

Ghon Complex: Clinical Significance and Nursing Management-An Updated Review

Norah Ali Albishi ⁽¹⁾, Kalthom Yahya Bakar Abdullah ⁽¹⁾, Ashwaq Ruwayshid Alanazi ⁽¹⁾, Eman Ali Ahmad ⁽²⁾, Mai Mahdi Alshammari ⁽³⁾, Hamsaa Alhumaidi Alqahtani ⁽³⁾, Alanoud Mohammed ⁽⁴⁾, MISHARI ALMUTAIRI ⁽⁵⁾, Reem Mohammad Ali Alshehri ⁽⁶⁾, THALLAB ALMUTAIRI ⁽⁵⁾, Saud Faisal Almutairi ⁽⁵⁾, Safia Ibrahim Alfifi ⁽⁷⁾

(1) Al-Muzahimiyah General Hospital, Ministry of Health, Saudi Arabia,

(2) Al-Muzahimiyah Health Center, Riyadh, Ministry of Health, Saudi Arabia,

(3) Al-Muzahimiyah General Hospital, Al-Muzahimiyah, Ministry of Health, Saudi Arabia,

(4) Diriyah Hospital, Riyadh, Ministry of Health, Saudi Arabia,

(5) Al-Mithnab General Hospital, Ministry of Health, Saudi Arabia,

(6) Mohyle general hospital, Ministry of Health, Saudi Arabia,

(7) Saud Faisal Almutairi, Ministry of Health, Saudi Arabia

Abstract

Background: The Ghon complex represents the classic pathological and radiological hallmark of primary pulmonary tuberculosis (TB), reflecting the interaction between *Mycobacterium tuberculosis* and host immunity. Recognition of this entity remains clinically relevant, particularly for early diagnosis, infection control, and prevention of disease progression or transmission.

Aim: This review aims to examine the clinical significance of the Ghon complex and highlight nursing, allied health, and interprofessional roles in its detection, management, and monitoring.

Methods: An updated narrative review of radiological, histopathological, and clinical evidence regarding the Ghon complex was conducted, with emphasis on diagnostic approaches, nursing interventions, infection prevention measures, and interprofessional collaboration in tuberculosis care.

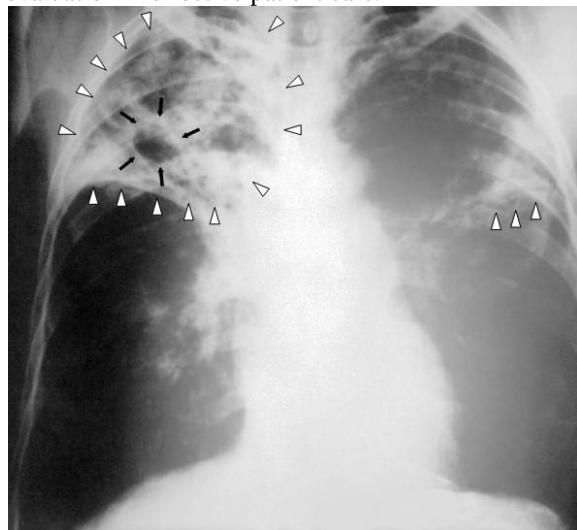
Results: The Ghon complex commonly presents as a subpleural parenchymal lesion with regional lymphadenopathy and may progress to latency, healing, or active disease. Radiographic findings are variable and may be absent in some cases, complicating diagnosis. Nurses play a pivotal role in early recognition, symptom screening, isolation initiation, patient education, treatment adherence, and long-term monitoring, thereby reducing nosocomial transmission and improving outcomes.

Conclusion: Understanding the Ghon complex supports timely diagnosis, effective tuberculosis management, and coordinated interprofessional care.

Keywords: Ghon complex; tuberculosis; nursing care; infection control; interprofessional collaboration.

Introduction

The Ghon complex, named after Austrian pathologist Anton Ghon (1866-1936), represents a cornerstone in the understanding of primary pulmonary tuberculosis (TB) caused by *Mycobacterium tuberculosis* [1]. Ghon's seminal work described the pathological hallmark of primary TB as a localized pulmonary lesion with involvement of regional lymph nodes, collectively termed the Ghon complex. In modern clinical practice, chest radiography serves as a principal tool for detecting primary pulmonary TB, revealing a spectrum of findings, including parenchymal abnormalities, lymphadenopathy, pleural effusion, and, in severe or disseminated cases, miliary tuberculosis. These manifestations may occur independently or in combination, with the primary lesion, or Ghon focus, and affected lymph nodes defining the Ghon complex [2][3]. Radiographically,


the Ghon complex is a clinically significant finding, although it is not pathognomonic for TB [1]. Lesions are typically subpleural, most frequently located in the upper segments of the lower lobes or the lower segments of the middle or upper lobes, though any lung region may be involved. Multiple complexes may coexist in a single patient. Autopsy studies demonstrate that a solitary Ghon complex is present in 72.4% of primary TB cases, two complexes in 14.7%, and three or more in 3.5% [1]. These variations underscore the heterogeneity of the disease's radiological presentation. The respiratory tract is the primary route of *M. tuberculosis* infection, with upper lobe predilection likely influenced by regional ventilation and oxygenation dynamics [4]. Radiographic features of the Ghon complex include parenchymal scarring, cavitation, or lobar consolidation. Distinction between the Ghon and

Ranke complexes is critical: the Ghon complex appears in untreated primary TB, whereas the Ranke complex represents a calcified form resulting from healing of the Ghon lesion and associated lymph nodes [5].

