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Abstract  
Background: Wearable biosensors integrated with artificial intelligence (AI) have significantly advanced continuous health 

monitoring by enabling real-time, personalized, and non-invasive assessment of physiological and behavioral parameters 

beyond traditional clinical environments. These technologies support disease management, early diagnosis, preventive care, 

and personalized interventions across diverse health domains. 

Aim: This review aims to summarize recent advancements in AI-enabled wearable biosensors, focusing on their applications, 

methodological innovations, challenges, and future directions in biomedical engineering. 

Methods: A comprehensive narrative review of recent scientific literature was conducted, analyzing developments in 

wearable sensor technologies, AI methodologies (including machine learning, deep learning, edge AI, federated learning, and 

human-in-the-loop systems), and their applications across metabolic, cardiovascular, neurological, and neonatal health 

domains. 

Results: AI-powered wearable biosensors demonstrate high potential for continuous health monitoring, predictive analytics, 

and personalized intervention. Applications include glucose monitoring, cardiovascular risk detection, gait and motor 

assessment, and neonatal surveillance. Advances in edge computing and federated learning enhance privacy and real-time 

responsiveness, while digital twins and large language models improve interpretability and decision support. 

Conclusion: AI-enabled wearable biosensors are transforming healthcare toward predictive, proactive, and personalized 

models of care, although challenges related to data privacy, robustness, biological integration, and regulation remain. 

Keywords: Wearable biosensors; Artificial intelligence; Continuous health monitoring; Edge computing; Personalized 

medicine. 
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Introduction 

Wearable sensors and embedded systems are 

transforming healthcare by enabling continuous 

monitoring of physiological parameters beyond the 

confines of traditional clinical environments. These 

technologies provide real-time data collection in 

naturalistic settings, allowing healthcare providers 

and researchers to capture dynamic health trends that 

were previously difficult to observe. Applications of 

wearable sensors span disease diagnosis, chronic 

disease management, preventative healthcare, fitness 

tracking, and personalized health interventions, 

highlighting their versatility and growing relevance 

in modern healthcare delivery [1,2]. Their ability to 

continuously monitor vital signs, activity levels, and 

other biomarkers positions them as crucial tools for 

both clinical and non-clinical settings. A major 

innovation in this space is the integration of Artificial 

Intelligence (AI) with wearable biosensors. AI 

enhances the capabilities of these devices by enabling 

complex data analysis, pattern recognition, and 

predictive modeling in real time. Machine learning 

algorithms can process continuous streams of sensor 

data to detect anomalies, forecast potential health 

events, and generate actionable insights tailored to 

individual patients [3]. This integration has 
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significant implications for personalized medicine, as 

AI-driven wearable devices can adapt to each user’s 

unique physiological profile, lifestyle, and health 

history, offering tailored interventions and 

recommendations [4]. Such adaptability enhances the 

precision of monitoring, improves early detection of 

potential complications, and facilitates proactive 

healthcare management. 

Despite their potential, AI-powered 

wearable sensors face significant challenges. One 

primary concern is model robustness, as sensor data 

can exhibit variability due to environmental factors, 

user behavior, or differences across populations, 

potentially impacting algorithmic performance [5]. 

Developing models that maintain accuracy under 

such distribution shifts is essential. Additionally, 

creating personalized models that adapt over time to 

individual users requires continuous learning 

capabilities and effective calibration strategies. The 

incorporation of edge AI—processing data locally on 

the device—and human-in-the-loop systems further 

complicates design, demanding seamless interaction 

between the device and the user to optimize 

predictions based on feedback [6]. Edge computing 

offers low-latency analysis and preserves data 

privacy, but it necessitates efficient algorithms 

capable of operating on limited hardware resources 

without compromising accuracy. This review 

examines recent advancements in AI-powered 

wearable biosensors and bioinstrumentation, focusing 

on innovations in model personalization, robustness, 

and edge computing. It explores how AI facilitates 

real-time analysis, anomaly detection, and predictive 

capabilities, and evaluates strategies to integrate 

human feedback to enhance system performance. 

Additionally, it addresses the broader implications of 

these technologies for clinical decision-making, 

patient engagement, and healthcare delivery. By 

synthesizing current developments, challenges, and 

future directions, this review highlights the 

transformative potential of AI-driven wearable 

sensors in enabling continuous, individualized, and 

predictive healthcare. The discussion underscores the 

importance of interdisciplinary collaboration between 

engineers, data scientists, and clinicians to design 

wearable systems that are both technologically 

sophisticated and clinically meaningful. 

