis of randomized controlled trials. Epidemiology and health, 40, e2018043. https://doi.org/10.4178/epih.e2018043
Banik, S. P., Sehgal, S., Ghosh, R. B., & Das, A. (2022). Impact of the gut microbiome on human health and diseases. In Microbiome, Immunity, Digestive Health and Nutrition (pp. 25-40). Academic Press. https://doi.org/10.1016/B978-0-12-822238-6.00026-1
Bremner, J. D., Moazzami, K., Wittbrodt, M. T., Nye, J. A., Lima, B. B., Gillespie, C. F., ... & Vaccarino, V. (2020). Diet, stress and mental health. Nutrients, 12(8), 2428. https://doi.org/10.3390/nu12082428
Brenner, L. A., Hoisington, A. J., Stearns-Yoder, K. A., Stamper, C. E., Heinze, J. D., Postolache, T. T., ... & Lowry, C. A. (2018). Military-related exposures, social determinants of health, and dysbiosis: The United States-Veteran Microbiome Project (US-VMP). Frontiers in cellular and infection microbiology, 8, 400. https://doi.org/10.3389/fcimb.2018.00400
Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16(3), 143-155. https://doi.org/10.1038/nrmicro.2017.157
Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., ... & Bork, P. (2017). Towards standards for human fecal sample processing in metagenomic studies. Nature biotechnology, 35(11), 1069-1076. https://doi.org/10.1038/nbt.3960
Creasy, H. H., Felix, V., Aluvathingal, J., Crabtree, J., Ifeonu, O., Matsumura, J., ... & White, O. (2021). HMPDACC: a Human Microbiome Project Multi-omic data resource. Nucleic acids research, 49(D1), D734-D742. https://doi.org/10.1093/nar/gkaa996
Cryan, J. F., O'Riordan, K. J., Cowan, C. S., Sandhu, K. V., Bastiaanssen, T. F., Boehme, M., ... & Dinan, T. G. (2019). The microbiota-gut-brain axis. Physiological reviews, 99(4), 1877-2013. https://doi.org/10.1152/physrev.00018.2018
Ellis, M. W., Hospenthal, D. R., Dooley, D. P., Gray, P. J., & Murray, C. K. (2004). Natural history of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in soldiers. Clinical Infectious Diseases, 39(7), 971-979. https://doi.org/10.1086/423965
Hill, C. (2021). Microbiome and infection: a case for “selective depletion”. Annals of Nutrition and Metabolism, 77(Suppl. 3), 4-9. https://doi.org/10.1159/000516399
Ho, Y. N., Chen, Y. L., & Liu, D. Y. (2021). Portable and rapid sequencing device with microbial Community-Guided culture strategies for precious field and environmental samples. Msystems, 6(4), 10-1128. https://doi.org/10.1128/msystems.00748-21
Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes, 8(2), 172-184. https://doi.org/10.1080/19490976.2017.1290756
Hoy, D. G., Smith, E., Cross, M., Sanchez-Riera, L., Blyth, F. M., Buchbinder, R., ... & March, L. M. (2015). Reflecting on the global burden of musculoskeletal conditions: lessons learnt from the global burden of disease 2010 study and the next steps forward. Annals of the rheumatic diseases, 74(1), 4-7. https://doi.org/10.1136/annrheumdis-2014-205393
Integrative, H. M. P., Proctor, L. M., Creasy, H. H., Fettweis, J. M., Lloyd-Price, J., Mahurkar, A., ... & Huttenhower, C. (2019). The integrative human microbiome project. Nature, 569(7758), 641-648. doi:10.1038/s41586-019-1238-8
Janek, D., Zipperer, A., Kulik, A., Krismer, B., & Peschel, A. (2016). High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLoS pathogens, 12(8), e1005812. https://doi.org/10.1371/journal.ppat.1005812
Jo, J. H., Kennedy, E. A., & Kong, H. H. (2017). Topographical and physiological differences of the skin mycobiome in health and disease. Virulence, 8(3), 324-333. https://doi.org/10.1080/21505594.2016.1249093
Karl, J. P., Margolis, L. M., Madslien, E. H., Murphy, N. E., Castellani, J. W., Gundersen, Y., ... & Pasiakos, S. M. (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312(6), G559-G571. doi:10.1152/ajpgi.00066.201
Kessler, R. C., Heeringa, S. G., Stein, M. B., Colpe, L. J., Fullerton, C. S., Hwang, I., ... & Army STARRS Collaborators. (2014). Thirty-day prevalence of DSM-IV mental disorders among nondeployed soldiers in the US Army: results from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA psychiatry, 71(5), 504-513. doi:10.1001/jamapsychiatry.2014.28