Following primary infection, *M. tuberculosis* may follow one of three courses: eradication by host immunity, persistence in a latent state, or progression to active disease [4]. Latent tuberculosis carries a risk of reactivation, which is influenced by immune status. HIV co-infection markedly elevates the risk of progression due to immunosuppression, while TB infection can enhance HIV replication, thereby creating a bidirectional worsening effect [2][4][6]. Histopathologically, the Ghon complex generally measures 1.0 to 1.5 centimeters and is characterized by central caseous necrosis surrounded by a fibroblastic rim. Granulomas with macrophages and Langerhans giant cells are typically observed around the necrotic center [4]. Pediatric populations demonstrate a higher propensity for cavitation, correlating with positive gastric aspirates and sputum cultures, and contributing to increased extrapulmonary TB incidence in children [1]. Clinical recognition of the Ghon complex requires consideration of differential diagnoses. Similar radiographic features can occur in pulmonary histoplasmosis and paracoccidioidomycosis, emphasizing the necessity of comprehensive patient evaluation, including travel history, occupational exposures, and environmental risk factors [2][7]. Accurate interpretation ensures appropriate management and prevents misdiagnosis.

The clinical significance of the Ghon complex extends beyond radiographic identification. It provides insight into disease progression, potential for latency, and risk of reactivation. Understanding its pathophysiology aids clinicians in anticipating complications, planning diagnostic evaluation, and implementing targeted treatment strategies. Furthermore, the complex serves as a valuable teaching tool in medical education, illustrating the interplay between host immunity, pathogen behavior, and pulmonary pathology. Contemporary research continues to explore its molecular and immunological underpinnings, offering opportunities for improved diagnostic precision, prognostic assessment, and therapeutic interventions [1][2][4][5][6][7]. Advanced imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), may further delineate the Ghon complex in complex cases, providing enhanced anatomical detail, identification of subtle lymph node involvement, and assessment of cavitary progression. In conjunction with histopathological correlation, these approaches strengthen diagnostic confidence and support evidence-based clinical decisions. By integrating radiographic, histological, and clinical data, healthcare providers can develop comprehensive

management plans, including pharmacological therapy, public health interventions, and follow-up surveillance to mitigate reactivation risks and prevent transmission. In conclusion, the Ghon complex remains a critical concept in pulmonary tuberculosis, representing the pathological and radiological signature of primary infection. Its recognition informs diagnosis, guides management, and provides prognostic information regarding disease course, latency, and potential reactivation. Continued study of the Ghon complex enhances understanding of TB pathophysiology and reinforces the importance of integrated clinical, radiographic, and laboratory evaluation in effective patient care.

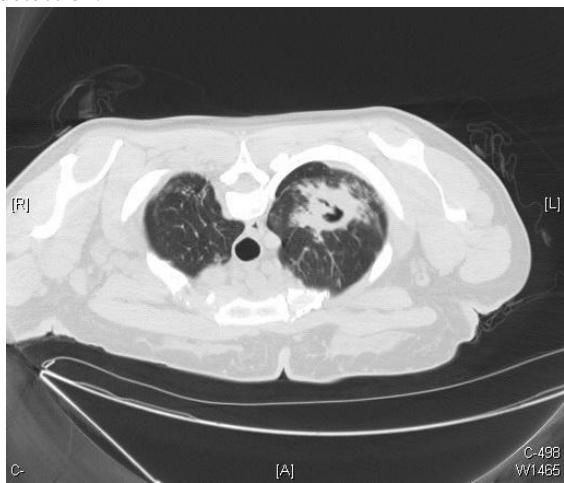


Fig. 1: Pulmonary Tuberculosis.

Clinical Significance

The diagnosis of primary pulmonary tuberculosis relies heavily on the isolation and culture of *Mycobacterium tuberculosis* from various clinical specimens, including sputum, nasopharyngeal aspirates, gastric aspirates, pleural fluid, and pleural biopsy samples [15][16][17][18]. These culture-based methods remain the gold standard due to their specificity and ability to confirm active infection. Complementing these approaches, nucleic acid amplification tests, such as the Xpert MTB/RIF assay, provide rapid and sensitive detection of *M. tuberculosis* DNA while also identifying rifampicin resistance. Serological assays and imaging techniques, particularly chest radiography, support the diagnosis, offering visual confirmation of parenchymal lesions, lymphadenopathy, or pleural involvement [19]. However, it is important to note that the radiographic hallmark, the Ghon complex, may be absent in certain cases of primary pulmonary tuberculosis [20]. Estimates suggest that a Ghon focus develops in approximately 15% of primary TB cases, tuberculomas are observed in roughly 9% of cases, and lymphadenopathy is present in 96% of children and 43% of adults [20]. In many instances, primary parenchymal lesions resolve spontaneously without intervention, observed in nearly two-thirds of

primary TB cases. Despite this spontaneous resolution, about 15% of patients may exhibit normal chest radiographs, complicating early diagnosis [20][21]. The pathogenic potential of *M. tuberculosis* extends beyond the lungs due to its ability to disseminate through lymphatic and hematogenous routes. Untreated primary pulmonary tuberculosis can lead to a wide spectrum of extrapulmonary manifestations, including pericardial or myocardial infection, central nervous system involvement, head and neck tuberculosis, intra-abdominal organ disease, peritoneal TB, genitourinary TB, and skeletal involvement such as spondylitis, osteomyelitis, or tuberculous arthritis [22]. These diverse presentations underscore the systemic nature of the disease and the importance of comprehensive evaluation and early detection.