Recent Advancements in Mobile Health 

The proliferation of artificial intelligence 

(AI) and mobile technologies has catalyzed a 

paradigm shift in healthcare, positioning mobile 

health (mHealth) as an integral component of daily 

life. Modern mHealth applications leverage wearable 

devices, smartwatches, and implantable biosensors to 

provide continuous monitoring of physiological 

parameters, facilitating real-time assessment of health 

status and enabling early detection of potential 

complications. Consumer adoption of these devices 

reflects their growing influence; for example, a 2019 

report indicated that approximately 21 percent of 

American adults regularly use smartwatches, 

underscoring the mainstream integration of wearable 

technologies into personal health management [13]. 

Recent innovations in wearable devices have 

significantly enhanced their functionality. Advanced 

sensors now enable clinical-grade measurement of 

vital signs, including heart rate, blood oxygen 

saturation, and electrocardiograms (ECGs), offering 

unprecedented accuracy outside traditional clinical 

settings [14,15]. Integration of AI and machine 

learning has transformed these devices from passive 

data collectors into intelligent health assistants 

capable of analyzing longitudinal data, detecting 

anomalies such as arrhythmias, and predicting trends 

over time [9]. Beyond cardiovascular monitoring, 

wearables now encompass stress detection, sleep 

quality evaluation, menstrual health tracking, and 

physical activity assessment, reflecting a holistic 

approach to personal health management [16,17,18]. 

Improvements in device design, including extended 

battery life, water resistance, and ergonomics, further 

enhance usability and encourage consistent adoption. 

 
Fig. 1: AI-based Wearable Sensors.  

A particularly notable advancement is the 

development and widespread adoption of Continuous 

Glucose Monitors (CGMs), which have redefined 

diabetes management. CGMs employ miniature 

sensors implanted subcutaneously to measure 

interstitial glucose levels continuously, eliminating 

the need for frequent fingerstick testing. The real-

time monitoring capability allows users to track 
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glucose fluctuations throughout the day and night, 

facilitating timely interventions and lifestyle 

adjustments. Advanced CGMs integrate predictive 

alerts for hypo- and hyperglycemia, enabling 

proactive management of glycemic levels. 

Additionally, seamless connectivity with 

smartphones, insulin pumps, and health applications 

empowers users to make informed, data-driven 

decisions. Regulatory recognition, including the U.S. 

Food and Drug Administration (FDA) approval of 

specific CGMs for over-the-counter sales, has 

increased accessibility, extending their utility beyond 

clinical populations to the general public [19]. This 

development exemplifies the transition of mHealth 

devices from therapeutic tools to preventive and 

wellness-oriented technologies. The operational 

framework of contemporary mHealth systems is often 

conceptualized around three pillars: monitoring, 

health assessment, and intervention. The monitoring 

pillar focuses on continuous acquisition of 

physiological and behavioral data through wearable 

and implantable biosensors. AI algorithms process 

these data streams in real time, enabling rapid 

detection of deviations from normative patterns. The 

health assessment pillar leverages advanced 

computational techniques, including federated 

learning, transfer learning, and continual learning, to 

recognize patterns, detect anomalies, and predict 

potential health events while maintaining model 

robustness across heterogeneous populations. This 

pillar emphasizes the adaptation of AI models to 

individual users, ensuring personalized and context-

sensitive analysis. 

The intervention pillar translates AI-

generated insights into actionable strategies. These 

include personalized health recommendations, 

clinical decision support, and adaptive interventions 

tailored to the individual’s needs. Integration of 

human-in-the-loop systems allows clinicians or 

patients to provide feedback that refines algorithmic 

predictions, while digital twin technologies create 

virtual representations of the user’s physiological 

state to simulate interventions and predict outcomes. 

This synergistic approach ensures that mHealth 

platforms do not merely record data but actively 

contribute to health optimization and proactive 

management of chronic conditions. Collectively, 

these advancements illustrate the transformative 

potential of AI-driven mHealth technologies. By 

enabling continuous, personalized, and predictive 

health monitoring, wearables and biosensors bridge 

the gap between clinical care and everyday life. They 

empower users to make informed decisions, facilitate 

early intervention, and reduce the burden on 

healthcare systems by promoting preventive care. As 

sensor technology, AI methodologies, and data 

integration techniques continue to evolve, mHealth is 

poised to become an essential component of precision 

medicine, offering scalable solutions for 

individualized health management and improved 

clinical outcomes. The integration of AI, advanced 

sensors, and wearable technology exemplifies a shift 

from episodic, reactive care toward continuous, 

proactive, and personalized healthcare delivery. This 

trajectory emphasizes the role of real-time data 

acquisition, predictive analytics, and adaptive 

interventions in promoting population health, 

reducing disease burden, and enhancing patient 

engagement, highlighting the transformative role of 

mobile health in the future of medicine. 

