

Epidemiology and Public Health Considerations of Hookworm Infection

Sarah Saab Alanzi⁽¹⁾, Fahad Ibrahim Alrabyea⁽²⁾, Dakheel Maashi D Alshammari⁽³⁾, Saeed Meshal Alzahrani⁽⁴⁾, Abdullah Hamed Mohammed Almatrafi⁽⁵⁾, Nasser Amer Al-Otaibi⁽⁶⁾, Raed Abdullah Alzmea⁽⁷⁾, Waleed Mahdi Hussein Hakami⁽⁸⁾, Khalid Awadh K Alrowili⁽⁹⁾, Khalid Mohammed Albassam⁽¹⁰⁾

(1) Maternity And Children hospital, Ministry of Health, Saudi Arabia,

(2) Public Health Department -the Riyadh First Health Cluster, Ministry of Health, Saudi Arabia,

(3) Hail Health Cluster Qassir Bin Matrouk Health Center, Ministry of Health, Saudi Arabia,

(4) Preventive Medicine in Khobar, Ministry of Health, Saudi Arabia,

(5) Public health administration, Almadina, Ministry of Health, Saudi Arabia,

(6) Afif General Hospital, Ministry of Health, Saudi Arabia,

(7) Ministry of Health, Saudi Arabia,

(8) Prince Mohammed bin Nasser, Ministry of Health, Saudi Arabia,

(9) Public Health Department First Health Cluster and City: Riyadh, Ministry of Health, Saudi Arabia,

(10) Eradah Hospital For Mental Health In Jazan, Ministry of Health, Saudi Arabia

Abstract

Background: Hookworm infection remains a major neglected tropical disease, particularly in low-income tropical and subtropical regions. Caused mainly by *Ancylostoma duodenale* and *Necator americanus*, it contributes significantly to iron-deficiency anemia, malnutrition, and impaired physical and cognitive development, especially among children and pregnant women.

Aim: This article aims to review the epidemiology, pathophysiology, clinical manifestations, evaluation, and management of hookworm infection, emphasizing public health implications and preventive strategies.

Methods: A narrative review approach was employed, synthesizing current clinical, epidemiological, and public health evidence related to hookworm infection, including diagnostic methods, pharmacologic treatments, and preventive interventions.

Results: Globally, hookworm infects approximately 470 million individuals, with disease burden closely linked to poverty, poor sanitation, and barefoot soil exposure. Chronic intestinal blood loss leads to anemia and protein malnutrition. Diagnosis primarily relies on stool microscopy, supported by eosinophilia and epidemiological risk factors. Albendazole remains the most effective treatment, though reinfection is common. Integrated strategies combining deworming, nutritional support, sanitation, and health education are essential.

Conclusion: Hookworm infection continues to pose substantial clinical and public health challenges. Sustainable control requires coordinated medical, preventive, and socioeconomic interventions.

Keywords: Hookworm, Epidemiology, Iron-deficiency anemia, Neglected tropical diseases, Public health..

Introduction

Hookworms are parasitic nematodes that primarily infect humans through contact with contaminated soil, posing a significant public health burden in tropical and subtropical regions. The two predominant species responsible for human infections are *Ancylostoma duodenale* and *Necator americanus*, both of which establish chronic infections within the small intestine. These parasites attach to the intestinal mucosa and feed on the host's blood, often resulting in iron deficiency anemia, which can have profound effects on physical growth, cognitive development, and overall health, particularly among children and pregnant women. Beyond gastrointestinal effects, the migratory behavior of larvae can provoke pulmonary

manifestations, including cough and transient respiratory symptoms, as they traverse the lungs during the infection cycle. Hookworm infections are closely associated with poverty, inadequate sanitation, and poor access to clean water, reflecting a strong environmental and socioeconomic component in their epidemiology. Although effective anthelmintic agents, such as albendazole and mebendazole, are widely used to treat infections, these measures do not prevent reinfection, emphasizing the critical importance of public health interventions. Preventive strategies, including improved sanitation, use of footwear, health education, and community-based deworming programs, are essential to reduce transmission and mitigate the long-term complications of infection.

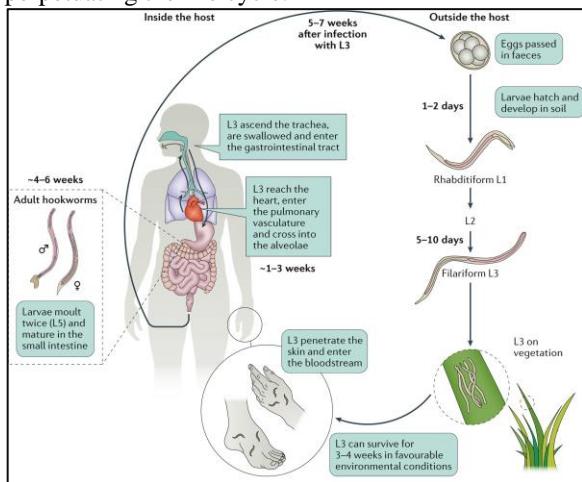
Consequently, integrated approaches combining clinical management and preventive public health measures remain central to controlling hookworm infections and addressing their broader societal impacts [1][2][3].

