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Abstract
Background: Wearable biosensors integrated with artificial intelligence (Al) have significantly advanced continuous health

monitoring by enabling real-time, personalized, and non-invasive assessment of physiological and behavioral parameters
beyond traditional clinical environments. These technologies support disease management, early diagnosis, preventive care,
and personalized interventions across diverse health domains.

Aim: This review aims to summarize recent advancements in Al-enabled wearable biosensors, focusing on their applications,
methodological innovations, challenges, and future directions in biomedical engineering.

Methods: A comprehensive narrative review of recent scientific literature was conducted, analyzing developments in
wearable sensor technologies, Al methodologies (including machine learning, deep learning, edge Al, federated learning, and
human-in-the-loop systems), and their applications across metabolic, cardiovascular, neurological, and neonatal health
domains.

Results: Al-powered wearable biosensors demonstrate high potential for continuous health monitoring, predictive analytics,
and personalized intervention. Applications include glucose monitoring, cardiovascular risk detection, gait and motor
assessment, and neonatal surveillance. Advances in edge computing and federated learning enhance privacy and real-time
responsiveness, while digital twins and large language models improve interpretability and decision support.

Conclusion: Al-enabled wearable biosensors are transforming healthcare toward predictive, proactive, and personalized
models of care, although challenges related to data privacy, robustness, biological integration, and regulation remain.
Keywords: Wearable biosensors; Atrtificial intelligence; Continuous health monitoring; Edge computing; Personalized
medicine.

Introduction
Wearable sensors and embedded systems are

transforming healthcare by enabling continuous
monitoring of physiological parameters beyond the
confines of traditional clinical environments. These
technologies provide real-time data collection in
naturalistic settings, allowing healthcare providers
and researchers to capture dynamic health trends that
were previously difficult to observe. Applications of
wearable sensors span disease diagnosis, chronic
disease management, preventative healthcare, fitness
tracking, and personalized health interventions,
highlighting their versatility and growing relevance

in modern healthcare delivery [1,2]. Their ability to
continuously monitor vital signs, activity levels, and
other biomarkers positions them as crucial tools for
both clinical and non-clinical settings. A major
innovation in this space is the integration of Artificial
Intelligence (Al) with wearable biosensors. Al
enhances the capabilities of these devices by enabling
complex data analysis, pattern recognition, and
predictive modeling in real time. Machine learning
algorithms can process continuous streams of sensor
data to detect anomalies, forecast potential health
events, and generate actionable insights tailored to
individual patients [3]. This integration has
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significant implications for personalized medicine, as
Al-driven wearable devices can adapt to each user’s
unique physiological profile, lifestyle, and health
history, offering tailored interventions and
recommendations [4]. Such adaptability enhances the
precision of monitoring, improves early detection of
potential complications, and facilitates proactive
healthcare management.

Despite  their  potential,  Al-powered
wearable sensors face significant challenges. One
primary concern is model robustness, as sensor data
can exhibit variability due to environmental factors,
user behavior, or differences across populations,
potentially impacting algorithmic performance [5].
Developing models that maintain accuracy under
such distribution shifts is essential. Additionally,
creating personalized models that adapt over time to
individual users requires continuous learning
capabilities and effective calibration strategies. The
incorporation of edge Al—processing data locally on
the device—and human-in-the-loop systems further
complicates design, demanding seamless interaction
between the device and the user to optimize
predictions based on feedback [6]. Edge computing
offers low-latency analysis and preserves data
privacy, but it necessitates efficient algorithms
capable of operating on limited hardware resources
without compromising accuracy. This review
examines recent advancements in Al-powered
wearable biosensors and bioinstrumentation, focusing
on innovations in model personalization, robustness,
and edge computing. It explores how Al facilitates
real-time analysis, anomaly detection, and predictive
capabilities, and evaluates strategies to integrate
human feedback to enhance system performance.
Additionally, it addresses the broader implications of
these technologies for clinical decision-making,
patient engagement, and healthcare delivery. By
synthesizing current developments, challenges, and
future directions, this review highlights the
transformative potential of Al-driven wearable
sensors in enabling continuous, individualized, and
predictive healthcare. The discussion underscores the
importance of interdisciplinary collaboration between
engineers, data scientists, and clinicians to design
wearable systems that are both technologically
sophisticated and clinically meaningful.