Applications of Biosensors 

Wearable biosensors have emerged as 

transformative tools in healthcare, enabling 

continuous and non-invasive monitoring of 

physiological, behavioral, and biochemical 

parameters. Their integration into mobile and 

wearable platforms has created opportunities for real-

time health assessment and personalized intervention, 

bridging the gap between traditional episodic clinical 

visits and continuous patient-centered care. Modern 

biosensors are capable of measuring a wide array of 

signals, including cardiac activity, blood oxygen 

saturation, electroencephalography (EEG), 

electromyography (EMG), galvanic skin response, 

glucose levels, hydration status, and motion 

parameters, among others. These capabilities allow 

for comprehensive monitoring across multiple 

domains of health and wellness. By capturing 

continuous longitudinal data, biosensors provide 

clinicians and researchers with insights into trends, 

anomalies, and early indicators of disease progression 

or deterioration, facilitating timely and precise 

intervention. Physiological and behavioral health 

monitoring is among the most extensively studied 

applications of wearable biosensors. Devices 

equipped with electrocardiogram (ECG), 

photoplethysmography (PPG), and other cardiac 

sensors can detect heart rate variability, arrhythmias, 

and cardiovascular anomalies with high sensitivity 

and specificity [9]. Machine learning (ML) and deep 

learning (DL) algorithms applied to these data 

streams enable early detection of cardiovascular 

events and behavioral stress indicators, while also 

providing feedback for lifestyle interventions [10,15]. 



Artificial Intelligence–Enabled Wearable Sensors for Continuous Health Monitoring..... 
_____________________________________________________________________________________________________________ 

________________________________________________ 

Saudi J. Med. Pub. Health Vol. 2 No. 2 (2025) 

 

2874 

Sleep and stress monitoring are also enhanced 

through wearable sensors that capture heart rate, 

movement, and skin conductance, allowing for 

comprehensive assessment of sleep quality, circadian 

rhythms, and stress-related physiological responses 

[16,18,20]. Biosensors integrated with substance use 

monitoring further expand the capability for 

behavioral intervention, providing real-time feedback 

for individuals in recovery or under medical 

supervision [21,22,23,24]. 

Gait and motor function monitoring 

represents another critical domain for biosensor 

applications. Inertial measurement units (IMUs) and 

accelerometers enable precise tracking of movement 

patterns, posture, and step dynamics. Studies have 

demonstrated that transformer-based AI models 

applied to IMU data can significantly reduce false 

positives in gait irregularity detection, particularly in 

Parkinson’s disease patients experiencing freezing of 

gait (FoG) episodes [11,25,26]. Such systems provide 

both quantitative assessment for clinicians and real-

time alerts for patients, improving mobility 

management and reducing the risk of falls. 

Continuous monitoring of motor function also 

facilitates rehabilitation and therapeutic evaluation, 

allowing interventions to be tailored to individual 

progress. Neurodegenerative chronic diseases, 

including Parkinson’s and Alzheimer’s disease, are 

another area where biosensors demonstrate 

substantial utility. By capturing motion, 

electrophysiological, and behavioral data, wearables 

can provide early markers of disease onset, track 

symptom progression, and monitor treatment efficacy 

[11,25,26,27]. AI-driven analytics applied to 

biosensor data allow for detection of subtle changes 

in motor function, cognitive performance, or 

physiological responses, supporting both clinical 

decision-making and research into disease-modifying 

therapies. Continuous and non-invasive monitoring is 

particularly valuable in neurodegenerative conditions 

where symptoms can fluctuate, and early intervention 

significantly impacts patient quality of life. Obesity, 

metabolic disorders, and hydration health constitute a 

rapidly expanding application domain for biosensors. 

Continuous glucose monitors (CGMs), sweat sensors, 

and multi-parameter metabolic sensors provide 

insights into glucose levels, electrolyte balance, and 

metabolic responses in real time [9,10,12,29,30,31]. 

