The Progress in Imaging Technologies and Implications for Nursing Practice: A Systematic Review

Mohammad Abdrabalhabeeb Salm Lahmadi (1) , Fahad Mohmmed Saead Alqhtani (2) , Suad Mubarak Mohammed   Aldossary (3) , Saleh Ashway Nahar Alshammari (4) , Hisham Saleh   Zidan (5) , Khaled Lafi Mansi Al Dhafiri (6) , Abdallah Saad Said Aldosery (7) , Badrea Asri Alenazy (8) , Hussain Kadhem S Al Shuwaish (9) , Anwar Mohammed Alsharedi (10) , Nawal Ali Ali Awaji (11) , Fahad Obaidallah Ataallah Alreshidi (12)
(1) Riyadh First Health Cluster, Ministry of Health, Saudi Arabia,
(2) The First Health Cluster In Riyadh, Tuwaiq General Health Center, Ministry of Health, Saudi Arabia,
(3) The First Health Cluster In Riyadh - Wadi Aldawasir General Hospital, Ministry of Health, Saudi Arabia,
(4) Saudi Red Crescent Authority, Saudi Arabia,
(5) Jazan Health Cluster, Ministry of Health, Saudi Arabia,
(6) Mustashfaa Alrieayat Almadida, Ministry of Health, Saudi Arabia,
(7) Long Term Care Hospital , Ministry of Health, Saudi Arabia,
(8) Al-Mulaida Health Center , Ministry of Health, Saudi Arabia,
(9) Eye City Hospital , Ministry of Health, Saudi Arabia,
(10) Prince Saud Bin Jalawi Hospital , Ministry of Health, Saudi Arabia,
(11) Phc Mahaliyah Jazan, Ministry of Health, Saudi Arabia,
(12) Uyun Aljawa Hospital, Ministry of Health, Saudi Arabia

Abstract

Background: The recent years have seen revolutionary advancements in medical imaging technologies, including artificial intelligence (AI), point-of-care ultrasound (POCUS), and hybrid imaging modalities like PET/MRI. These technologies have transformed diagnostic and therapeutic interventions. These technologies provide unprecedented functional and molecular information, with new implications for clinical care beyond traditional radiology. Aim: The aim of this review is to synthesize the literature from 2015 through 2025 to explore how these imaging technology advances are redefining nursing roles, responsibilities, and competencies. Methods: A Systematic literature review from 2015 through 2025 was conducted. The reviews were evaluated to assess the implications of the emerging imaging technologies for nursing practice within various clinical settings. Results: The outcome reflects a paradigm change for the nursing practice from a passive taker of imaging data to an active participant in the imaging cycle. Key implications are the increased responsibility in patient preparation for complex scans, intra-procedural surveillance, bedside data interpretation by POCUS, and the management of clinical alerts based on AI. Such development involves significant educational demands and ethical concerns of data privacy and accountability of algorithms. Conclusion: Advanced imaging technologies are irreversibly transforming nursing practice, demanding an innovative approach. To ensure patient safety and optimal outcomes, the profession must develop standardized curricula for education, foster robust interprofessional relationships, and establish explicit competency frameworks and policies to support nurses in this high-technology practice environment. 

Full text article

Generated from XML file

References

Abdu Asiri, B. A., Almutairi, R. M., Alfadhel, R. M., hawsawi, N. N. A., Faqeehi, S. M., & Alshammari, E. M. (2025). Technology-Driven Nursing Interventions to Support Telehealth in Cardiac Primary Care. Saudi Journal of Medicine and Public Health, *2*(2), 137–146. https://doi.org/10.64483/jmph-67

Abdul, A. B., Sheela, M., Catherine, H., Rob, A., Faulkner, M., Mpanda, M., & Geofrey, S. (2022). Effect and value of integrating interprofessional education in radiation treatment planning; a systematic review. Journal of Medical Imaging and Radiation Sciences, 53(4), S25-S26. https://doi.org/10.1016/j.jmir.2022.10.085

Al-Ibraheem, A., Zimmermann, R., Abdlkadir, A. S., & Herrmann, K. (2024, July). Radiotheranostics global market and future developments. In Seminars in Nuclear Medicine (Vol. 54, No. 4, pp. 622-633). WB Saunders. https://doi.org/10.1053/j.semnuclmed.2024.02.003

Almotairi, S. H. (2024). Recent Advances and Innovations in Optical Coherence Tomography: Transforming Diagnosis and Management of Retinal Diseases. Saudi Journal of Medicine and Public Health, *1*(1), 1–7. Retrieved from https://saudijmph.com/index.php/pub/article/view/12

Al Mohammad, B., Aldaradkeh, A., Gharaibeh, M., & Reed, W. (2024). Assessing radiologists’ and radiographers’ perceptions on artificial intelligence integration: opportunities and challenges. British Journal of Radiology, 97(1156), 763-769. https://doi.org/10.1093/bjr/tqae022