Etiology

Human hookworm infections are primarily caused by *Ancylostoma duodenale* and *Necator americanus*, which represent the major species responsible for significant morbidity worldwide. These parasites are highly adapted to humans and are capable of establishing chronic intestinal infections that contribute to blood loss and iron deficiency anemia. In addition to these predominant species, *Ancylostoma ceylanicum* has emerged as an important zoonotic pathogen in certain regions of Asia, where it infects humans through contact with infected animals. Unlike *A. duodenale* and *N. americanus*, *A. ceylanicum* infections generally do not result in notable blood loss, although they can lead to gastrointestinal disturbances. Other species, such as *Ancylostoma caninum*, a hookworm commonly associated with dogs, can occasionally cause gastrointestinal manifestations in humans, including enteritis and ileitis, particularly in immunocompromised individuals or in areas with high environmental contamination. *Ancylostoma braziliense*, another animal-derived species, is primarily implicated in cutaneous larva migrans, a dermatological condition resulting from the migration of larvae within the epidermis. The diversity of hookworm species and their varying pathogenic mechanisms highlight the complex epidemiology of hookworm infections and underscore the significance of both human and animal reservoirs in sustaining transmission cycles [4][5].

Epidemiology

Hookworm infections affect an estimated 470 million individuals globally, representing a significant public health concern, particularly in developing countries where the burden of disease is compounded by socioeconomic challenges. The infections contribute to substantial reductions in productivity by inducing chronic iron deficiency anemia, which exacerbates malnutrition and diminishes the capacity for physical labor, further reinforcing cycles of poverty and ill health. *Necator americanus* is recognized as the predominant species responsible for hookworm infections worldwide, while *Ancylostoma duodenale* demonstrates a more restricted distribution, primarily endemic to the Mediterranean basin, northern India, and parts of China. The prevalence of hookworm infection is influenced by a combination of environmental, behavioral, and socioeconomic factors. Individuals from low-income backgrounds are disproportionately affected due to increased exposure to infested soil and inadequate access to proper sanitation. Walking barefoot on contaminated ground significantly increases the risk of larval penetration through the skin. Children and pregnant women are


particularly vulnerable, as the physiological demands of growth and gestation amplify the consequences of iron deficiency anemia. Climatic conditions, including warm temperatures and high humidity, favor larval survival in the soil and facilitate transmission. In addition, contaminated water supplies, lack of sewage systems, and poor personal hygiene practices further sustain infection cycles within communities. Collectively, these epidemiological factors underscore the need for integrated public health interventions targeting sanitation, education, and preventive measures to reduce the global burden of hookworm infections [1][4][6][7][8].

Pathophysiology

Hookworm infections begin in the environment, where eggs excreted in feces hatch into rhabditiform L1 larvae within several days under favorable conditions. These larvae undergo two molts to become infective filariform L3 larvae, measuring approximately 0.5 to 0.6 mm in length. The L3 larvae can survive in soil or on vegetation for three to four weeks, awaiting contact with a human host to initiate infection. The infective process begins when the larvae penetrate the skin, a mechanism that can take between 30 minutes and six hours depending on the species involved. In some instances, larvae may invade through the buccal mucosa to enter the host's circulation. Cutaneous penetration is often asymptomatic but may occasionally produce localized itching, known as "ground itch." Larval penetration relies on the secretion of proteolytic enzymes. *Necator americanus* secretes proteases capable of degrading connective tissue components such as collagen and elastin, facilitating dermal invasion. *Ancylostoma* species produce hyaluronidase, which disrupts the integrity of the dermis, enabling migration through skin layers. *Ancylostoma* secreted proteins (ASPs) are particularly important, representing approximately one-third of larval secretions and playing a critical role in parasite development and host interaction. After breaching the skin barrier, larvae are transported passively via the bloodstream to the right heart and subsequently to the pulmonary circulation. During pulmonary migration, larvae can elicit a type-1 hypersensitivity response, manifesting as Loeffler syndrome, characterized by transient pulmonary inflammation. From the alveoli, larvae traverse the bronchial tree to the pharynx and are subsequently swallowed, reaching the small intestine [7][8].