Recent Advancements in Mobile Health

The proliferation of artificial intelligence
(Al) and mobile technologies has catalyzed a
paradigm shift in healthcare, positioning mobile
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health (mHealth) as an integral component of daily
life. Modern mHealth applications leverage wearable
devices, smartwatches, and implantable biosensors to
provide continuous monitoring of physiological
parameters, facilitating real-time assessment of health
status and enabling early detection of potential
complications. Consumer adoption of these devices
reflects their growing influence; for example, a 2019
report indicated that approximately 21 percent of
American adults regularly use smartwatches,
underscoring the mainstream integration of wearable
technologies into personal health management [13].
Recent innovations in wearable devices have
significantly enhanced their functionality. Advanced
sensors now enable clinical-grade measurement of
vital signs, including heart rate, blood oxygen
saturation, and electrocardiograms (ECGs), offering
unprecedented accuracy outside traditional clinical
settings [14,15]. Integration of Al and machine
learning has transformed these devices from passive
data collectors into intelligent health assistants
capable of analyzing longitudinal data, detecting
anomalies such as arrhythmias, and predicting trends
over time [9]. Beyond cardiovascular monitoring,
wearables now encompass stress detection, sleep
quality evaluation, menstrual health tracking, and
physical activity assessment, reflecting a holistic
approach to personal health management [16,17,18].
Improvements in device design, including extended
battery life, water resistance, and ergonomics, further
enhance usability and encourage consistent adoption.
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Fig. 1: Al-based Wearable Sensors.

A particularly notable advancement is the
development and widespread adoption of Continuous
Glucose Monitors (CGMs), which have redefined
diabetes management. CGMs employ miniature
sensors implanted subcutaneously to measure
interstitial glucose levels continuously, eliminating
the need for frequent fingerstick testing. The real-
time monitoring capability allows users to track
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glucose fluctuations throughout the day and night,
facilitating timely interventions and lifestyle
adjustments. Advanced CGMs integrate predictive
alerts for hypo- and hyperglycemia, enabling
proactive  management of glycemic levels.
Additionally, seamless connectivity with
smartphones, insulin pumps, and health applications
empowers users to make informed, data-driven
decisions. Regulatory recognition, including the U.S.
Food and Drug Administration (FDA) approval of
specific CGMs for over-the-counter sales, has
increased accessibility, extending their utility beyond
clinical populations to the general public [19]. This
development exemplifies the transition of mHealth
devices from therapeutic tools to preventive and
wellness-oriented technologies. The operational
framework of contemporary mHealth systems is often
conceptualized around three pillars: monitoring,
health assessment, and intervention. The monitoring
pillar focuses on continuous acquisition of
physiological and behavioral data through wearable
and implantable biosensors. Al algorithms process
these data streams in real time, enabling rapid
detection of deviations from normative patterns. The
health assessment pillar leverages advanced
computational  techniques, including federated
learning, transfer learning, and continual learning, to
recognize patterns, detect anomalies, and predict
potential health events while maintaining model
robustness across heterogeneous populations. This
pillar emphasizes the adaptation of Al models to
individual users, ensuring personalized and context-
sensitive analysis.

