The Interface of Nutrition and Immunity: An in-depth look at nutritional interventions for the oncology patient receiving immunotherapy
Abstract
Background: Immunotherapy, as immune checkpoint inhibitors (ICIs), has revolutionized oncology by taking advantage of the patient's native immune system to combat cancer. Although responses are heterogeneous, immune-related adverse events (irAEs) can limit treatment benefit and decrease quality of life. A growing appreciation is arising that host factors, including nutritional status and diet, play an important role in determining the immune response and tumor microenvironment.
Aim: The objective of this review is to provide an overview of the current evidence relating to nutritional strategies in cancer immunotherapy patients. It considers the ruinous role of malnutrition (cachexia) in clinical outcomes, reviews the mechanisms by which particular dietary components influence anti-tumor immunity and treatment side effects, and provides a model for the practical assessment and management of nutritional deficits.
Methods: A systematic review of the literature was conducted through the utilization of leading scientific databases (e.g., PubMed, Scopus, Web of Science) to identify preclinical, clinical, and review articles published up to 2024. Search terms were permutations of "immunotherapy," "immune checkpoint inhibitors," "nutrition," "diet," "cachexia," "microbiome," and "immune-related adverse events." The evidence was synthesized to provide a narrative review of the existing literature.
Results: There is evidence that indicates that sarcopenia and malnutrition have a close correlation with poorer efficacy of ICI and increased toxicity. Individual nutritional interventions are promising for modulating outcomes: adequate consumption of good-quality protein is crucial for the avoidance of muscle wasting and immune function maintenance; dietary fiber and omega-3 fatty acids exert anti-inflammatory effects and preserve a healthy gut microbiome; the Mediterranean diet and vegetarian dietary patterns are related to improved survival; and micronutrients like Vitamin D have a role in immune regulation. The gut microbiome is identified as a mediator between diet and immunotherapy response.
Conclusion: An active, individualized nutrition approach, emphasizing a whole-food, plant-based diet, adequate protein, specific micronutrients, and gut microbiome support, is very promising as an adjunctive strategy to enhance the efficacy and tolerability of immunotherapy. Further robust, prospective clinical trials are needed to solidify specific recommendations and integrate nutritional therapy into the standard armamentarium of immuno-oncology treatment.
Full text article
References
Argilés, J. M., Busquets, S., Stemmler, B., & López-Soriano, F. J. (2014). Cancer cachexia: understanding the molecular basis. Nature Reviews Cancer, 14(11), 754-762.https://doi.org/10.1038/nrc3829
Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10(9), 1203. https://doi.org/10.3390/nu10091203
Berger, A. M., Mooney, K., Alvarez-Perez, A., Breitbart, W. S., Carpenter, K. M., Cella, D., ... & Smith, C. (2015). Cancer-related fatigue, version 2.2015. Journal of the National Comprehensive Cancer Network, 13(8), 1012-1039. https://doi.org/10.6004/jnccn.2015.0122
Bolte, L. A., Lee, K. A., Björk, J. R., Leeming, E. R., Campmans-Kuijpers, M. J., De Haan, J. J., ... & Weersma, R. K. (2023). Association of a mediterranean diet with outcomes for patients treated with immune checkpoint blockade for advanced melanoma. JAMA oncology, 9(5), 705-709. doi:10.1001/jamaoncol.2022.7753
Bourke, C. D., Berkley, J. A., & Prendergast, A. J. (2016). Immune dysfunction as a cause and consequence of malnutrition. Trends in immunology, 37(6), 386-398. https://doi.org/10.1016/j.it.2016.04.003
Chandler, P. D., Chen, W. Y., Ajala, O. N., Hazra, A., Cook, N., Bubes, V., ... & VITAL Research Group. (2020). Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA network open, 3(11), e2025850-e2025850. doi:10.1001/jamanetworkopen.2020.25850
Cortellini, A., Bozzetti, F., Palumbo, P., Brocco, D., Di Marino, P., Tinari, N., ... & Porzio, G. (2020). Weighing the role of skeletal muscle mass and muscle density in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: a multicenter real-life study. Scientific reports, 10(1), 1456. https://doi.org/10.1038/s41598-020-58498-2
Davar, D., Dzutsev, A. K., McCulloch, J. A., Rodrigues, R. R., Chauvin, J. M., Morrison, R. M., ... & Zarour, H. M. (2021). Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science, 371(6529), 595-602. https://doi.org/10.1126/science.abf3363
Deutz, N. E., Bauer, J. M., Barazzoni, R., Biolo, G., Boirie, Y., Bosy-Westphal, A., ... & Calder, P. C. (2014). Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clinical nutrition, 33(6), 929-936. https://doi.org/10.1016/j.clnu.2014.04.007
Flint, T. R., Fearon, D. T., & Janowitz, T. (2017). Connecting the metabolic and immune responses to cancer. Trends in molecular medicine, 23(5), 451-464. https://doi.org/10.1016/j.molmed.2017.03.001
Fodil, M., Blanckaert, V., Ulmann, L., Mimouni, V., & Chénais, B. (2022). Contribution of n-3 long-chain polyunsaturated fatty acids to the prevention of breast cancer risk factors. International Journal of Environmental Research and Public Health, 19(13), 7936. https://doi.org/10.3390/ijerph19137936
Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., ... & Wargo, J. (2018). Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 359(6371), 97-103. https://doi.org/10.1126/science.aan4236
He, Y., Fu, L., Li, Y., Wang, W., Gong, M., Zhang, J., ... & Guo, X. (2021). Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell metabolism, 33(5), 988-1000. https://doi.org/10.1016/j.cmet.2021.03.002
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041
Lee, K. A., Luong, M. K., Shaw, H., Nathan, P., Bataille, V., & Spector, T. D. (2021). The gut microbiome: what the oncologist ought to know. British journal of cancer, 125(9), 1197-1209. https://doi.org/10.1038/s41416-021-01467-x
Lockwood, A. B., Klatka, K., Parker, B., & Benson, N. (2023). Administration and Scoring Errors on the Woodcock–Johnson IV Tests of Achievement: Before and During COVID-19. Journal of Psychoeducational Assessment, 41(5), 501-513. https://doi.org/10.1177/07342829231166725
Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., ... & Visekruna, A. (2019). The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature communications, 10(1), 760. https://doi.org/10.1038/s41467-019-08711-2
Mleczko‐Sanecka, K., & Silvestri, L. (2021). Cell‐type‐specific insights into iron regulatory processes. American Journal of Hematology, 96(1), 110-127. https://doi.org/10.1002/ajh.26001
Mondul, A. M., Weinstein, S. J., Layne, T. M., & Albanes, D. (2017). Vitamin D and cancer risk and mortality: state of the science, gaps, and challenges. Epidemiologic reviews, 39(1), 28-48. https://doi.org/10.1093/epirev/mxx005
Muscaritoli, M., Arends, J., Bachmann, P., Baracos, V., Barthelemy, N., Bertz, H., ... & Bischoff, S. C. (2021). ESPEN practical guideline: Clinical Nutrition in cancer. Clinical nutrition, 40(5), 2898-2913. https://doi.org/10.1016/j.clnu.2021.02.005
Munteanu, C., & Schwartz, B. (2022). The relationship between nutrition and the immune system. Frontiers in nutrition, 9, 1082500. https://doi.org/10.3389/fnut.2022.1082500
Penna, F., Ballarò, R., Beltrà, M., De Lucia, S., García Castillo, L., & Costelli, P. (2019). The skeletal muscle as an active player against cancer cachexia. Frontiers in physiology, 10, 41. https://doi.org/10.3389/fphys.2019.00041
Peterson, S. J., & Mozer, M. (2017). Differentiating sarcopenia and cachexia among patients with cancer. Nutrition in clinical practice, 32(1), 30-39. https://doi.org/10.1177/0884533616680354
Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune checkpoint blockade in cancer therapy. Journal of clinical oncology, 33(17), 1974-1982. https://doi.org/10.1200/JCO.2014.59.4358
Radzikowska, U., Rinaldi, A. O., Çelebi Sözener, Z., Karaguzel, D., Wojcik, M., Cypryk, K., ... & Sokolowska, M. (2019). The influence of dietary fatty acids on immune responses. Nutrients, 11(12), 2990. https://doi.org/10.3390/nu11122990
Ribas, A., & Wolchok, J. D. (2018). Cancer immunotherapy using checkpoint blockade. Science, 359(6382), 1350-1355. https://doi.org/10.1126/science.aar4060
Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P., Alou, M. T., Daillère, R., ... & Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 359(6371), 91-97. https://doi.org/10.1126/science.aan3706
Schwingshackl, L., & Hoffmann, G. (2014). Adherence to Mediterranean diet and risk of cancer: a systematic review and meta‐analysis of observational studies. International journal of cancer, 135(8), 1884-1897. https://doi.org/10.1002/ijc.28824
Shiroyama, T., Nagatomo, I., Koyama, S., Hirata, H., Nishida, S., Miyake, K., ... & Kumanogoh, A. (2019). Impact of sarcopenia in patients with advanced non–small cell lung cancer treated with PD-1 inhibitors: A preliminary retrospective study. Scientific reports, 9(1), 2447. https://doi.org/10.1038/s41598-019-39120-6
Spencer, C. N., McQuade, J. L., Gopalakrishnan, V., McCulloch, J. A., Vetizou, M., Cogdill, A. P., ... & Wargo, J. A. (2021). Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 374(6575), 1632-1640. https://doi.org/10.1126/science.aaz7015
Tang, L., Wang, J., Lin, N., Zhou, Y., He, W., Liu, J., & Ma, X. (2021). Immune checkpoint inhibitor-associated colitis: from mechanism to management. Frontiers in immunology, 12, 800879. https://doi.org/10.3389/fimmu.2021.800879
Torres, W., Pérez, J. L., Diaz, M. P., D’Marco, L., Checa-Ros, A., Carrasquero, R., ... & Bermudez, V. (2023). The role of specialized pro-resolving lipid mediators in inflammation-induced carcinogenesis. International Journal of Molecular Sciences, 24(16), 12623. https://doi.org/10.3390/ijms241612623
Weenink, B., French, P. J., Sillevis Smitt, P. A., Debets, R., & Geurts, M. (2020). Immunotherapy in glioblastoma: current shortcomings and future perspectives. Cancers, 12(3), 751. https://doi.org/10.3390/cancers12030751
Wessels, I., Maywald, M., & Rink, L. (2017). Zinc as a gatekeeper of immune function. Nutrients, 9(12), 1286. https://doi.org/10.3390/nu9121286
Authors
Copyright (c) 2025 Afaf Snitan Al-Otaibi, Reem Salem Alharbi, Nasra Jamaan Alanizi, Ohood Alhameedy Alanizi, Asma Fahad Alotaibi, Wejdan Abdulrahman Alshehri, Reham Mohammad Alsoulaimi, Muteb Nasser Alotabi, Fayiz Khalaf Alanazi, Majed khalid Aljarallah, Salma Ali khrami, Khulud Nayyaf Alotaibi, Manar Obaid Alanazi, Majed Battah Alshammari, Turki Saleh Alduhaim, Fahad Mohamed Alanazi, Jaber Ali Hassan Alshehri

This work is licensed under a Creative Commons Attribution 4.0 International License.