In the duodenum, larvae molt twice to become immature L5 worms, which anchor to the intestinal mucosa using specialized buccal cutting structures. Blood ingestion is facilitated by metalloproteases and anticoagulant peptides, ensuring a continuous flow of liquid blood. The exact mechanism by which hemoglobin is processed within the parasite gut remains incompletely understood. Adult worms mature within four to six weeks and exhibit sexual differentiation. Females can produce up

to 30,000 eggs per day, which are excreted in feces, perpetuating the life cycle.

Fig. 1: Hookworm infection.

Blood loss in heavily infected individuals can reach nine milliliters per day and occurs primarily at the attachment site, where blood leaks around the embedded worm. Direct consumption of blood by the parasite contributes minimally. Persistent blood loss leads to iron deficiency anemia, especially in children and nutritionally compromised hosts, where even lower worm burdens may precipitate clinically significant anemia. In addition to iron depletion, chronic infections may result in protein loss, causing hypoalbuminemia, hypoproteinemia, and, in severe cases, generalized edema or anasarca, further exacerbating malnutrition. To maintain chronic infection, hookworms have evolved sophisticated survival strategies. They secrete broad-spectrum protease inhibitors that neutralize host digestive and immune enzymes, which protects the parasite while impairing nutrient absorption and worsening host malnutrition. Hookworms also induce apoptosis of T lymphocytes and modulate antigen-presenting cells, resulting in a downregulated immune response characterized by parasite-specific T cell hyporesponsiveness and altered cytokine profiles. This immune modulation facilitates parasite survival but may reduce host immunity to other pathogens. Hookworm infections are associated with alterations in the gut microbiota. Similar to other helminthic infections, individuals harboring hookworms display increased microbial diversity. This observation, coupled with the immunoregulatory properties of hookworms, has inspired research into therapeutic applications for immune-mediated gastrointestinal diseases, including celiac disease and inflammatory bowel disease. The ability of hookworms to modulate host immunity highlights the complex interplay between parasitic survival mechanisms, host nutrition, and immune homeostasis, underscoring their significance in both disease pathology and potential biomedical research [1][5][7][9][10].

History and Physical

Hookworm infections are frequently asymptomatic, particularly in light or moderate infestations, with clinical manifestations generally corresponding to the developmental stage of the parasite and the site of host involvement. Initial symptoms often appear during skin penetration, when the infective larvae enter the host through contact with contaminated soil. This stage is commonly characterized by a localized erythematous reaction, frequently described as “ground itch,” which may be accompanied by pruritus and mild inflammation at the site of larval entry [6][10]. Cutaneous manifestations may also arise from zoonotic hookworm species, particularly in the context of cutaneous larva migrans or creeping eruptions. These infections are endemic in many tropical and subtropical regions of developing countries, while travelers, expatriates, and healthcare professionals are typically affected in developed nations. Clinically, cutaneous larva migrans begins as an erythematous papule at the site of larval entry, which gradually evolves into serpiginous, 1 to 5 cm tunnels beneath the epidermis. These lesions develop because the larvae are unable to penetrate beyond the superficial dermal layers, resulting in subepidermal migration. Common sites of involvement include the hands and feet, reflecting the usual points of contact with infested soil [1][11]. During the pulmonary migratory phase, larvae may induce respiratory symptoms due to transit through the pulmonary vasculature and alveoli. Patients may present with cough, sneezing, bronchitis, hemoptysis, and eosinophilic pneumonia, a constellation known as Loeffler syndrome. These manifestations are generally self-limiting and often resolve without pharmacological intervention. In cases of peroral ingestion, additional symptoms may include pharyngeal irritation, cough, dyspnea, nausea, and vomiting, collectively described as Wakana syndrome [1][10].

Once the parasites establish in the small intestine, nonspecific gastrointestinal symptoms may develop. These include abdominal pain, distension, diarrhea, and occasionally the passage of occult blood in the feces or melena. The small size of adult hookworms typically precludes significant mechanical complications such as intestinal obstruction or perforation [1][10]. A hallmark of chronic hookworm infection is iron deficiency anemia, which arises from blood loss at the site of intestinal attachment and, to a lesser extent, from direct consumption of host blood by the worms. The degree of anemia is generally proportional to the parasite burden and is exacerbated by preexisting nutritional deficiencies. Hypoalbuminemia may accompany chronic blood and protein loss, leading to edema and, in severe cases, generalized anasarca. Some affected individuals may exhibit pica, including geophagia, reflecting altered

nutritional status and mineral deficiencies [1][10][12][7]. The physical examination of patients with hookworm infection may reveal pallor, generalized edema, and subtle dermatological signs at the site of skin penetration. Cutaneous larva migrans presents with distinct serpiginous lesions that may be pruritic and erythematous. In severe infections, particularly in children and nutritionally vulnerable populations, signs of malnutrition, fatigue, and growth retardation may also be evident. Comprehensive assessment requires correlation of clinical findings with epidemiological risk factors, including exposure to contaminated soil, inadequate sanitation, barefoot walking, and residence in endemic regions [1][10][7]. Overall, the clinical evaluation of hookworm infection necessitates careful attention to dermatological, respiratory, gastrointestinal, and hematological systems. Recognition of the subtle early signs, combined with awareness of the systemic consequences of chronic infection, is critical for timely diagnosis and management, particularly in high-risk populations such as children, pregnant women, and individuals living in resource-limited settings [1][6][10].