AI-powered predictive models allow for trend 

analysis, early warning of hypo- or hyperglycemia, 

and guidance for dietary or pharmacological 

interventions. Field studies among workers using 

sweat sensors with regression-based AI models have 

demonstrated the capability for real-time sodium 

alerts, improving hydration management and 

reducing risks of heat-related illness [12]. Similarly, 

wearable devices for weight management and 

metabolic monitoring facilitate lifestyle interventions, 

adherence tracking, and long-term health outcomes. 

Maternal, neonatal, and women’s health also 

benefit from wearable biosensors. Devices capable of 

tracking fetal heart rate, maternal blood pressure, and 

uterine activity provide early detection of 

complications, support prenatal care, and improve 

neonatal outcomes [17,35,36,37]. Wearable 

technologies in this context allow for home 

monitoring, reducing the need for frequent hospital 

visits while maintaining clinical oversight. 

Integration with AI facilitates individualized 

recommendations and predictive alerts, ensuring both 

maternal and neonatal safety. Overall, wearable 

biosensors have transformed health monitoring across 

multiple domains by combining continuous data 

acquisition, AI-driven analysis, and personalized 

intervention. They provide actionable insights into 

physiological and behavioral health, motor function, 

neurodegenerative disease management, metabolic 

and hydration status, and maternal and neonatal care. 

Studies spanning public datasets, field trials, and 

clinical observations confirm the accuracy, usability, 

and potential of these devices in real-world settings 

[9,10,11,12]. As AI algorithms and sensor 

technologies continue to advance, biosensors are 

poised to become even more integral to personalized 

healthcare, preventive medicine, and clinical 

decision-making, highlighting their critical role in the 

future of biomedical engineering and digital health. 

Metabolic and Neonatal Health 

Wearable biosensors have emerged as 

transformative tools in metabolic health, enabling 

continuous, personalized monitoring of physiological 

and biochemical parameters. In recent years, their 

application has expanded significantly in the 

management of chronic metabolic conditions such as 

diabetes, obesity, and electrolyte imbalances. 

Continuous glucose monitors (CGMs) represent one 

of the most established applications of biosensors in 

metabolic health. By providing real-time data on 

interstitial glucose concentrations, CGMs allow 

individuals and clinicians to track glucose 

fluctuations throughout the day and night, facilitating 

more accurate insulin dosing, dietary adjustments, 
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and activity management. This real-time feedback 

has been shown to improve glycemic control, reduce 

episodes of hypoglycemia, and support better long-

term outcomes in both Type 1 and Type 2 diabetes 

[9]. Advances in artificial intelligence (AI) have 

further augmented the utility of metabolic biosensors. 

Machine learning and deep learning algorithms can 

analyze large, continuous datasets from CGMs and 

other metabolic sensors to identify trends, predict 

glucose excursions, and generate actionable 

recommendations. Recent work has demonstrated 

that large language model (LLM)-based 

counterfactual generation, for instance using models 

like GPT-4o-mini, can improve explainability and 

robustness in metabolic health prediction tasks 

[42,43]. By generating interpretable scenarios and 

highlighting potential deviations from predicted 

trajectories, LLMs enhance patient understanding and 

clinician trust in AI-driven recommendations. 

Beyond glucose, biosensors are increasingly used to 

monitor other metabolic biomarkers, including 

lactate, ketone bodies, and electrolyte concentrations. 

These measurements support personalized 

interventions in diet, exercise, and hydration 

management, enabling precision medicine 

approaches for obesity, metabolic syndrome, and 

athletic performance optimization [9]. In neonatal 

health, biosensors provide critical support in 

monitoring the fragile physiology of newborns, 

particularly those admitted to neonatal intensive care 

units (NICUs). Continuous monitoring of vital signs 

such as heart rate, oxygen saturation, and respiration 

is essential for early detection of hypoxia, 

bradycardia, apnea, or other adverse events. 

Traditional intermittent monitoring methods often 

miss transient episodes of instability, whereas 

wearable and embedded biosensors allow 

uninterrupted assessment, alerting clinicians to 

immediate risks and enabling timely intervention 

[17]. These devices also facilitate long-term 

monitoring of growth parameters and metabolic 

status in premature or at-risk infants, reducing the 

likelihood of complications and supporting 

individualized care plans. Integration of AI in 

neonatal biosensors enables predictive analytics, 

where subtle trends in physiological data can indicate 

impending deterioration, guiding preemptive clinical 

action. AI-driven models can also assist in optimizing 

ventilator settings, fluid administration, and other 

therapeutic interventions by analyzing continuous 

multimodal data streams from biosensors. 

