Precision Medicine in Pediatric Nephrology: From Monogenic Diseases to Personalized Immunosuppression

Maryam Zein Alabdin (1), Areej Adel Sheerah (1), Ashwaq Muhammad Alyazeedi (1), Hayah Mohammed Sulayli (1), Rahaf Mohammed Mokhtar Slaghour (1), Lama Khalid Abdulrahman Alhazmi (1), Yafeah Ali Hussain Al Rebeh (2), Neda Ali Abdullah Aldawood (2)
(1) East Jeddah Hospital,Ministry of Health, Saudi Arabia,
(2) Qatif Health Network,Ministry of Health, Saudi Arabia

Abstract

Background: Pediatric nephrology is moving away from empirical, one-size-fits-all therapeutic strategies towards a precision medicine model. This is propelled by advanced genomic technologies that have uncovered the monogenic cause of many childhood kidney diseases and a recognition of inter-individual variation in drug response.


Aim: The purpose of this review is to summarize the present status and future prospects of precision medicine in pediatric nephrology. Two main pillars are highlighted: the use of genetic diagnosis in monogenic disease and the individualization of immunosuppressive treatment of acquired diseases.


Methods: A comprehensive review of the literature was conducted, scrutinizing peer-reviewed articles between 2010 and 2024. The synthesis integrates evidence from clinical trials, genomic studies, pharmacogenetic research, and emerging evidence on novel biomarkers to provide a composite overview for the practicing pediatric nephrologist.


Results: Genetic diagnosis, particularly through next-generation sequencing, now makes definitive diagnoses in a large proportion of steroid-resistant nephrotic syndrome (SRNS), congenital anomalies of the kidney and urinary tract (CAKUT), and ciliopathies. This directly impacts clinical care by ending diagnostic odysseys, informing prognosis and recurrence risk, and preventing futile immunosuppression. Meanwhile, pharmacogenomics, i.e., CYP3A5 genotyping to inform tacrolimus dosing, and novel biomarkers are enabling more personalized and potent immunosuppressive regimens with reduced toxicity.


Conclusion: Precision medicine is already transforming patient management in pediatric nephrology by enabling targeted diagnostics, prognostication, and therapy. While challenges surrounding accessibility, affordability, and the interpretation of genetic data remain, the application of these approaches is instrumental in advancing the field towards more effective and personalized patient management.

Full text article

Generated from XML file

References

Anders, H. J., & Fogo, A. B. (2014, July). Immunopathology of lupus nephritis. In Seminars in immunopathology (Vol. 36, No. 4, pp. 443-459). Berlin/Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/s00281-013-0413-5

Banchereau, R., Hong, S., Cantarel, B., Baldwin, N., Baisch, J., Edens, M., ... & Pascual, V. (2016). Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell, 165(3), 551-565. https://doi.org/10.1016/j.cell.2016.03.008

Barutta, F., Bellini, S., & Gruden, G. (2022). Mechanisms of podocyte injury and implications for diabetic nephropathy. Clinical Science, 136(7), 493-520. https://doi.org/10.1042/CS20210625

Benjamin, E. R., Della Valle, M. C., Wu, X., Katz, E., Pruthi, F., Bond, S., ... & Lockhart, D. J. (2017). The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genetics in Medicine, 19(4), 430-438. https://doi.org/10.1038/gim.2016.122

Birdwell, K. A., Grady, B., Choi, L., Xu, H., Bian, A., Denny, J. C., ... & Haas, D. W. (2012). The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenetics and genomics, 22(1), 32-42. DOI: 10.1097/FPC.0b013e32834e1641

Birdwell, K. A., & Chung, C. P. (2017). The potential of pharmacogenomics to advance kidney disease treatment. Clinical Journal of the American Society of Nephrology, 12(7), 1035-1037. DOI: 10.2215/CJN.05170517

Bockenhauer, D., & Jaureguiberry, G. (2016). HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatric Nephrology, 31(5), 707-714. https://doi.org/10.1007/s00467-015-3142-2