The intervention pillar translates Al-
generated insights into actionable strategies. These
include personalized health recommendations,
clinical decision support, and adaptive interventions
tailored to the individual’s needs. Integration of
human-in-the-loop systems allows clinicians or
patients to provide feedback that refines algorithmic
predictions, while digital twin technologies create
virtual representations of the user’s physiological
state to simulate interventions and predict outcomes.
This synergistic approach ensures that mHealth
platforms do not merely record data but actively
contribute to health optimization and proactive
management of chronic conditions. Collectively,
these advancements illustrate the transformative
potential of Al-driven mHealth technologies. By
enabling continuous, personalized, and predictive
health monitoring, wearables and biosensors bridge
the gap between clinical care and everyday life. They
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empower users to make informed decisions, facilitate
early intervention, and reduce the burden on
healthcare systems by promoting preventive care. As
sensor technology, Al methodologies, and data
integration techniques continue to evolve, mHealth is
poised to become an essential component of precision
medicine,  offering  scalable  solutions  for
individualized health management and improved
clinical outcomes. The integration of Al, advanced
sensors, and wearable technology exemplifies a shift
from episodic, reactive care toward continuous,
proactive, and personalized healthcare delivery. This
trajectory emphasizes the role of real-time data
acquisition, predictive analytics, and adaptive
interventions in  promoting population health,
reducing disease burden, and enhancing patient
engagement, highlighting the transformative role of
mobile health in the future of medicine.
Applications of Biosensors

Wearable biosensors have emerged as

transformative  tools in healthcare, enabling
continuous and non-invasive monitoring  of
physiological,  behavioral, and  biochemical

parameters. Their integration into mobile and
wearable platforms has created opportunities for real-
time health assessment and personalized intervention,
bridging the gap between traditional episodic clinical
visits and continuous patient-centered care. Modern
biosensors are capable of measuring a wide array of
signals, including cardiac activity, blood oxygen
saturation, electroencephalography (EEG),
electromyography (EMG), galvanic skin response,
glucose levels, hydration status, and motion
parameters, among others. These capabilities allow
for comprehensive monitoring across multiple
domains of health and wellness. By capturing
continuous longitudinal data, biosensors provide
clinicians and researchers with insights into trends,
anomalies, and early indicators of disease progression
or deterioration, facilitating timely and precise
intervention. Physiological and behavioral health
monitoring is among the most extensively studied
applications of wearable biosensors. Devices
equipped with electrocardiogram (ECG),
photoplethysmography (PPG), and other cardiac
sensors can detect heart rate variability, arrhythmias,
and cardiovascular anomalies with high sensitivity
and specificity [9]. Machine learning (ML) and deep
learning (DL) algorithms applied to these data
streams enable early detection of cardiovascular
events and behavioral stress indicators, while also
providing feedback for lifestyle interventions [10,15].
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Sleep and stress monitoring are also enhanced
through wearable sensors that capture heart rate,
movement, and skin conductance, allowing for
comprehensive assessment of sleep quality, circadian
rhythms, and stress-related physiological responses
[16,18,20]. Biosensors integrated with substance use
monitoring further expand the capability for
behavioral intervention, providing real-time feedback
for individuals in recovery or under medical
supervision [21,22,23,24].

Gait and motor function monitoring
represents another critical domain for biosensor
applications. Inertial measurement units (IMUs) and
accelerometers enable precise tracking of movement
patterns, posture, and step dynamics. Studies have
demonstrated that transformer-based Al models
applied to IMU data can significantly reduce false
positives in gait irregularity detection, particularly in
Parkinson’s disease patients experiencing freezing of
gait (FOG) episodes [11,25,26]. Such systems provide
both guantitative assessment for clinicians and real-
time alerts for patients, improving mobility
management and reducing the risk of falls.
Continuous monitoring of motor function also
facilitates rehabilitation and therapeutic evaluation,
allowing interventions to be tailored to individual
progress.  Neurodegenerative chronic  diseases,
including Parkinson’s and Alzheimer’s disease, are
another area where biosensors demonstrate
substantial  utility. By capturing  motion,
electrophysiological, and behavioral data, wearables
can provide early markers of disease onset, track
symptom progression, and monitor treatment efficacy
[11,25,26,27]. Al-driven analytics applied to
biosensor data allow for detection of subtle changes
in motor function, cognitive performance, or
physiological responses, supporting both clinical
decision-making and research into disease-modifying
therapies. Continuous and non-invasive monitoring is
particularly valuable in neurodegenerative conditions
where symptoms can fluctuate, and early intervention
significantly impacts patient quality of life. Obesity,
metabolic disorders, and hydration health constitute a
rapidly expanding application domain for biosensors.
Continuous glucose monitors (CGMs), sweat sensors,
and multi-parameter metabolic sensors provide
insights into glucose levels, electrolyte balance, and
metabolic responses in real time [9,10,12,29,30,31].
Al-powered predictive models allow for trend
analysis, early warning of hypo- or hyperglycemia,
and guidance for dietary or pharmacological
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interventions. Field studies among workers using
sweat sensors with regression-based Al models have
demonstrated the capability for real-time sodium
alerts, improving hydration management and
reducing risks of heat-related illness [12]. Similarly,
wearable devices for weight management and
metabolic monitoring facilitate lifestyle interventions,
adherence tracking, and long-term health outcomes.