Cardiovascular Health 

In cardiovascular health, wearable 

biosensors have become essential for proactive 

monitoring and early detection of pathophysiological 

changes. Devices such as smartwatches, ECG 

patches, chest straps, and photoplethysmography 

(PPG)-enabled sensors allow continuous, non-

invasive tracking of heart rate, blood pressure, 

oxygen saturation, and other hemodynamic 

parameters. These data streams provide insights into 

the cardiovascular system’s status in real time, 

supporting early identification of arrhythmias, 

hypertension, and signs of heart failure [15,23]. AI-

enhanced wearable systems apply advanced 

algorithms to detect anomalies, predict adverse 

events, and provide users with personalized feedback 

for lifestyle modifications or medical interventions. 

Continuous monitoring empowers patients to engage 

actively in their cardiovascular health management, 

reducing hospitalizations, and enabling clinicians to 

intervene before complications escalate. Predictive 

models built on longitudinal cardiovascular data also 

enable stratification of patient risk, supporting 

tailored care plans and enhancing precision medicine 

initiatives. 

Neurological and Cognitive Health 

Biosensors are revolutionizing neurological 

and cognitive health monitoring, particularly in 

chronic neurodegenerative disorders. In Parkinson’s 

disease, wearable sensors equipped with 

accelerometers, gyroscopes, and inertial measurement 

units (IMUs) capture motor symptoms such as 

tremors, rigidity, bradykinesia, and freezing of gait 

(FoG) episodes [11,26,44]. The continuous capture of 

motion data allows clinicians to track disease 

progression, assess therapeutic efficacy, and adjust 

medication schedules with higher precision than 

traditional clinic-based assessments. AI algorithms 

applied to these datasets reduce false-positive 

detections, identify patterns of deterioration, and 

provide real-time alerts for patients at risk of falls. In 

Alzheimer’s disease and other cognitive disorders, 

biosensors facilitate monitoring of sleep patterns, 

activity levels, physiological stress markers, and 

cognitive engagement. Changes in these parameters 

can provide early indicators of disease progression, 

guide intervention strategies, and enable evaluation 

of treatment efficacy. For instance, heart rate 

variability, electrodermal activity, and movement 

patterns tracked via wearable sensors provide 

objective measures of stress, agitation, and sleep 

quality, which are critical for patients with cognitive 

impairments. Integration of AI enables the synthesis 
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of these multimodal datasets into actionable insights 

for both caregivers and clinicians, improving patient 

safety and quality of life. 

Methodologies and Biomarkers 

Biosensor applications rely on diverse 

methodologies to capture physiological and 

behavioral signals, translating them into meaningful 

health insights. Table 3 summarizes the primary 

methodologies and their associated biomarkers. 

Human activity recognition (HAR) employs motion 

sensors, accelerometers, gyroscopes, and heart rate 

data to monitor general behavior, sleep, and stress 

levels [10,27,38,39,40,41]. Gait and motor function 

analysis utilizes step frequency, movement 

symmetry, and irregular biometric signals to detect 

deviations associated with neurological disorders 

[11,25,26,27]. Continuous glucose monitoring and 

hydration assessment involve direct measurement of 

blood glucose levels, lactate, ketones, and fluid intake 

metrics, supporting metabolic health interventions 

[9,12,30,31]. Collectively, these methodologies 

demonstrate the breadth of biosensor applications 

across health domains, from metabolic and 

cardiovascular monitoring to neurological and 

neonatal care. AI integration enhances the predictive 

and adaptive capabilities of these devices, enabling 

real-time intervention, personalized health 

recommendations, and longitudinal tracking of 

disease progression. The combination of biosensors 

and AI facilitates precision healthcare, allowing 

clinicians to tailor treatment plans, improve patient 

adherence, and optimize outcomes. The convergence 

of wearable biosensors, continuous monitoring, and 

AI-driven analytics represents a significant 

advancement in healthcare delivery. For metabolic 

health, CGMs and AI models provide real-time 

glycemic control, risk prediction, and personalized 

lifestyle guidance. In neonatal care, continuous 

monitoring of vital parameters combined with 

predictive AI allows early detection of life-

threatening events, improving survival and 

developmental outcomes. Cardiovascular and 

neurological applications further illustrate the 

transformative potential of biosensors in chronic 

disease management, rehabilitation, and proactive 

health maintenance. By enabling continuous, non-

invasive, and data-driven assessment, biosensors are 

shaping the future of personalized medicine, offering 

scalable solutions for real-time health monitoring, 

early intervention, and improved patient outcomes. In 

conclusion, biosensors serve as foundational 

components of modern healthcare ecosystems. Their 

applications in metabolic, neonatal, cardiovascular, 

and neurological health highlight their versatility, 

while integration with AI ensures real-time, 

predictive, and personalized health management. The 

ongoing evolution of biosensor technology, in 

combination with sophisticated computational 

models, promises to expand their utility further, 

creating opportunities for preventive care, precision 

medicine, and enhanced quality of life across diverse 

patient populations. 