Evaluation

The clinical presentation of hookworm infections is often subtle and non-specific, which can complicate timely diagnosis. Early symptoms may overlap with a variety of dermatological, respiratory, and gastrointestinal conditions, making a comprehensive understanding of epidemiological patterns, clinical manifestations, and laboratory findings essential for accurate identification [1][10]. Awareness of endemic areas, risk factors such as barefoot walking, poor sanitation, and low socioeconomic conditions, and populations at heightened risk, including children and pregnant women, is integral to formulating a clinical suspicion. Laboratory confirmation remains a cornerstone of evaluation. Stool microscopy is the primary diagnostic tool, allowing direct visualization and quantification of hookworm eggs. Hospitals frequently employ egg concentration techniques to improve sensitivity, while public health and epidemiological studies often utilize simpler methods such as the Kato-Katz technique. These approaches provide an indirect estimate of worm burden but are limited by variability in egg production, particularly in light or early infections. Repeated sampling may be necessary to enhance diagnostic yield. Serological assays, such as IgG4 detection, can identify recent infections but lack specificity and are not widely used in routine clinical practice [5][10]. Eosinophilia serves as an ancillary marker, reflecting systemic and mucosal immune responses to helminth infection. Peripheral blood eosinophilia may be detectable even before intestinal colonization and tends to peak once adult worms establish in the intestinal mucosa. Although a useful supportive finding, eosinophilia is non-specific and

can occur in other parasitic, allergic, or inflammatory conditions [1].

Advanced imaging modalities, including capsule endoscopy, may incidentally identify hookworm worms within the intestinal lumen. However, the technique is rarely applied solely for diagnostic purposes due to cost, limited accessibility, and technical challenges. Emerging research in computer-aided detection aims to enhance the identification of hookworms on capsule endoscopy images, potentially providing an automated tool that surpasses conventional visual interpretation in accuracy and efficiency [1][10][13]. Ultimately, a multi-faceted approach integrating epidemiological knowledge, careful clinical assessment, laboratory confirmation, and emerging imaging technologies is essential for accurate evaluation of hookworm infection. Recognizing the limitations of each diagnostic method allows clinicians to make informed decisions, improve detection in low-burden infections, and guide appropriate treatment strategies, particularly in vulnerable populations.

Treatment / Management

The cornerstone of hookworm infection management is pharmacologic therapy, with albendazole and mebendazole representing the primary agents used globally. Single-dose oral albendazole at 400 mg is generally favored over a 500 mg single dose of mebendazole due to superior efficacy, as evidenced in multiple clinical trials. While three-day regimens of either albendazole or mebendazole demonstrate higher cure rates and more substantial reductions in egg output, they are less practical for large-scale deworming programs, where adherence and logistical considerations are paramount. For stable, uncomplicated infections, a three-day regimen of mebendazole at 100 mg twice daily provides an effective alternative. Pyrantel pamoate, administered at 11 mg/kg orally daily for three consecutive days (maximum 1 g/day), offers another therapeutic option, although its efficacy is generally lower than albendazole [1]. Meta-analytic data reinforce these findings, demonstrating cure rates of approximately 72% (95% CI, 59%-81%) for single-dose albendazole, compared with 15% (95% CI, 1%-27%) for mebendazole and 31% (95% CI, 19%-42%) for pyrantel pamoate [14]. Treatment outcomes are influenced by factors including the intensity of infection, regional variations in parasite strains, and patient age. Both albendazole and mebendazole are generally well-tolerated, with transient side effects such as dizziness, headache, and mild gastrointestinal discomfort being the most commonly reported [1][15]. Special considerations are required for pregnant and lactating women, given their elevated risk of anemia. Although both albendazole and mebendazole were classified as pregnancy category C under the former FDA system, data on their safety during pregnancy remain limited. Albendazole use during breastfeeding warrants caution due to uncertain excretion into

human milk, whereas mebendazole is considered acceptable for use in lactating women according to WHO recommendations [16].