King, S., Glanville, J., Sanders, M. E., Fitzgerald, A., & Varley, D. (2014). Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis. British Journal of Nutrition, 112(1), 41-54. doi:10.1017/S0007114514000075
Luczynski, P., McVey Neufeld, K. A., Oriach, C. S., Clarke, G., Dinan, T. G., & Cryan, J. F. (2016). Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. International Journal of Neuropsychopharmacology, 19(8), pyw020. https://doi.org/10.1093/ijnp/pyw020
Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., ... & Cazaubiel, J. M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British journal of nutrition, 105(5), 755-764. doi:10.1017/S0007114510004319
Molina-Torres, G., Rodriguez-Arrastia, M., Roman, P., Sanchez-Labraca, N., & Cardona, D. (2019). Stress and the gut microbiota-brain axis. Behavioural pharmacology, 30(2 and 3), 187-200. DOI: 10.1097/FBP.0000000000000478
Na-Na, Z. H. A. N. G., Yun-Sheng, Y. A. N. G., & Zi-Kai, W. A. N. G. (2021). Research status of gut microbiota and stress and its application in military stress. Jie Fang Jun Yi Xue Za Zhi, 46(9), 871. DOI:10.11855/j.issn.0577-7402.2021.09.05
Ogyu, K., Kubo, K., Noda, Y., Iwata, Y., Tsugawa, S., Omura, Y., ... & Nakajima, S. (2018). Kynurenine pathway in depression: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 90, 16-25. https://doi.org/10.1016/j.neubiorev.2018.03.023
Pop, M., Walker, A. W., Paulson, J., Lindsay, B., Antonio, M., Hossain, M. A., ... & Stine, O. C. (2014). Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome biology, 15(6), R76. https://doi.org/10.1186/gb-2014-15-6-r76
Schmidt, K., Cowen, P. J., Harmer, C. J., Tzortzis, G., Errington, S., & Burnet, P. W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793-1801. https://doi.org/10.1007/s00213-014-3810-0
So, D., Whelan, K., Rossi, M., Morrison, M., Holtmann, G., Kelly, J. T., ... & Campbell, K. L. (2018). Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. The American journal of clinical nutrition, 107(6), 965-983. https://doi.org/10.1093/ajcn/nqy041
Sorbara, M. T., & Pamer, E. G. (2019). Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal immunology, 12(1), 1-9. https://doi.org/10.1038/s41385-018-0053-0
Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E. F., Wang, J., Tito, R. Y., ... & Raes, J. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nature microbiology, 4(4), 623-632. https://doi.org/10.1038/s41564-018-0337-x
Vonaesch, P., Anderson, M., & Sansonetti, P. J. (2018). Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS microbiology reviews, 42(3), 273-292. https://doi.org/10.1093/femsre/fuy003
Yoon, Y. K., Moon, C., Kim, J., Heo, S. T., Lee, M. S., Lee, S., ... & Korean Society of Infectious Diseases. (2022). Korean guidelines for use of antibiotics for intra-abdominal infections in adults. Infection & Chemotherapy, 54(4), 812. https://doi.org/10.3947/ic.2022.0156
Zhao, Y., Liu, J., Hao, W., Zhu, H., Liang, N., He, Z., ... & Chen, Z. Y. (2017). Structure-specific effects of short-chain fatty acids on plasma cholesterol concentration in male Syrian hamsters. Journal of agricultural and food chemistry, 65(50), 10984-10992. https://doi.org/10.1021/acs.jafc.7b04666
Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., ... & Elinav, E. (2018). Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell, 174(6), 1388-1405. https://doi.org/10.1016/j.cell.2018.08.041
Authors
Copyright (c) 2024 Misfer Abdullah Saeed Alhattan, Abdullah Dafer Alamri, Abdullah Mohmmed Ali Alqahtani, Mushabab Mohammed Saeed Alsuhail , SHAKER MOFAREH FAQEEH, Thamir Fahad Saleh Bin Nassar, Khalid Hamad Mohammed Alsalum, Hanan Theeb Hezam Alaklabi, Fatimah Madani Hadi Abu Taleb, Fahad Awad Saleh Alshan, Rashed Shaman Aldhofiyan, Yahya Mousa Haltani, Azhar Haider Alqaseer

This work is licensed under a Creative Commons Attribution 4.0 International License.