Fig. 2: Cavity Tuberculosis.

Pulmonary tuberculosis is considered a curable disease; however, effective management requires prolonged and strictly adhered-to antibiotic regimens. The emergence of multiple drug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis has become a significant global health concern, demanding careful management strategies, individualized therapy, and monitoring for therapeutic efficacy and adverse effects [23][24]. The presence of a Ghon complex illustrates the role of the lymphatic system in both the immune response and the pathogenesis of TB. Lymph nodes serve as critical sites for antigen presentation, facilitating immune recognition of *M. tuberculosis*, while also providing a niche for bacterial persistence [1]. Macrophages play a dual role, containing the organism while simultaneously acting as vectors for hematogenous dissemination, which can lead to extrapulmonary tuberculosis [1]. Recent research has increasingly emphasized the importance of lymphatic involvement in the progression of tuberculosis. Studies indicate that lymphatic pathways are not merely conduits for pathogen spread but actively contribute to immune modulation and the maintenance of latent infection. This understanding informs both clinical management and the

development of novel therapeutic strategies, including host-directed therapies aimed at enhancing lymphatic immune function. The clinical significance of the Ghon complex extends beyond its diagnostic value; it provides insight into the dynamics of bacterial spread, the interplay between host immunity and pathogen persistence, and the potential sites for extrapulmonary involvement. Recognizing the multifaceted role of the lymphatic system in tuberculosis enhances clinicians' ability to predict disease progression, identify patients at risk for dissemination, and implement targeted treatment interventions to improve patient outcomes [1].

Nursing, Allied Health, and Interprofessional Team Interventions

The prompt recognition of radiological signatures suggestive of primary pulmonary tuberculosis, particularly the classic Ghon complex and associated parenchymal and nodal changes, is often the earliest clinical signal that a tuberculous process may be present. Radiologists thus occupy a pivotal position in the diagnostic cascade, as their interpretive expertise can accelerate the clinical suspicion of disease and prompt downstream actions that influence both individual patient outcomes and institutional safety. Beyond image interpretation, timely communication of a suspected Ghon focus to the broader clinical team is essential to trigger rapid initiation of diagnostic confirmation, early commencement of appropriate anti-tuberculous therapy when indicated, and immediate implementation of isolation procedures to mitigate nosocomial transmission risks among healthcare workers and other patients. Nevertheless, in many care pathways, radiologists are not invariably the first clinicians to encounter chest imaging; emergency physicians, internists, pediatricians, or urgent care providers may be the initial interpreters of basic radiographs, particularly in resource-constrained or high-throughput settings. Consequently, cultivating a baseline competence across frontline clinicians to identify radiographic patterns potentially compatible with tuberculous infection forms a critical layer of patient safety and infection prevention. In parallel, infection prevention and control (IPC) personnel have a coordinating mandate: they liaise closely with treating providers to ensure that individuals with suspected or confirmed active pulmonary tuberculosis are promptly placed under appropriate airborne isolation and that exposure assessments, contact tracing preparations, and environmental controls are enacted without delay. This coordinated vigilance—spanning image recognition, interdisciplinary communication, and institutional IPC mechanisms—constitutes the bedrock of safe, effective management of suspected tuberculosis in clinical environments. The occupational risk to healthcare workers posed by *Mycobacterium tuberculosis* is substantially elevated compared with that of the general population, with estimates

suggesting an approximately tenfold increase in infection risk for clinical staff operating in high-burden or high-exposure settings [25][26]. Pulmonary tuberculosis is transmitted primarily via respiratory droplets and droplet nuclei expelled by individuals with active disease, with routine respiratory activities such as speaking or breathing producing aerosols and coughing amplifying the inoculum and thereby the probability of exposure for those in proximity [27]. These aerosols may persist suspended in ambient air for extended intervals, particularly in inadequately ventilated spaces, creating an environmental milieu conducive to transmission events. Within this context, clinicians, nurses, respiratory therapists, and ancillary personnel must rigorously adhere to evidence-based precautions whenever caring for patients in whom pulmonary tuberculosis is part of the differential diagnosis or has been confirmed. Because nurses, particularly in acute and emergency care settings, typically have the most sustained and frequent patient contact compared with other clinicians, they often face proportionally greater exposure opportunities, underscoring the indispensability of nursing vigilance and procedural discipline in interrupting transmission chains.

For nursing personnel, foundational knowledge of the clinical phenotype of active tuberculosis is a critical occupational safeguard as well as a prerequisite for timely case identification and escalation. The symptom complex frequently associated with active pulmonary disease encompasses persistent cough, hemoptysis, involuntary weight loss, fever and chills, nocturnal diaphoresis, anorexia, and generalized fatigue [28]. Early recognition of these symptoms during triage or initial assessment enables immediate placement of the patient under appropriate precautions even before definitive laboratory confirmation, thereby reducing exposure risk for staff and other patients. Parallel to symptom screening, a targeted epidemiological history sharpens risk stratification and determines the pre-test probability of disease. Pertinent historical elements include recent travel to or residence in high-burden settings, prior incarceration, intravenous drug use, housing instability or homelessness, residence in congregate or crowded environments such as shelters, known exposure to a person with diagnosed tuberculosis, and a history of untreated latent tuberculosis infection [29]. Integrating these clinical and contextual indicators allows nurses and clinicians to activate institutional algorithms for suspected tuberculosis, ensuring that potential cases are neither overlooked nor inappropriately delayed in isolation and evaluation. Once a patient is identified as potentially having active pulmonary tuberculosis, nurses and other healthcare workers should unambiguously follow their institution's established protocols to reduce occupational exposure and to protect other patients. A central component of these