Treatment failures can occur, potentially due to drug resistance, reinfection, or suboptimal dosing. Repeated exposure to the same anthelminthic raises concerns regarding resistance, emphasizing the need for alternative therapies such as pyrantel pamoate or levamisole, although these alternatives generally demonstrate lower efficacy than albendazole. Cutaneous larva migrans, frequently caused by zoonotic hookworms, is often self-limited but can respond effectively to oral albendazole or ivermectin when symptomatic intervention is required [1]. Management of hookworm-induced anemia requires adjunctive interventions beyond anthelminthic therapy. Coadministration of iron or multi-nutrient supplementation alongside deworming significantly enhances hemoglobin recovery, particularly in nutritionally compromised populations. In a cohort of 746 schoolchildren, combined supplementation and anthelminthic therapy improved hemoglobin concentrations regardless of baseline nutritional status or hemoglobin levels [16][17]. Severe anemia may necessitate blood transfusion, alongside ongoing nutritional support and careful monitoring to assess response to therapy. Given the risk of reinfection and incomplete clearance, follow-up monitoring is essential. Although long-term surveillance data are limited, a practical follow-up strategy includes assessment of clinical symptoms, anemia status, and stool testing at one, four, and twelve months post-treatment to ensure therapeutic efficacy and identify recurrent infection promptly [1][18]. Comprehensive management thus involves a combination of pharmacologic treatment, nutritional support, and structured follow-up to optimize patient outcomes and mitigate the health consequences of hookworm infections.

Differential Diagnosis

Hookworm infections present clinical features that can overlap with multiple gastrointestinal and systemic conditions, necessitating careful differentiation to ensure accurate diagnosis and appropriate management. Iron deficiency anemia, a hallmark of hookworm infection, can result from a variety of alternative intestinal causes that must be considered. Malabsorption syndromes, including celiac disease and tropical sprue, may lead to chronic nutrient deficiencies and mimic the anemia associated with hookworm infestations. Similarly, chronic mucosal erosions in the stomach or esophagus, as seen in gastritis or esophagitis, can result in occult blood loss, contributing to anemia. Peptic ulcer disease is another potential source of chronic gastrointestinal bleeding and should be evaluated through endoscopic and laboratory investigations. Gastrointestinal malignancies, particularly colorectal and gastric cancers, must also be ruled out, as these conditions can

produce similar hematologic and gastrointestinal symptoms [5]. Helminthic infections beyond hookworm also present diagnostic challenges due to overlapping clinical and laboratory features. Ascariasis, schistosomiasis, and strongyloidiasis can all cause gastrointestinal discomfort, eosinophilia, and systemic manifestations, requiring stool microscopy, serologic testing, or imaging for differentiation. Cutaneous findings associated with hookworm, such as erythematous tracks and migratory lesions, must also be distinguished from other dermatologic conditions. Contact dermatitis, migratory myiasis, scabies, and cercarial dermatitis may produce similar itching, erythema, or serpiginous patterns, but their etiology, exposure history, and lesion distribution help guide correct identification. Accurate differential diagnosis is critical to avoid mismanagement, particularly in endemic regions where multiple parasitic, infectious, and non-infectious conditions may coexist. A combination of clinical history, epidemiologic exposure, laboratory tests, and, when appropriate, imaging or endoscopic evaluation facilitates precise differentiation and targeted therapy [5].

Prognosis

Hookworm infections predominantly result in chronic morbidity rather than mortality, with the severity of clinical outcomes closely linked to the host's nutritional status, age, and parasite burden. In adults, persistent infection often leads to iron deficiency anemia and protein-energy malnutrition, which collectively reduce physical capacity and work productivity. This reduction in functional ability can exacerbate socioeconomic disparities, particularly in resource-limited settings, thereby perpetuating cycles of poverty and disease. Pregnant women represent a particularly vulnerable population, as increased iron demands during gestation magnify the risk of anemia. Maternal iron deficiency can adversely affect both maternal health and fetal development, potentially resulting in low birth weight, preterm delivery, and impaired neonatal outcomes [1][5]. Children, especially those in school-age groups, face additional consequences of hookworm infections. Chronic anemia and micronutrient deficiencies can impair cognitive function, reduce attention span, and hinder academic performance, with potential long-term implications for educational attainment and psychosocial development. Preschool children, while less frequently affected by severe anemia, remain susceptible to subtle nutritional deficits that may influence growth and immune competence. Emerging concerns regarding treatment efficacy have implications for prognosis. Mass drug administration campaigns, although effective in reducing worm burden temporarily, may be undermined by suboptimal cure rates and the risk of drug resistance. Reinfection remains a significant challenge in endemic regions, necessitating repeated or periodic

deworming strategies to sustain public health benefits. A longitudinal study involving 405 school children demonstrated a 25% reinfection rate for hookworms at 18 weeks post-treatment (95% CI: 15.5–36.6), highlighting the persistence of transmission in endemic settings [19]. The absence of robust data on long-term outcomes following deworming underscores the need for continued monitoring and the development of broad-spectrum anthelmintic agents, as well as evaluation of combination therapy strategies to improve sustained clinical and functional outcomes.