Brancati, F., Dallapiccola, B., & Valente, E. M. (2010). Joubert Syndrome and related disorders. Orphanet journal of rare diseases, 5(1), 20. https://doi.org/10.1186/1750-1172-5-20

Braun, D. A., & Hildebrandt, F. (2017). Ciliopathies. Cold Spring Harbor perspectives in biology, 9(3), a028191. doi: 10.1101/cshperspect.a028191

Dvela-Levitt, M., Kost-Alimova, M., Emani, M., Kohnert, E., Thompson, R., Sidhom, E. H., ... & Greka, A. (2019). Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell, 178(3), 521-535. https://doi.org/10.1016/j.cell.2019.07.002

Gubler, M. C. (2011). Genetic testing in steroid-resistant nephrotic syndrome. Nature Reviews Nephrology, 7(8), 430-431. https://doi.org/10.1038/nrneph.2011.75

Kalia, S. S., Adelman, K., Bale, S. J., Chung, W. K., Eng, C., Evans, J. P., ... & Miller, D. T. (2017). Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2. 0): a policy statement of the American College of Medical Genetics and Genomics. Genetics in medicine, 19(2), 249-255. https://doi.org/10.1038/gim.2016.190

Kashtan, C. E. (2021). Alport syndrome: achieving early diagnosis and treatment. American Journal of Kidney Diseases, 77(2), 272-279. https://doi.org/10.1053/j.ajkd.2020.03.026

Kravets, I., & Mallipattu, S. K. (2020). The role of podocytes and podocyte-associated biomarkers in diagnosis and treatment of diabetic kidney disease. Journal of the Endocrine Society, 4(4), bvaa029. https://doi.org/10.1210/jendso/bvaa029

Manolio, T. A., Rowley, R., Williams, M. S., Roden, D., Ginsburg, G. S., Bult, C., ... & Green, E. D. (2019). Opportunities, resources, and techniques for implementing genomics in clinical care. The Lancet, 394(10197), 511-520. https://doi.org/10.1016/S0140-6736(19)31140-7

Nesterova, G., & Gahl, W. A. (2013). Cystinosis: the evolution of a treatable disease. Pediatric nephrology, 28(1), 51-59. https://doi.org/10.1007/s00467-012-2242-5

Nie, H., Chang, S., Li, Y., & Li, F. (2023). Biomarkers associated with drugs for the treatment of lupus nephritis. Biomolecules, 13(11), 1601. https://doi.org/10.3390/biom13111601

Noris, M., & Remuzzi, G. (2009). Atypical hemolytic–uremic syndrome. New England Journal of Medicine, 361(17), 1676-1687. DOI: 10.1056/NEJMra0902814

Pac, M., Krata, N., Moszczuk, B., Wyczałkowska-Tomasik, A., Kaleta, B., Foroncewicz, B., ... & Mucha, K. (2021). NR3C1 glucocorticoid receptor gene polymorphisms are associated with membranous and IgA nephropathies. Cells, 10(11), 3186. https://doi.org/10.3390/cells10113186

Parodis, I., & Houssiau, F. A. (2022). From sequential to combination and personalised therapy in lupus nephritis: moving towards a paradigm shift?. Annals of the rheumatic diseases, 81(1), 15-19. https://doi.org/10.1136/annrheumdis-2021-221270

Parvin, M. N., Aziz, M. A., Rabbi, S. N. I., Al-Mamun, M. M. A., Hanif, M., Islam, M. S., & Islam, M. S. (2021). Assessment of the link of ABCB1 and NR3C1 gene polymorphisms with the prednisolone resistance in pediatric nephrotic syndrome patients of Bangladesh: A genotype and haplotype approach. Journal of Advanced Research, 33, 141-151. https://doi.org/10.1016/j.jare.2021.02.001

Peek, J. L., & Wilson, M. H. (2023). Cell and gene therapy for kidney disease. Nature Reviews Nephrology, 19(7), 451-462. https://doi.org/10.1038/s41581-023-00702-3