Maternal, neonatal, and women’s health also
benefit from wearable biosensors. Devices capable of
tracking fetal heart rate, maternal blood pressure, and
uterine  activity provide early detection of
complications, support prenatal care, and improve
neonatal  outcomes  [17,35,36,37]. Wearable
technologies in this context allow for home
monitoring, reducing the need for frequent hospital
visits ~ while  maintaining  clinical  oversight.
Integration with Al facilitates individualized
recommendations and predictive alerts, ensuring both
maternal and neonatal safety. Overall, wearable
biosensors have transformed health monitoring across
multiple domains by combining continuous data
acquisition, Al-driven analysis, and personalized
intervention. They provide actionable insights into
physiological and behavioral health, motor function,
neurodegenerative disease management, metabolic
and hydration status, and maternal and neonatal care.
Studies spanning public datasets, field trials, and
clinical observations confirm the accuracy, usability,
and potential of these devices in real-world settings
[9,10,11,12]. As Al algorithms and sensor
technologies continue to advance, biosensors are
poised to become even more integral to personalized
healthcare, preventive medicine, and clinical
decision-making, highlighting their critical role in the
future of biomedical engineering and digital health.
Metabolic and Neonatal Health

Wearable biosensors have emerged as
transformative tools in metabolic health, enabling
continuous, personalized monitoring of physiological
and biochemical parameters. In recent years, their
application has expanded significantly in the
management of chronic metabolic conditions such as
diabetes, obesity, and electrolyte imbalances.
Continuous glucose monitors (CGMSs) represent one
of the most established applications of biosensors in
metabolic health. By providing real-time data on
interstitial glucose concentrations, CGMs allow
individuals and clinicians to track glucose
fluctuations throughout the day and night, facilitating
more accurate insulin dosing, dietary adjustments,
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and activity management. This real-time feedback
has been shown to improve glycemic control, reduce
episodes of hypoglycemia, and support better long-
term outcomes in both Type 1 and Type 2 diabetes
[9]. Advances in artificial intelligence (Al) have
further augmented the utility of metabolic biosensors.
Machine learning and deep learning algorithms can
analyze large, continuous datasets from CGMs and
other metabolic sensors to identify trends, predict
glucose excursions, and generate actionable
recommendations. Recent work has demonstrated
that large  language  model  (LLM)-based
counterfactual generation, for instance using models
like GPT-40-mini, can improve explainability and
robustness in metabolic health prediction tasks
[42,43]. By generating interpretable scenarios and
highlighting potential deviations from predicted
trajectories, LLMs enhance patient understanding and
clinician trust in Al-driven recommendations.
Beyond glucose, biosensors are increasingly used to
monitor other metabolic biomarkers, including
lactate, ketone bodies, and electrolyte concentrations.
These measurements  support  personalized
interventions in diet, exercise, and hydration
management,  enabling precision medicine
approaches for obesity, metabolic syndrome, and
athletic performance optimization [9]. In neonatal
health, biosensors provide critical support in
monitoring the fragile physiology of newborns,
particularly those admitted to neonatal intensive care
units (NICUs). Continuous monitoring of vital signs
such as heart rate, oxygen saturation, and respiration
is essential for early detection of hypoxia,
bradycardia, apnea, or other adverse events.
Traditional intermittent monitoring methods often
miss transient episodes of instability, whereas
wearable and embedded biosensors  allow
uninterrupted assessment, alerting clinicians to
immediate risks and enabling timely intervention
[17]. These devices also facilitate long-term
monitoring of growth parameters and metabolic
status in premature or at-risk infants, reducing the
likelihood of complications and supporting
individualized care plans. Integration of Al in
neonatal biosensors enables predictive analytics,
where subtle trends in physiological data can indicate
impending deterioration, guiding preemptive clinical
action. Al-driven models can also assist in optimizing
ventilator settings, fluid administration, and other
therapeutic interventions by analyzing continuous
multimodal data streams from biosensors.
Cardiovascular Health
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In  cardiovascular  health,  wearable
biosensors have become essential for proactive
monitoring and early detection of pathophysiological
changes. Devices such as smartwatches, ECG
patches, chest straps, and photoplethysmography
(PPG)-enabled sensors allow continuous, non-
invasive tracking of heart rate, blood pressure,
oxygen saturation, and other hemodynamic
parameters. These data streams provide insights into
the cardiovascular system’s status in real time,
supporting early identification of arrhythmias,
hypertension, and signs of heart failure [15,23]. Al-
enhanced wearable systems apply advanced
algorithms to detect anomalies, predict adverse
events, and provide users with personalized feedback
for lifestyle modifications or medical interventions.
Continuous monitoring empowers patients to engage
actively in their cardiovascular health management,
reducing hospitalizations, and enabling clinicians to
intervene before complications escalate. Predictive
models built on longitudinal cardiovascular data also
enable stratification of patient risk, supporting
tailored care plans and enhancing precision medicine
initiatives.