Complications

Hookworm infections primarily result in iron deficiency anemia, which is the most clinically significant complication. Chronic blood loss from the intestinal attachment sites of the adult worms depletes the host's iron stores, leading to microcytic hypochromic anemia, fatigue, reduced physical capacity, and impaired cognitive function, particularly in children and adolescents. In severe or prolonged infections, the anemia may become profound, necessitating medical interventions such as iron supplementation or, rarely, blood transfusions. Although uncommon, overt gastrointestinal bleeding can occur, typically associated with heavy worm burdens or preexisting mucosal lesions, which may exacerbate anemia and present with melena or hematochezia. Additional complications include cutaneous larvae migrans, which is caused by zoonotic hookworms that fail to penetrate beyond the superficial dermis, resulting in serpiginous, pruritic skin lesions. Pulmonary involvement, although less frequent, can manifest as eosinophilic pneumonia (Loeffler syndrome) during larval migration through the lungs, producing transient respiratory symptoms such as cough, wheezing, and dyspnea. These complications highlight the multisystemic impact of hookworm infections, underscoring the importance of timely diagnosis, treatment, and preventive measures [18].

Patient Education

Educating patients and communities about hookworm infection is essential for reducing its prevalence and mitigating associated morbidity. Mass drug administration campaigns have proven effective in lowering infection rates and overall parasite burden in endemic regions. These interventions typically use anthelmintic medications such as albendazole or mebendazole; however, reinfection frequently occurs once treatment ceases, highlighting the need for complementary preventive strategies [10][20]. Prevention relies heavily on behavioral and environmental modifications. Health education campaigns should emphasize proper sanitation, safe handling of food, access to clean drinking water, consistent hand hygiene, and wearing protective footwear when in contact with soil. These measures reduce exposure to infective larvae in the environment and interrupt the transmission cycle, particularly among children and other high-risk groups [10][20].

Research into hookworm vaccines is ongoing, aiming to provide long-term protection in highly endemic areas with severe disease burden. Vaccine candidates are designed to elicit neutralizing antibodies that disrupt the parasite's survival in the host gut and its blood-feeding activity. Although still in clinical trials, vaccination has the potential to complement existing interventions, particularly where reinfection rates are high and drug-based strategies are insufficient [1][15]. Beyond direct medical interventions, broader socioeconomic development is crucial. Reducing poverty, improving living conditions, and expanding access to education and healthcare significantly decrease hookworm prevalence. While these structural changes are challenging to implement, they have historically contributed more to controlling hookworm transmission than any medical intervention alone [7]. Educating patients and communities, combined with pharmacologic, immunologic, and socioeconomic measures, forms a comprehensive approach to controlling and eventually eliminating hookworm infection [15].

Other Issues

Hookworm infections remain one of the most neglected and underfunded tropical diseases globally, despite their widespread prevalence and significant impact on public health. Millions of individuals, primarily in low-income tropical and subtropical countries, are affected by these parasites, which perpetuate cycles of poverty, malnutrition, and morbidity. The main causative species in humans are *Ancylostoma duodenale* and *Necator americanus*, with other species such as *Ancylostoma ceylanicum*, *Ancylostoma caninum*, and *Ancylostoma braziliense* contributing to a smaller proportion of human infections [1]. The clinical presentation of hookworm infection is often asymptomatic, particularly in light infections, which complicates early detection and surveillance. When symptoms do manifest, they reflect the parasite's life cycle and affected organ systems. Cutaneous manifestations, including localized erythema or 'ground itch,' occur during skin penetration. Pulmonary migration of larvae may produce respiratory symptoms such as cough, wheezing, or eosinophilic pneumonia. The most significant and clinically relevant feature is iron deficiency anemia resulting from chronic intestinal blood loss, which may rarely progress to overt gastrointestinal bleeding. Additional sequelae include hypoalbuminemia and malnutrition, which can exacerbate morbidity, particularly in children and pregnant women [1][5]. Diagnosis relies on a combination of epidemiological knowledge, clinical evaluation, and laboratory confirmation. Stool microscopy remains the primary diagnostic tool, allowing visualization of hookworm eggs, while concentration techniques such as Kato-Katz are used in epidemiological studies to estimate infection intensity. Serologic assays and eosinophilia may

support the diagnosis, though they lack specificity and sensitivity in isolation [1][10].