protocols is the immediate institution of airborne precautions, which are designed to contain and limit the spread of aerosolized particles in clinical environments [26]. In middle- to high-income settings, facilities generally provide personal protective equipment commensurate with airborne risks, including N95 filtering facepiece respirators or powered/controlled air-purifying respirators (PAPRs/CAPRs). Correct and consistent PPE use is not merely a procedural step; it is an essential clinical skill set encompassing respirator fit-testing, proper donning and doffing sequences, and ongoing situational awareness to prevent self-contamination and fomite-mediated spread. Nursing staff play a central role in ensuring that PPE is deployed appropriately not only by themselves but also by other members of the care team and, when feasible, by educating patients and visitors regarding respiratory hygiene and institutional rules for isolation areas. Robust training, regular refresher sessions, simulation-based practice, and compliance auditing together strengthen institutional readiness for managing airborne threats, including tuberculosis, and improve the consistency with which these life-saving practices are implemented.

Fig. 3: Ghon Complex.

Beyond personal protective measures, environmental and engineering controls are pivotal for minimizing tuberculosis transmission within healthcare facilities. Airborne infection isolation rooms—equipped with negative pressure ventilation systems—serve to contain contaminated air within the patient's room and to direct airflow away from corridors and common areas, thereby reducing risk to other patients and staff [26]. The operational integrity of these rooms depends on regular monitoring of

pressure differentials, appropriate air exchange rates, and maintenance of filtration systems. Nurses are frequently the first to notice and report anomalies in isolation environments, such as door seal issues or ventilation alarms, and thus contribute to the reliability of these controls in real time. Moreover, coordination with facilities management and IPC teams ensures rapid remediation of any environmental deficiencies that could compromise airborne containment. In high-demand settings, the creation of surge protocols for isolation capacity, prioritizing patients with the highest likelihood of infectiousness, further enhances the facility's defensive posture against nosocomial spread. From a workflow perspective, the nursing role spans the continuum of care from triage to discharge, embedding tuberculosis-specific safeguards at each step. At first contact, nurses screen for cardinal symptoms and risk factors, initiate isolation, and notify the responsible clinician and IPC staff. During diagnostic evaluation, they facilitate the prompt collection of appropriate respiratory specimens under conditions that minimize aerosolization risks, support patient positioning and instruction for sputum induction when indicated, and ensure that specimens are labeled, stored, and transported according to biosafety protocols. When radiologic imaging is ordered, nurses help coordinate patient movement along secure pathways that reduce exposure risk to others and verify that any necessary precautions are maintained throughout transport and imaging procedures. Should initial imaging or clinical assessment heighten suspicion, nurses escalate communication with the treating team and IPC practitioners, accelerating the transition from presumptive to definitive management and containment.

Therapeutically, nursing responsibilities extend to medication administration, monitoring for adverse effects, and supporting treatment adherence during inpatient care. Tuberculosis regimens can be complex, often comprising multiple agents with distinct side effect profiles and requiring precise timing. Nurses educate patients about the purpose of each medication, expected duration of therapy, and the importance of adherence to prevent treatment failure and resistance development. They monitor and document clinical response, noting changes in cough frequency, the presence or resolution of systemic symptoms, and tolerance of therapy, while promptly flagging any signs suggestive of hepatotoxicity, hypersensitivity, or other adverse drug reactions. In settings where directly observed therapy (DOT) or modified adherence-support models are deployed, nurses act as key implementers, ensuring that doses are taken as prescribed and that barriers to adherence—such as language, stigma, or logistical challenges—are identified and addressed. These roles become especially critical in the management of multidrug-resistant tuberculosis (MDR-TB), where

treatment is prolonged and can be associated with substantial toxicity, necessitating intensive counseling, side effect surveillance, and sustained motivational support. Interprofessional collaboration is integral to the safe and effective care of patients with suspected or confirmed tuberculosis. Radiologists contribute by flagging suggestive findings and recommending appropriate follow-up imaging. Pulmonologists and infectious disease specialists provide diagnostic expertise, guide antimicrobial selection, interpret complex microbiological results, and determine the duration and intensity of therapy. Laboratory professionals ensure accurate and timely processing of sputum smears, nucleic acid amplification testing, culture, and, where indicated, drug susceptibility testing. Pharmacists assist with regimen optimization, drug-drug interaction mitigation, and therapeutic drug monitoring for agents with narrow therapeutic windows. Respiratory therapists advise on airway clearance and safe sputum induction techniques, while environmental services staff receive training in specialized cleaning protocols for isolation spaces. At the nexus of these disciplines, nurses orchestrate day-to-day care, synchronize communications among team members, and ensure that the patient experience remains coherent and compassionate despite the complexity of the institutional response.