Challenges with AI-Powered Biosensors 

AI-powered biosensors represent a 

significant advancement in modern healthcare, 

providing continuous monitoring, early diagnosis, 

and personalized health management. Despite their 

promise, these systems face a range of technical, 

operational, and regulatory challenges that must be 

addressed to ensure safe, effective, and scalable 

deployment. Central among these challenges are 

issues related to data privacy, model personalization, 

robustness, integration with biological systems, and 

regulatory compliance. A primary concern in AI-

powered biosensors is data privacy. Traditional 

machine learning methods require centralizing user 

data in cloud servers for model training, which poses 

significant security and privacy risks. Health data are 

particularly sensitive, and unauthorized access could 

lead to serious consequences for individuals. 

Federated learning has emerged as a potential 

solution to this challenge. In this approach, models 

are trained locally on individual devices, such as 

smartphones, smartwatches, or wearable biosensors, 

and only model updates, rather than raw data, are 

transmitted to central servers. This decentralized 

methodology allows AI models to learn 

collaboratively across users while maintaining strict 

privacy standards, ensuring sensitive health 

information remains secure. In conjunction with 

federated learning, Edge-AI techniques are 

transforming the way data from biosensors are 

processed. Edge-AI enables the deployment of AI 

algorithms directly on local devices, reducing 

reliance on cloud infrastructure. This local processing 

minimizes latency, enhances privacy, reduces 

bandwidth usage, and allows for critical real-time 

decisions in health monitoring, autonomous vehicles, 

or industrial automation [44,45]. Edge-AI also 

supports offline operation, allowing devices to 

function in areas with limited or unreliable internet 

connectivity. Specialized hardware, such as AI 
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accelerators, combined with optimized neural 

network architectures, ensures that AI computations 

are feasible within the resource constraints of 

wearable biosensors. 

Device heterogeneity presents another 

significant challenge. Variations in sensor types, 

hardware quality, environmental conditions, and user 

behavior can result in inconsistent data streams that 

reduce model performance. Transfer learning offers a 

solution by leveraging pre-trained models to adapt 

quickly to new devices or contexts without requiring 

full retraining. This approach allows AI models to 

generalize across different populations and hardware 

while maintaining accuracy. Additionally, biosensors 

often generate noisy, incomplete, or imbalanced 

datasets, particularly when detecting rare but critical 

health events. Such data inconsistencies can 

significantly impair the predictive accuracy and 

reliability of AI models, making robust data 

preprocessing, anomaly detection, and augmentation 

strategies essential [25,38,39]. Adaptability and 

interpretability are critical for AI-powered biosensors 

deployed in dynamic real-world settings. 

Physiological signals are influenced by numerous 

factors, including aging, lifestyle changes, illness, or 

stress. Continual learning is a method that enables 

models to update incrementally with new data while 

retaining previously acquired knowledge, preventing 

catastrophic forgetting. Human-in-the-loop systems 

further enhance adaptability by incorporating real-

time feedback from users or expert annotations, 

improving model reliability and increasing user trust. 

For example, users can confirm or correct alerts, 

while clinicians can annotate complex physiological 

signals, ensuring that AI predictions remain clinically 

meaningful. Combining federated learning, continual 

learning, transfer learning, and human-in-the-loop 

methodologies allows AI-powered biosensors to 

achieve higher robustness, personalization, and 

security in health monitoring applications [27]. 

Despite algorithmic advancements, the integration of 

wearable electronics with biological systems remains 

a fundamental challenge. Biological tissues are 

flexible, soft, hydrated, and dynamic, whereas most 

wearable electronics are rigid, brittle, dry, and 

optimized for controlled conditions. This mismatch 

introduces mechanical, functional, and operational 

barriers. Table 4 summarizes these differences, 

highlighting the need for innovative materials, design 

strategies, and fabrication techniques to bridge the 

gap between biological and electronic systems. 