Management primarily involves pharmacological treatment with single-dose albendazole or multi-day regimens of mebendazole. Pyrantel pamoate and other alternatives are occasionally used where resistance or intolerance occurs. Mass drug administration programs have demonstrated efficacy in reducing prevalence in endemic regions, yet reinfection remains a persistent challenge, necessitating repeated interventions [1][16]. Prevention remains centered on public health measures, including health education, improved sanitation, access to clean water, and consistent use of footwear. Efforts to develop vaccines are ongoing, with the aim of providing long-term protection in highly endemic areas, though no licensed vaccine is yet available [1][15]. Addressing hookworm infections requires an integrated approach that combines pharmacologic therapy, preventive education, environmental sanitation, and broader socioeconomic development to break the cycle of infection and disease burden.

Enhancing Healthcare Team Outcomes

The effective diagnosis and management of hookworm infections require a coordinated interprofessional approach that integrates the expertise of general practitioners, gastroenterologists, infectious disease specialists, and histopathologists. Patients often present with non-specific symptoms such as fatigue, pallor, or generalized malaise, which may mask the underlying parasitic infection. In non-endemic regions, clinicians must maintain a high index of suspicion, carefully evaluating the patient's travel history, dietary habits, and exposure risks, while laboratory confirmation relies on the analysis of stool samples by experienced histopathologists. Referral to specialists, particularly infectious disease experts or gastroenterologists, is critical when presentations are atypical or when complications such as severe anemia or gastrointestinal bleeding arise. This ensures accurate diagnosis, appropriate staging of infection, and individualized treatment planning [1]. Treatment delivery involves active collaboration between pharmacists, nurses, and physicians. Pharmacists play a crucial role in patient education regarding adherence, drug interactions, and potential side effects. Infectious disease pharmacists can provide specialized consultation on dosing regimens, recommend alternative therapies in cases of treatment failure, and verify that prescribed anthelmintic medications do not interfere with concurrent therapies. Nurses contribute by monitoring patient response, documenting clinical progress, and identifying early signs of adverse reactions. They also provide education to travelers and at-risk populations regarding hygiene practices, safe water consumption, and protective measures when in endemic environments. Nursing input ensures that treatment

outcomes are continually evaluated and communicated to the broader care team to facilitate timely adjustments in therapy [1][10]. Prevention and public health interventions require collaboration among public health specialists, primary care providers, and local authorities. Initiatives aimed at improving sanitation, providing access to clean water, and promoting community awareness are essential for reducing transmission and reinfection. In endemic regions, hookworm infection represents a broader population health challenge, necessitating the formation of a functional interprofessional team that includes environmental health officers, community health workers, and educators. Through coordinated efforts, the team can optimize both individual patient outcomes and population-level health, ensuring comprehensive control measures and sustained reduction in disease burden [1][5].

Conclusion:

Hookworm infection remains a significant yet underrecognized contributor to global morbidity, particularly in resource-limited tropical and subtropical regions. Although mortality is rare, the chronic consequences—most notably iron-deficiency anemia, protein-energy malnutrition, impaired growth, and reduced cognitive performance—exert a profound impact on individual health and socioeconomic productivity. Children and pregnant women bear the greatest burden, with infections exacerbating nutritional deficiencies and perpetuating intergenerational cycles of poverty and disease. Effective anthelmintic therapies such as albendazole and mebendazole have demonstrated substantial benefits in reducing worm burden and anemia; however, high reinfection rates limit their long-term effectiveness when used in isolation. These challenges underscore the importance of comprehensive control strategies that integrate pharmacologic treatment with nutritional supplementation, improved sanitation, access to clean water, consistent use of footwear, and community-based health education. Mass drug administration programs have shown promise but require sustained implementation and monitoring to maintain gains. Furthermore, emerging concerns regarding drug resistance and persistent transmission highlight the need for continued research into alternative therapies and vaccine development. Ultimately, meaningful and lasting reductions in hookworm prevalence will depend not only on medical interventions but also on broader socioeconomic development. An integrated, interprofessional public health approach remains essential for controlling hookworm infection and mitigating its long-term health and societal consequences.

References:

1. Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, Croese J, Bethony JM.

Hookworm infection. *Nature reviews. Disease primers.* 2016 Dec 8:2():16088. doi: 10.1038/nrdp.2016.88.