The protection of staff warrants a systematic approach that incorporates administrative controls alongside PPE and environmental safeguards. Administrative measures include standardized triage algorithms for respiratory complaints, protocols for rapid isolation initiation, clear pathways for escalation to IPC teams, and training programs that are regularly updated and competency-verified. Occupational health services contribute through baseline and periodic screening of staff for latent infection, post-exposure evaluation and follow-up, immunization updates for co-circulating respiratory pathogens, and support for staff who undergo evaluation or therapy for latent tuberculosis infection. Nurse leaders and unit managers have a particular responsibility to cultivate a culture of safety, proactively addressing workflow constraints that might otherwise encourage shortcuts in isolation practices, and advocating for adequate staffing levels that allow meticulous adherence to time-intensive precautions such as donning and doffing of respirators. In high-burden facilities, data-driven surveillance of isolation utilization, time-to-isolation metrics for presumptive cases, and exposure incident reviews enable continuous quality improvement and reduce the likelihood of repeat lapses. Central to nursing practice is patient education that is both empathetic and evidence-informed. Tuberculosis remains stigmatized in many communities; fears about contagion, social exclusion, and treatment length can deter patients from seeking care or adhering to therapy. Nurses are uniquely positioned

to dispel myths, explain the rationale for isolation and PPE in ways that preserve patient dignity, and engage family members constructively without compromising safety. Education is tailored to health literacy levels and delivered in culturally sensitive language. Patients learn about cough etiquette, hand hygiene, and environmental practices that reduce transmission risk at home after discharge, including the importance of adequate ventilation and minimizing exposure of vulnerable household contacts. When public health reporting is required, nurses can facilitate transparent conversations that build trust, clarify confidentiality protections, and emphasize that contact tracing aims to protect loved ones and the community at large, rather than to penalize the patient.

The continuity of care from hospital to community is another arena where interprofessional coordination and nursing leadership are decisive. Discharge planning begins early, with nurses collaborating with social workers, case managers, and public health liaisons to identify the optimal setting for ongoing therapy, whether that is home-based DOT, community clinic follow-up, or transitional care in specialized facilities. Practical barriers such as transport, work obligations, childcare, and housing instability are surfaced and, where possible, mitigated through targeted supports. For patients with MDR-TB or complicated comorbidities, nurses ensure that follow-up appointments are scheduled, medication supply chains are uninterrupted, and side effect monitoring plans are clearly communicated to both the patient and the receiving care team. These efforts align with qualitative evidence that nursing interventions can significantly improve adherence and the success of community-based treatment models for MDR-TB [30][31]. By translating institutional protocols into individualized care plans, nursing teams bridge the gap between clinical intent and real-world feasibility, thereby enhancing therapeutic outcomes and reducing community transmission. Within the inpatient environment, allied health professionals complement nursing and medical efforts to create a comprehensive care ecosystem that anticipates and manages the multifaceted needs of patients with tuberculosis. Dietitians address nutritional deficits associated with chronic infection and weight loss, supporting immune function and recovery through tailored meal plans and supplementation when warranted. Mental health professionals provide counseling to address anxiety, depression, or stigma-related stressors that may accompany isolation and prolonged therapy, thereby improving engagement with care. Physical and occupational therapists assist in restoring functional capacity in deconditioned patients and in adapting activities of daily living to the constraints of isolation. Chaplaincy and spiritual care providers offer support that respects patients' belief systems,

enhancing holistic wellbeing. Together, these contributions underscore that tuberculosis care is not solely biomedical but also psychosocial, requiring a team-based approach that attends to the whole person.

In addition to direct patient care, interprofessional teams carry forward a continuous learning agenda. Case reviews, morbidity and mortality conferences, and IPC debriefings following suspected exposure incidents generate shared insights that refine protocols and training. Simulation exercises involving realistic tuberculosis scenarios—triage alerts, rapid isolation decisions, sputum collection mishaps, or transport of an infectious patient for imaging—build cross-disciplinary muscle memory and identify latent system vulnerabilities before they produce harm. Nurses often serve as champions for these educational initiatives, ensuring that lessons learned are disseminated across shifts and that new staff receive comprehensive onboarding to tuberculosis precautions. Metrics such as time from presentation to initiation of airborne precautions, adherence to respirator use, and appropriateness of isolation discontinuation criteria create feedback loops that sustain high performance. A final but crucial dimension of interprofessional tuberculosis management concerns ethical practice and equity. Isolation measures, while essential, can inadvertently exacerbate feelings of loneliness or marginalization, especially in patients already experiencing social disadvantage. The healthcare team must balance infection control with humane care, enabling safe social connection through technology, ensuring regular staff presence for therapeutic interaction, and signaling respect in every encounter. Language access services, including interpreters and translated educational materials, are indispensable to informed consent, adherence counseling, and shared decision-making. Nurses advocate for these resources, recognizing that equitable care environments not only uphold patient dignity but also achieve better public health outcomes by fostering trust and cooperation.

In sum, the management of suspected and confirmed pulmonary tuberculosis in healthcare settings is fundamentally interprofessional, with nursing practice at its operational core. Early recognition—radiological and clinical—coupled with swift isolation and rigorous adherence to PPE protocols curtails nosocomial transmission. Environmental controls, especially negative pressure rooms, provide a critical engineering layer of defense [26]. Given the markedly elevated occupational risk borne by healthcare workers [25][26], the disciplined application of airborne precautions and the use of N95 respirators or CAPRs are non-negotiable standards of care, particularly as coughing and other respiratory activities enhance infectiousness and aerosol persistence in the care environment [27].

Nurses' proficiency in symptom appraisal [28], risk history elicitation [29], and coordination of diagnostic and therapeutic workflows ensures that suspected cases are managed safely and effectively from first contact through discharge. When extended into the community, nursing-led adherence supports have demonstrated value, especially for MDR-TB, where sustained engagement with complex regimens is vital for cure and for the prevention of further resistance [30][31]. Through coherent collaboration across radiology, medicine, nursing, pharmacy, laboratory services, respiratory therapy, environmental services, and public health, the healthcare system can safeguard its workforce, protect its patients, and advance the dual goals of individual recovery and community protection.