Popejoy, A. B., & Fullerton, S. M. (2016). Genomics is failing on diversity. Nature, 538(7624), 161-164. https://doi.org/10.1038/538161a

Reichardt, S. D., Amouret, A., Muzzi, C., Vettorazzi, S., Tuckermann, J. P., Lühder, F., & Reichardt, H. M. (2021). The role of glucocorticoids in inflammatory diseases. Cells, 10(11), 2921. https://doi.org/10.3390/cells10112921

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., ... & Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine, 17(5), 405-423. https://doi.org/10.1038/gim.2015.30

Sadowski, C. E., Lovric, S., Ashraf, S., Pabst, W. L., Gee, H. Y., Kohl, S., ... & SRNS Study Group. (2015). A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. Journal of the American society of nephrology, 26(6), 1279-1289. DOI: 10.1681/ASN.2014050489

Sanna-Cherchi, S., Khan, K., Westland, R., Krithivasan, P., Fievet, L., Rasouly, H. M., ... & Gharavi, A. G. (2017). Exome-wide association study identifies GREB1L mutations in congenital kidney malformations. The American Journal of Human Genetics, 101(5), 789-802. https://doi.org/10.1016/j.ajhg.2017.09.018

Savige, J. (2014). Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. The Journal of physiology, 592(18), 4013-4023. https://doi.org/10.1113/jphysiol.2014.274449

Skrahin, A., Cheema, H. A., Hussain, M., Rana, N. N., Rehman, K. U., Kumar, R., ... & Skrahina, V. (2023). Secondary findings in a large Pakistani cohort tested with whole genome sequencing. Life Science Alliance, 6(3). DOI: 10.26508/lsa.202201673

Shuker, N., Bouamar, R., van Schaik, R. H., Clahsen‐van Groningen, M. C., Damman, J., Baan, C. C., ... & Hesselink, D. A. (2016). A randomized controlled trial comparing the efficacy of Cyp3a5 genotype‐based with body‐weight‐based tacrolimus dosing after living donor kidney transplantation. American Journal of Transplantation, 16(7), 2085-2096. https://doi.org/10.1111/ajt.13691

Stein, Q., Westemeyer, M., Darwish, T., Pitman, T., Hager, M., Tabriziani, H., ... & Hendricks, E. (2023). Genetic counseling in kidney disease: a perspective. Kidney Medicine, 5(7), 100668. https://doi.org/10.1016/j.xkme.2023.100668

Trautmann, A., Lipska-Ziętkiewicz, B. S., & Schaefer, F. (2018). Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet registry. Frontiers in pediatrics, 6, 200. https://doi.org/10.3389/fped.2018.00200

Van Der Ven, A. T., Connaughton, D. M., Ityel, H., Mann, N., Nakayama, M., Chen, J., ... & Hildebrandt, F. (2018). Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. Journal of the American Society of Nephrology, 29(9), 2348-2361. DOI: 10.1681/ASN.2017121265

Yung, S., & Chan, T. M. (2015). Mechanisms of kidney injury in lupus nephritis–the role of anti-dsDNA antibodies. Frontiers in immunology, 6, 475. https://doi.org/10.3389/fimmu.2015.00475

Authors

Maryam Zein Alabdin
Mzeinelabdin@moh.gov.sa (Primary Contact)
Areej Adel Sheerah
Ashwaq Muhammad Alyazeedi
Hayah Mohammed Sulayli
Rahaf Mohammed Mokhtar Slaghour
Lama Khalid Abdulrahman Alhazmi
Yafeah Ali Hussain Al Rebeh
Neda Ali Abdullah Aldawood
Alabdin, M. Z., Sheerah, A. A., Alyazeedi, A. M., Sulayli, H. M., Slaghour, R. M. M., Alhazmi, L. K. A., … Aldawood, N. A. A. (2024). Precision Medicine in Pediatric Nephrology: From Monogenic Diseases to Personalized Immunosuppression. Saudi Journal of Medicine and Public Health, 1(1), 512–517. https://doi.org/10.64483/jmph-154

Article Details

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.