Flexible electronics, biocompatible polymers, and 

hybrid bioelectronic interfaces are being investigated 

to improve comfort, signal fidelity, and long-term 

wearability, but achieving reliable, long-term 

integration remains an open challenge. 

Operationally, wearable biosensors must 

cope with dynamic environmental conditions, 

including motion artifacts, temperature fluctuations, 

and variations in sweat composition or skin 

hydration. These factors introduce signal noise and 

variability that can degrade AI model performance. 

Advanced signal processing and AI techniques, such 

as denoising algorithms, adaptive filtering, and 

context-aware learning, are essential to ensure 

accurate measurements in real-world settings. 

Regulatory and reimbursement challenges further 

complicate the widespread adoption of AI-powered 

biosensors. Regulatory frameworks for medical 

devices are evolving to accommodate AI algorithms, 

but clear, unified standards for evaluating safety, 

efficacy, and fairness are lacking. Agencies such as 

the FDA require rigorous clinical evidence, 

algorithmic explainability, and reproducibility before 

approving AI-driven medical devices [46]. This 

regulatory scrutiny is essential to ensure patient 

safety but can significantly delay the translation of 

innovations into clinical practice. On the 

reimbursement side, fragmented policies and the 

absence of standardized billing codes create financial 

uncertainty. Insurers often demand longitudinal 

evidence of clinical benefits and cost-effectiveness, 

which can be expensive and time-consuming to 

obtain, limiting the scalability of AI-powered 

biosensors [47]. Finally, interpretability and user trust 

remain critical hurdles. Users and clinicians may be 

hesitant to rely on AI-driven recommendations 

without clear explanations of how predictions are 

generated. Explainable AI (XAI) techniques are 

increasingly integrated with biosensor platforms to 

provide transparent reasoning, confidence scores, and 

actionable insights. This not only improves user 

engagement but also enhances clinical acceptance, 

facilitating more effective adoption in real-world 

healthcare scenarios. 

In summary, AI-powered biosensors face 

multidimensional challenges spanning technical, 

operational, biological, and regulatory domains. Data 

privacy concerns are addressed through federated 

learning and Edge-AI, while heterogeneity and noisy 

data are mitigated with transfer learning and 

advanced preprocessing. Continual learning and 

human-in-the-loop systems improve adaptability and 

interpretability, while material innovations and 
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flexible electronics address mechanical and 

operational mismatches between biological tissues 

and electronic devices. Regulatory and 

reimbursement frameworks remain significant 

barriers, requiring rigorous evidence and standardized 

policies. Despite these challenges, integrating 

advanced AI methods, innovative hardware design, 

and robust clinical validation positions AI-powered 

biosensors as a cornerstone of personalized, 

continuous, and proactive healthcare. Addressing 

these challenges systematically will be essential to 

unlock the full potential of biosensors in improving 

health outcomes, optimizing clinical workflows, and 

enabling precision medicine on a global scale. 

Future of AI-Powered Biosensors 

The future of AI-powered biosensors is 

poised for transformative growth, driven by the 

integration of advanced artificial intelligence 

techniques, digital twins, and explainable AI 

frameworks. These technologies will elevate 

biosensors from passive monitoring devices to 

intelligent systems capable of providing personalized, 

predictive, and actionable insights. One key area of 

innovation lies in diet and hydration management. 

Optimal hydration is critical for maintaining physical 

performance, cognitive function, and overall 

metabolic health. Current wearable technologies can 

monitor general physiological metrics such as heart 

rate, sweat rate, or activity level, but they are limited 

in their ability to track both fluid type and volume 

with precision [12,31]. Future biosensors, equipped 

with AI models and connected to sophisticated data 

ecosystems, will be able to monitor dietary intake, 

hydration levels, and nutrient consumption in real-

time. This capability will enable users to receive 

personalized guidance for hydration, dietary 

adjustments, and energy intake, supporting both 

wellness and disease management strategies. Large 

Language Models (LLMs) are expected to play a 

pivotal role in enhancing the intelligence of biosensor 

systems. LLMs can process vast amounts of 

multimodal data collected from biosensors, 

contextualize individual health patterns, and generate 

tailored recommendations. For example, they can 

identify correlations between lifestyle factors, 

physiological responses, and clinical outcomes, 

guiding interventions such as modifications in 

exercise routines, dietary intake, or sleep behavior 

[10,48]. LLMs can also function as interactive agents, 

enabling users to query their data and receive 

comprehensible explanations. This bridges a critical 

gap between the complex outputs of AI models and 

actionable human understanding, empowering 

patients and clinicians to make informed decisions 

based on clear, evidence-supported insights. The 

integration of natural language processing into 

biosensor ecosystems ensures accessibility, 

engagement, and transparency, which are essential 

for long-term adherence and trust in AI-driven health 

tools. 