Nursing, Allied Health, and Interprofessional Team Monitoring

Sustained monitoring is foundational to the safe and effective management of tuberculosis, reflecting the protracted course of therapy and the public health imperative to prevent transmission and resistance. From the moment of diagnosis, patients require longitudinal follow-up to document clinical response, ensure adherence, detect adverse events promptly, and coordinate transitions across care settings; this longitudinality is not optional but integral to best practice and public safety [14]. Central to this process is the oversight of an infectious disease physician, who synthesizes clinical findings, microbiologic data, radiologic trends, and medication tolerance to guide ongoing regimen optimization. This specialist supervision includes the regular appraisal of symptom trajectories, serial sputum assessments when indicated, laboratory surveillance for drug toxicities, and decisions about modification or continuation of therapy in alignment with evolving response patterns. Because tuberculosis is both an individual clinical problem and a communicable threat, the monitoring mandate extends beyond the clinic: governmental public health entities frequently assume a parallel supervisory role, coordinating with care teams to verify adherence to isolation protocols and treatment, to employ contact tracing when necessary, and to document milestones such as sputum conversion and safe discontinuation of airborne precautions [14]. Within this framework, directly observed therapy (DOT) functions as a cornerstone adherence strategy. By arranging for trained personnel to witness the ingestion of each dose, DOT supports reliable medication-taking behavior, stabilizes pharmacologic exposure, and reduces the likelihood of treatment interruption or erratic adherence. In turn, steady adherence diminishes the risk of emergent antimicrobial resistance, a consequence that carries grave implications for both individual prognosis and community health [32]. DOT is thus a clinical tool and a public health instrument, linking the patient's daily routines to structured monitoring with the

explicit aim of sustaining therapeutic momentum. Nonetheless, the global epidemiology of tuberculosis means that a significant proportion of affected individuals live in low-resource settings, where staffing, transportation, and logistical constraints may render daily observation impractical. In such circumstances, teams adapt monitoring architectures by deploying modified DOT schedules, leveraging community health workers or family-supported observation, and incorporating digital adherence technologies to approximate the accountability and support provided by traditional DOT while acknowledging contextual limitations [32].

Nurses are pivotal actors in this longitudinal ecosystem. In inpatient and outpatient settings alike, nursing professionals operationalize the monitoring plan through meticulous assessment, education, and coordination. They review symptoms at serial encounters, tracking cough intensity, systemic features such as fever and night sweats, and functional status to detect early signs of improvement or deterioration. Nurses also conduct routine checks for adverse effects—such as hepatotoxicity, hypersensitivity, or neuropathy—associated with multidrug regimens, and escalate concerns for timely evaluation. Patient education is woven into each interaction, reinforcing the rationale for prolonged therapy, clarifying expected timelines for symptomatic relief, and demystifying the need for continued precautions even when the patient feels better. Where DOT is in place, nurses frequently serve as observers or coordinators, ensuring dose administration is documented and intervening quickly if barriers to adherence arise, such as transportation issues, competing responsibilities, or medication side effects that threaten persistence with therapy [32]. This daily proximity to the patient's lived experience positions nursing practice at the interface of clinical science and practical feasibility, an indispensable vantage for adaptive care. Allied health professionals extend the reach and precision of monitoring. Pharmacists review complex regimens for drug–drug interactions, optimize dosing schedules, and counsel patients on side effect mitigation to improve tolerability and adherence. Social workers and case managers evaluate social determinants that jeopardize continuity—housing instability, food insecurity, employment constraints—and mobilize resources to stabilize the treatment environment. Public health nurses and TB program coordinators serve as liaisons between healthcare facilities and community settings, harmonizing isolation guidance, facilitating contact evaluations, and arranging home visits or community-based DOT when appropriate. Laboratory teams uphold the reliability of serial sputum analyses, culture monitoring, and, where indicated, drug susceptibility testing, with results integrated into clinical decision-making by the infectious disease physician. Radiologists contribute by interpreting follow-up imaging and advising on

the cadence of reassessment, while acknowledging that radiographic improvement frequently trails clinical recovery, a phenomenon that requires cautious interpretation to avoid premature therapeutic changes [33]. The awareness that radiologic resolution may lag behind symptom improvement shapes patient counseling and tempers expectations, reducing anxiety and preventing the misattribution of slow imaging changes to treatment failure when clinical metrics are otherwise reassuring [33].