2. Wei KY, Yan Q, Tang B, Yang SM, Zhang PB, Deng MM, Lü MH. Hookworm Infection: A Neglected Cause of Overt Obscure Gastrointestinal Bleeding. *The Korean journal of parasitology.* 2017 Aug;55(4):391-398. doi: 10.3347/kjp.2017.55.4.391.
3. Periago MV, Bethony JM. Hookworm virulence factors: making the most of the host. *Microbes and infection.* 2012 Dec;14(15):1451-64. doi: 10.1016/j.micinf.2012.09.002.
4. Albonico M, Savioli L. Hookworm: a neglected resurgent infection. *BMJ (Clinical research ed.).* 2017 Oct 24:359():j4813. doi: 10.1136/bmj.j4813.
5. Brooker S, Bethony J, Hotez PJ. Human hookworm infection in the 21st century. *Advances in parasitology.* 2004;58():197-288
6. Parija SC, Chidambaram M, Mandal J. Epidemiology and clinical features of soil-transmitted helminths. *Tropical parasitology.* 2017 Jul-Dec;7(2):81-85. doi: 10.4103/tp.TP_27_17.
7. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S. Hookworm infection. *The New England journal of medicine.* 2004 Aug 19;351(8):799-807
8. Jiraanankul V, Aphijirawat W, Mungthin M, Khositnithikul R, Rangsin R, Traub RJ, Piyaraj P, Naaglor T, Taamasri P, Leelayoova S. Incidence and risk factors of hookworm infection in a rural community of central Thailand. *The American journal of tropical medicine and hygiene.* 2011 Apr;84(4):594-8. doi: 10.4269/ajtmh.2011.10-0189.
9. Pearson MS, Tribolet L, Cantacessi C, Periago MV, Valero MA, Jariwala AR, Hotez P, Diemert D, Loukas A, Bethony J. Molecular mechanisms of hookworm disease: stealth, virulence, and vaccines. *The Journal of allergy and clinical immunology.* 2012 Jul;130(1):13-21. doi: 10.1016/j.jaci.2012.05.029.
10. Jourdan PM, Lamberton PHL, Fenwick A, Addiss DG. Soil-transmitted helminth infections. *Lancet (London, England).* 2018 Jan 20;391(10117):252-265. doi: 10.1016/S0140-6736(17)31930-X.
11. Feldmeier H, Schuster A. Mini review: Hookworm-related cutaneous larva migrans. *European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology.* 2012 Jun;31(6):915-8. doi: 10.1007/s10096-011-1404-x.
12. Loukas A, Prociv P. Immune responses in hookworm infections. *Clinical microbiology reviews.* 2001 Oct;14(4):689-703, table of contents
13. Wu X, Chen H, Gan T, Chen J, Ngo CW, Peng Q. Automatic Hookworm Detection in Wireless Capsule Endoscopy Images. *IEEE transactions on medical imaging.* 2016 Jul;35(7):1741-52. doi: 10.1109/TMI.2016.2527736.
14. Keiser J, Utzinger J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. *JAMA.* 2008 Apr 23;299(16):1937-48. doi: 10.1001/jama.299.16.1937.
15. Hotez PJ, Beaumier CM, Gillespie PM, Strych U, Hayward T, Bottazzi ME. Advancing a vaccine to prevent hookworm disease and anemia. *Vaccine.* 2016 Jun 3:34(26):3001-3005. doi: 10.1016/j.vaccine.2016.03.078.
16. Brooker S, Hotez PJ, Bundy DA. Hookworm-related anaemia among pregnant women: a systematic review. *PLoS neglected tropical diseases.* 2008 Sep 17;2(9):e291. doi: 10.1371/journal.pntd.0000291.
17. Friis H, Mwaniki D, Omondi B, Munui E, Thiong'o F, Ouma J, Magnussen P, Geissler PW, Michaelsen KF. Effects on haemoglobin of multi-micronutrient supplementation and multi-helminth chemotherapy: a randomized, controlled trial in Kenyan school children. *European journal of clinical nutrition.* 2003 Apr;57(4):573-9
18. Sharma V, Gunjan D, Chhabra P, Sharma R, Rana SS, Bhasin DK. Gastrointestinal bleeding in the tropics: Look for the hookworm. *Tropical doctor.* 2017 Jan;47(1):48-51
19. Speich B, Moser W, Ali SM, Ame SM, Albonico M, Hattendorf J, Keiser J. Efficacy and reinfection with soil-transmitted helminths 18-weeks post-treatment with albendazole-ivermectin, albendazole-mebendazole, albendazole-oxantel pamoate and mebendazole. *Parasites & vectors.* 2016 Mar 2;9():123. doi: 10.1186/s13071-016-1406-8.
20. Bieri FA, Gray DJ, Williams GM, Raso G, Li YS, Yuan L, He Y, Li RS, Guo FY, Li SM, McManus DP. Health-education package to prevent worm infections in Chinese schoolchildren. *The New England journal of medicine.* 2013 Apr 25;368(17):1603-12. doi: 10.1056/NEJMoa1204885