Alnaji, I. A. J., & Alkhaldi, A. S. M. (2024). The Integral Role of Nursing Informatics in Enhancing Patient Outcomes through the Integration of Health Information Systems in Clinical Practice: Review. Saudi Journal of Medicine and Public Health, *1*(1), 8–15. https://doi.org/10.64483/jmph-15

Alqahtani, F. F. (2023). SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison. Saudi Pharmaceutical Journal, 31(2), 312-328. https://doi.org/10.1016/j.jsps.2022.12.013

Angerilli, V., Galuppini, F., Pagni, F., Fusco, N., Malapelle, U., & Fassan, M. (2021). The role of the pathologist in the next-generation era of tumor molecular characterization. Diagnostics, 11(2), 339. https://doi.org/10.3390/diagnostics11020339

Farjah, F., Monsell, S. E., Greenlee, R. T., Gould, M. K., Smith-Bindman, R., Banegas, M. P., ... & Buist, D. S. (2023). Patient and nodule characteristics associated with a lung cancer diagnosis among individuals with incidentally detected lung nodules. Chest, 163(3), 719-730. https://doi.org/10.1016/j.chest.2022.09.030

Furman, A. A., & Hsu, W. K. (2021). Augmented reality (AR) in orthopedics: current applications and future directions. Current reviews in musculoskeletal medicine, 14(6), 397-405. https://doi.org/10.1007/s12178-021-09728-1

Güneş, Y. C., & Cesur, T. (2024). Accuracy of large language models in ACR manual on contrast media-related questions. Academic Radiology, 31(7), 3074-3077.

Hanalioglu, S., Bahadir, S., Ozak, A. C., Yangi, K., Mignucci-Jiménez, G., Gurses, M. E., ... & Preul, M. C. (2024). Ultrahigh-resolution 7-Tesla anatomic magnetic resonance imaging and diffusion tensor imaging of ex vivo formalin-fixed human brainstem-cerebellum complex. Frontiers in human neuroscience, 18, 1484431. https://doi.org/10.3389/fnhum.2024.1484431

Hasan, T. F., Rabinstein, A. A., Middlebrooks, E. H., Haranhalli, N., Silliman, S. L., Meschia, J. F., & Tawk, R. G. (2018, April). Diagnosis and management of acute ischemic stroke. In Mayo Clinic Proceedings (Vol. 93, No. 4, pp. 523-538). Elsevier. https://doi.org/10.1016/j.mayocp.2018.02.013

Hwang, E. J., Lee, J. H., Kim, J. H., Lim, W. H., Goo, J. M., & Park, C. M. (2021). Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study. BMC Pulmonary Medicine, 21(1), 406. https://doi.org/10.1186/s12890-021-01768-0

Jackson, A., Pathak, R., deSouza, N. M., Liu, Y., Jacobs, B. K., Litiere, S., ... & Waterton, J. C. (2023). MRI apparent diffusion coefficient (ADC) as a biomarker of tumour response: Imaging-pathology correlation in patients with hepatic metastases from colorectal cancer (EORTC 1423). Cancers, 15(14), 3580. https://doi.org/10.3390/cancers15143580

Li, M., Jiang, Y., Zhang, Y., & Zhu, H. (2023). Medical image analysis using deep learning algorithms. Frontiers in public health, 11, 1273253. https://doi.org/10.3389/fpubh.2023.1273253

Lokmic-Tomkins, Z., Choo, D., Foley, P., Dix, S., Wong, P., & Brand, G. (2022). Pre-registration nursing students' perceptions of their baseline digital literacy and what it means for education: a prospective COHORT survey study. Nurse Education Today, 111, 105308. https://doi.org/10.1016/j.nedt.2022.105308

McCollough, C. H., Rajendran, K., Baffour, F. I., Diehn, F. E., Ferrero, A., Glazebrook, K. N., ... & Fletcher, J. G. (2023). Clinical applications of photon counting detector CT. European radiology, 33(8), 5309-5320. https://doi.org/10.1007/s00330-023-09596-y

Mongodi, S., Bonomi, F., Vaschetto, R., Robba, C., Salve, G., Volta, C. A., ... & Mojoli, F. (2022). Point-of-care ultrasound training for residents in anaesthesia and critical care: results of a national survey comparing residents and training program directors’ perspectives. BMC Medical Education, 22(1), 647. https://doi.org/10.1186/s12909-022-03708-w

Nasiri, R., Jalil, M. K., Gaspar, V. I., Perez, A. S. F., Nguyen, H. T. M., Khan, S., ... & Pratx, G. (2025). A lung tumor-on-a-chip model recapitulates the effect of hypoxia on radiotherapy response and FDG-PET imaging. Lab on a Chip. https://doi.org/10.1039/D5LC00373C

Obuchowicz, R., Strzelecki, M., & Piórkowski, A. (2024). Clinical applications of artificial intelligence in medical imaging and image processing—A review. Cancers, 16(10), 1870. https://doi.org/10.3390/cancers16101870