Because tuberculosis treatment generally spans a minimum of six to nine months, monitoring programs must be built for endurance rather than intensity alone. Schedules for follow-up visits, laboratory tests, and imaging are planned to coincide with key therapeutic junctures, from early bacteriologic conversion checks to later evaluations of sustained response or emerging toxicities. Telehealth and mobile technologies can be integrated to maintain engagement between in-person appointments, particularly in regions where travel burdens are high or clinic capacity is limited. Education materials are provided in culturally and linguistically appropriate formats, and interpreter services are engaged to ensure that core messages about adherence, side effect reporting, and infection control are clearly understood. Crucially, monitoring is not confined to the detection of nonadherence; it also celebrates adherence milestones and clinical gains, bolstering motivation through positive reinforcement and transparent goal setting. When setbacks occur, the interprofessional team convenes to recalibrate strategies, whether by simplifying dosing regimens, addressing psychosocial stressors, or instituting additional supports to reestablish therapeutic continuity [14][32]. The interprofessional nature of tuberculosis monitoring creates a resilient safety net. Infectious disease physicians anchor clinical stewardship; nurses oversee day-to-day implementation, observation, and education; pharmacists fine-tune regimens and manage interactions; social workers and case managers resolve practical obstacles; laboratory and radiology teams supply the objective markers that track progress and inform decisions; and public health agencies ensure that individual care aligns with community protection imperatives. Together, these roles form an integrated continuum that is attentive to the realities of long-duration therapy and to the ethical balance between individual autonomy and collective safety. By embracing DOT where feasible, innovating alternatives where it is not, and acknowledging that imaging may lag behind symptomatic improvement even when therapy is succeeding, interprofessional teams sustain the vigilance required to shepherd patients from diagnosis through cure while safeguarding the wider public [32][33].

Conclusion:

The Ghon complex remains a fundamental concept in the understanding of primary pulmonary tuberculosis, serving as both a diagnostic indicator and a marker of disease progression. Although radiographic manifestations may vary or even be absent, awareness of this entity enables clinicians to maintain a high index of suspicion for TB, particularly in high-risk populations. Its identification extends beyond radiology, informing clinical decisions related to isolation, diagnostic testing, and long-term follow-up. Nursing practice occupies a central role in translating this knowledge into safe and effective patient care. Nurses are often the first to recognize suggestive symptoms, implement airborne precautions, and initiate institutional tuberculosis protocols. Their responsibilities further encompass patient education, adherence support, monitoring for adverse drug effects, and coordination with interprofessional team members throughout prolonged treatment courses. These functions are critical in preventing transmission within healthcare facilities and in the community, especially given the elevated occupational risk for healthcare workers. Ultimately, successful tuberculosis management depends on cohesive interprofessional collaboration that integrates medical, nursing, allied health, laboratory, and public health efforts. By combining radiologic recognition of the Ghon complex with vigilant nursing interventions and structured monitoring strategies, healthcare systems can improve patient outcomes, curb drug resistance, and uphold both individual and public health responsibilities.

References:

1. Donald PR, Diacon AH, Thee S. Anton Ghon and His Colleagues and Their Studies of the Primary Focus and Complex of Tuberculosis Infection and Their Relevance for the Twenty-First Century. *Respiration; international review of thoracic diseases*. 2021;100(7):557-567. doi: 10.1159/000509522. Epub 2020 Dec 15
2. Lyon SM, Rossman MD. Pulmonary Tuberculosis. *Microbiology spectrum*. 2017 Jan;5(1):. doi: 10.1128/microbiolspec.TNMI7-0032-2016.
3. Concepcion NDP, Laya BF, Andronikou S, Daltro PAN, Sanchez MO, Uy JAU, Lim TRU. Standardized radiographic interpretation of thoracic tuberculosis in children. *Pediatric radiology*. 2017 Sep;47(10):1237-1248. doi: 10.1007/s00247-017-3868-z.
4. Stephenson L, Byard RW. An atlas overview of characteristic features of tuberculosis that may be encountered at autopsy. *Forensic science, medicine, and pathology*. 2020 Mar;16(1):143-151. doi: 10.1007/s12024-019-00161-y.
5. Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. *International journal of infectious diseases : IJID : official publication of the*

International Society for Infectious Diseases. 2015 Mar;32(1):87-93. doi: 10.1016/j.ijid.2014.12.007.