Digital twin technology represents another 

transformative advance in the evolution of AI-

powered biosensors. A digital twin is a 

computational, virtual replica of an individual’s 

physiological and metabolic systems, which 

continuously integrates real-time data from 

biosensors alongside historical and contextual health 

information [49,50]. Unlike static predictive models, 

digital twins are dynamic and adaptive, capable of 

simulating interventions and predicting their potential 

outcomes. For example, a digital twin could simulate 

the effect of adjusting insulin doses in a patient with 

diabetes, assess the impact of different exercise 

regimens on cardiovascular function, or predict the 

consequences of changes in dietary intake. 

Continuous real-time data from wearable biosensors 

feed into these digital twins, ensuring that 

simulations remain accurate and personalized to the 

user’s current state. This allows for proactive, 

predictive healthcare where potential complications 

or suboptimal health behaviors can be identified and 

corrected before they manifest clinically. 

Counterfactual explanations further complement 

these innovations by enhancing interpretability and 

user trust. Counterfactual methods illustrate how 

slight changes in behavior or treatment could 

influence outcomes, providing users with actionable 

insights. For instance, a counterfactual explanation 

may demonstrate that increasing daily physical 

activity by 30 minutes could lower predicted blood 

glucose spikes, or that reducing sodium intake could 

positively influence blood pressure trends. By 

showing the ―what if‖ scenarios, users are 

empowered to make informed decisions and engage 

more actively in their health management. Combined 

with digital twins and AI-driven predictive analytics, 

counterfactual reasoning ensures that biosensor 

systems are not only intelligent but also explainable 

and trustworthy. In addition to these capabilities, 

future AI-powered biosensors will increasingly 

leverage federated learning and edge computing to 

maintain privacy, reduce latency, and ensure real-
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time responsiveness. Edge-AI will enable continuous 

local processing of sensor data, while federated 

learning allows collaborative model updates across 

devices without compromising user privacy. This 

combination ensures that predictive and personalized 

models are both robust and secure, addressing a 

critical barrier to widespread adoption in healthcare. 

Collectively, the convergence of LLMs, 

digital twins, counterfactual explanations, and edge-

AI represents a paradigm shift in healthcare delivery. 

Biosensors will evolve from passive monitoring 

devices to proactive partners in health decision-

making, capable of predicting disease trajectories, 

guiding interventions, and offering real-time, 

personalized recommendations. They will support a 

truly preventive and precision-based approach to 

medicine, integrating seamlessly into daily life, and 

enabling clinicians and individuals to act on health 

insights before adverse events occur. The trajectory 

of AI-powered biosensors indicates a future where 

monitoring, prediction, and intervention converge 

within a single intelligent system. By providing 

actionable, explainable, and individualized insights, 

these devices have the potential to fundamentally 

transform healthcare, improve patient outcomes, and 

optimize quality of life. The integration of biosensors 

with advanced AI technologies ensures a future in 

which healthcare is continuously adaptive, 

personalized, and anticipatory rather than reactive, 

ushering in an era of intelligent, user-centered health 

management. 

Conclusion: 

AI-enabled wearable biosensors represent a 

paradigm shift in modern healthcare by enabling 

continuous, data-driven, and personalized health 

monitoring across clinical and real-world settings. 

Their integration with advanced AI techniques allows 

early detection of disease, prediction of adverse 

health events, and adaptive interventions tailored to 

individual physiological profiles. Applications 

spanning metabolic, cardiovascular, neurological, and 

neonatal health highlight the versatility and clinical 

relevance of these technologies. Despite rapid 

progress, several challenges persist, including data 

privacy concerns, model robustness under real-world 

variability, biological–electronic integration, and 

evolving regulatory frameworks. Emerging solutions 

such as federated learning, edge AI, explainable AI, 

and digital twin technologies offer promising 

pathways to address these limitations. As sensor 

technologies and AI methodologies continue to 

mature, interdisciplinary collaboration among 

engineers, clinicians, and data scientists will be 

critical. Overall, AI-powered wearable biosensors are 

poised to become foundational tools in precision 

medicine, enabling a transition from reactive to 

proactive and preventive healthcare. 
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