Patel, M. D., Horrow, M. M., Kamaya, A., Frates, M. C., Dahiya, N., Golding, L., ... & Middleton, W. D. (2021). Mapping the ultrasound landscape to define point-of-care ultrasound and diagnostic ultrasound: a proposal from the Society of Radiologists in Ultrasound and ACR Commission on Ultrasound. Journal of the American College of Radiology, 18(1), 42-52. https://doi.org/10.1016/j.jacr.2020.09.013

Pesapane, F., Tantrige, P., Rotili, A., Nicosia, L., Penco, S., Bozzini, A. C., ... & Cassano, E. (2023). Disparities in breast cancer diagnostics: how radiologists can level the inequalities. Cancers, 16(1), 130. https://doi.org/10.3390/cancers16010130

Preuss, K., Thach, N., Liang, X., Baine, M., Chen, J., Zhang, C., ... & Zheng, D. (2022). Using quantitative imaging for personalized medicine in pancreatic cancer: a review of radiomics and deep learning applications. Cancers, 14(7), 1654. https://doi.org/10.3390/cancers14071654

Rocca, E., Zanza, C., Longhitano, Y., Piccolella, F., Romenskaya, T., Racca, F., ... & Mongodi, S. (2023). Lung ultrasound in critical care and emergency medicine: clinical review. Advances in respiratory medicine, 91(3), 203-223. https://doi.org/10.3390/arm91030017

Sheth, K. N., Mazurek, M. H., Yuen, M. M., Cahn, B. A., Shah, J. T., Ward, A., ... & Kimberly, W. T. (2021). Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA neurology, 78(1), 41-47. doi:10.1001/jamaneurol.2020.3263

Shubayr, N. (2024). Evaluation of emergency nurses’ knowledge of medical response in nuclear and radiological emergencies: a cross-sectional study. BMC nursing, 23(1), 802. https://doi.org/10.1186/s12912-024-02451-5

Sindhu, T. S., Kumaratharan, N., & Anandan, P. (2022, April). A review of magnetic resonance imaging and its clinical applications. In 2022 6th International Conference on Devices, Circuits and Systems (ICDCS) (pp. 38-42). IEEE. doi: 10.1109/ICDCS54290.2022.9780834

Su, H., Wang, N., Li, Z., Dong, X., Chen, G., & Cao, L. (2025). The Experiences of Critical Care Nurses Implementing Point‐Of‐Care Ultrasound: A Qualitative Study. Nursing in Critical Care, 30(4), e70104. https://doi.org/10.1111/nicc.70104

Thota, R. S., Ramkiran, S., & Ramanjulu, R. (2023). Time to FOCUS-‘Palliative Medicine Point-of-Care Ultrasound’. Indian Journal of Palliative Care, 29(1), 36. https://doi.org/10.25259/IJPC_274_2022

Tian, Y., Zhong, Z., Dougarem, D., & Sun, L. (2024). The ultrasound-guided versus standard technique for peripheral intravenous catheter placement by nurses: A systematic review and meta-analysis. Heliyon, 10(9). https://doi.org/10.1016/j.heliyon.2024.e30582

Van Nijnatten, T. J. A., Payne, N. R., Hickman, S. E., Ashrafian, H., & Gilbert, F. J. (2023). Overview of trials on artificial intelligence algorithms in breast cancer screening–A roadmap for international evaluation and implementation. European journal of radiology, 167, 111087. https://doi.org/10.1016/j.ejrad.2023.111087

Zaidi, H., & El Naqa, I. (2021). Quantitative molecular positron emission tomography imaging using advanced deep learning techniques. Annual review of biomedical engineering, 23(1), 249-276. https://doi.org/10.1146/annurev-bioeng-082420-020343

Zhang, C., Yan, K., Fu, C., Peng, H., Hawker, C. J., & Whittaker, A. K. (2021). Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chemical reviews, 122(1), 167-208. https://doi.org/10.1021/acs.chemrev.1c00632

Authors

Mohammad Abdrabalhabeeb Salm Lahmadi
Masl1423@Gmail.Com (Primary Contact)
Fahad Mohmmed Saead Alqhtani
Suad Mubarak Mohammed   Aldossary
Saleh Ashway Nahar Alshammari
Hisham Saleh   Zidan
Khaled Lafi Mansi Al Dhafiri
Abdallah Saad Said Aldosery
Badrea Asri Alenazy
Hussain Kadhem S Al Shuwaish
Anwar Mohammed Alsharedi
Nawal Ali Ali Awaji
Fahad Obaidallah Ataallah Alreshidi
Lahmadi, M. A. S., Alqhtani, F. M. S., Aldossary,S.M.M. , Alshammari, S. A. N., Zidan,H.S. , Dhafiri, K. L. M. A., … Alreshidi, F. O. A. (2025). The Progress in Imaging Technologies and Implications for Nursing Practice: A Systematic Review. Saudi Journal of Medicine and Public Health, 2(2), 560–567. https://doi.org/10.64483/jmph-158

Article Details

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)