6. Bell LCK, Noursadeghi M. Pathogenesis of HIV-1 and *Mycobacterium tuberculosis* co-infection. *Nature reviews Microbiology*. 2018 Feb;16(2):80-90. doi: 10.1038/nrmicro.2017.128.
7. de Campos EP, Bertoli CJ, Barbosa KS. [Pulmonary lymph node in acute juvenile paracoccidioidomycosis (a case report)]. *Revista da Sociedade Brasileira de Medicina Tropical*. 1992 Jul-Sep;25(3):195-200.
8. Glaziou P, Floyd K, Ravagliione MC. Global Epidemiology of Tuberculosis. *Seminars in respiratory and critical care medicine*. 2018 Jun;39(3):271-285. doi: 10.1055/s-0038-1651492.
9. Suárez I, Fünger SM, Kröger S, Rademacher J, Fätkenheuer G, Rybníkář J. The Diagnosis and Treatment of Tuberculosis. *Deutsches Arzteblatt international*. 2019 Oct 25;116(43):729-735. doi: 10.3238/arztebl.2019.0729.
10. Floyd K, Glaziou P, Zumla A, Ravaglione M. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era. *The Lancet. Respiratory medicine*. 2018 Apr;6(4):299-314. doi: 10.1016/S2213-2600(18)30057-2.
11. Vynnycky E, Fine PE. Lifetime risks, incubation period, and serial interval of tuberculosis. *American journal of epidemiology*. 2000 Aug 1;152(3):247-63.
12. Lönnroth K, Ravaglione M. The WHO's new End TB Strategy in the post-2015 era of the Sustainable Development Goals. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. 2016 Mar;110(3):148-50. doi: 10.1093/trstmh/trv108.
13. Chakaya J, Petersen E, Nantanda R, Mungai BN, Migliori GB, Amanullah F, Lungu P, Ntoumi F, Kumarasamy N, Maeurer M, Zumla A. The WHO Global Tuberculosis 2021 Report - not so good news and turning the tide back to End TB. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases*. 2022 Nov;124 Suppl 1():S26-S29. doi: 10.1016/j.ijid.2022.03.011.
14. Furin J, Cox H, Pai M. Tuberculosis. *Lancet* (London, England). 2019 Apr 20;393(10181):1642-1656. doi: 10.1016/S0140-6736(19)30308-3.
15. Datta S, Shah L, Gilman RH, Evans CA. Comparison of sputum collection methods for tuberculosis diagnosis: a systematic review and pairwise and network meta-analysis. *The Lancet. Global health*. 2017 Aug;5(8):e760-e771. doi: 10.1016/S2214-109X(17)30201-2.
16. Nicol MP, Zar HJ. Advances in the diagnosis of pulmonary tuberculosis in children. *Paediatric respiratory reviews*. 2020 Nov;36():52-56. doi: 10.1016/j.prrv.2020.05.003.
17. Stockdale AJ, Duke T, Graham S, Kelly J. Evidence behind the WHO guidelines: hospital care for children: what is the diagnostic accuracy of gastric aspiration for the diagnosis of tuberculosis in children? *Journal of tropical pediatrics*. 2010 Oct;56(5):291-8. doi: 10.1093/tropej/fmq081.
18. Shaw JA, Irusen EM, Diacon AH, Koegelenberg CF. Pleural tuberculosis: A concise clinical review. *The clinical respiratory journal*. 2018 May;12(5):1779-1786. doi: 10.1111/crj.12900.
19. Schito M, Migliori GB, Fletcher HA, McNerney R, Centis R, D'Ambrosio L, Bates M, Kibiki G, Kapata N, Corrah T, Bomanji J, Vilaplana C, Johnson D, Mwaba P, Maeurer M, Zumla A. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2015 Oct 15;61 Suppl 3(Suppl 3):S102-18. doi: 10.1093/cid/civ609.
20. Burrill J, Williams CJ, Bain G, Conder G, Hine AL, Misra RR. Tuberculosis: a radiologic review. *Radiographics : a review publication of the Radiological Society of North America, Inc.* 2007 Sep-Oct;27(5):1255-73.
21. Woodring JH, Vandiviere HM, Fried AM, Dillon ML, Williams TD, Melvin IG. Update: the radiographic features of pulmonary tuberculosis. *AJR. American journal of roentgenology*. 1986 Mar;146(3):497-506.
22. Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. *Radiographics : a review publication of the Radiological Society of North America, Inc.* 2019 Nov-Dec;39(7):2023-2037. doi: 10.1148/rg.2019190109.
23. Wright A, Zignol M, Van Deun A, Falzon D, Gerdes SR, Feldman K, Hoffner S, Drobnewski F, Barrera L, van Soolingen D, Boulabhal F, Paramasivan CN, Kam KM, Mitarai S, Nunn P, Ravaglione M, Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Epidemiology of antituberculosis drug resistance 2002-07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. *Lancet* (London, England). 2009 May 30;373(9678):1861-73. doi: 10.1016/S0140-6736(09)60331-7.
24. Caminero JA, Cayla JA, García-García JM, García-Pérez FJ, Palacios JJ, Ruiz-Manzano J. Diagnosis and Treatment of Drug-Resistant Tuberculosis. *Archivos de bronconeumología*. 2017 Sep;53(9):501-509. doi: 10.1016/j.arbres.2017.02.006.
25. Joshi R, Reingold AL, Menzies D, Pai M. Tuberculosis among health-care workers in low-

and middle-income countries: a systematic review. *PLoS medicine*. 2006 Dec;3(12):e494

26. McGowan JE Jr. Nosocomial tuberculosis: new progress in control and prevention. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 1995 Sep;21(3):489-505

27. Patterson B, Wood R. Is cough really necessary for TB transmission? *Tuberculosis (Edinburgh, Scotland)*. 2019 Jul;117():31-35. doi: 10.1016/j.tube.2019.05.003.

28. Jilani TN, Avula A, Zafar Gondal A, Siddiqui AH. *Active Tuberculosis*. StatPearls. 2024 Jan

29. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. *Social science & medicine (1982)*. 2009 Jun;68(12):2240-6. doi: 10.1016/j.socscimed.2009.03.041.

30. Carlsson M, Johansson S, Eale RP, Kaboru BB. Nurses' Roles and Experiences with Enhancing Adherence to Tuberculosis Treatment among Patients in Burundi: A Qualitative Study. *Tuberculosis research and treatment*. 2014;2014():984218. doi: 10.1155/2014/984218.

31. Palacios E, Guerra D, Llaro K, Chalco K, Sapag R, Furin J. The role of the nurse in the community-based treatment of multidrug-resistant tuberculosis (MDR-TB). *The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease*. 2003 Apr;7(4):343-6

32. Karumbi J, Garner P. Directly observed therapy for treating tuberculosis. *The Cochrane database of systematic reviews*. 2015 May 29;2015(5):CD003343. doi: 10.1002/14651858.CD003343.pub4.

33. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, Chaisson LH, Chaisson RE, Daley CL, Grzemska M, Higashi JM, Ho CS, Hopewell PC, Keshavjee SA, Lienhardt C, Menzies R, Merrifield C, Narita M, O'Brien R, Peloquin CA, Raftery A, Saukkonen J, Schaaf HS, Sotgiu G, Starke JR, Migliori GB, Vernon A. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2016 Oct 1;63(7):853-67. doi: 10.1093/cid/ciw566