Neurological and Cognitive Health

Biosensors are revolutionizing neurological
and cognitive health monitoring, particularly in
chronic neurodegenerative disorders. In Parkinson’s
disease,  wearable  sensors  equipped  with
accelerometers, gyroscopes, and inertial measurement
units (IMUs) capture motor symptoms such as
tremors, rigidity, bradykinesia, and freezing of gait
(FoG) episodes [11,26,44]. The continuous capture of
motion data allows clinicians to track disease
progression, assess therapeutic efficacy, and adjust
medication schedules with higher precision than
traditional clinic-based assessments. Al algorithms
applied to these datasets reduce false-positive
detections, identify patterns of deterioration, and
provide real-time alerts for patients at risk of falls. In
Alzheimer’s disease and other cognitive disorders,
biosensors facilitate monitoring of sleep patterns,
activity levels, physiological stress markers, and
cognitive engagement. Changes in these parameters
can provide early indicators of disease progression,
guide intervention strategies, and enable evaluation
of treatment efficacy. For instance, heart rate
variability, electrodermal activity, and movement
patterns tracked via wearable sensors provide
objective measures of stress, agitation, and sleep
quality, which are critical for patients with cognitive
impairments. Integration of Al enables the synthesis
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of these multimodal datasets into actionable insights
for both caregivers and clinicians, improving patient
safety and quality of life.
Methodologies and Biomarkers

Biosensor applications rely on diverse
methodologies to capture physiological and
behavioral signals, translating them into meaningful
health insights. Table 3 summarizes the primary
methodologies and their associated biomarkers.
Human activity recognition (HAR) employs motion
sensors, accelerometers, gyroscopes, and heart rate
data to monitor general behavior, sleep, and stress
levels [10,27,38,39,40,41]. Gait and motor function
analysis  utilizes step  frequency, movement
symmetry, and irregular biometric signals to detect
deviations associated with neurological disorders
[11,25,26,27]. Continuous glucose monitoring and
hydration assessment involve direct measurement of
blood glucose levels, lactate, ketones, and fluid intake
metrics, supporting metabolic health interventions
[9,12,30,31]. Collectively, these methodologies
demonstrate the breadth of biosensor applications
across health domains, from metabolic and
cardiovascular monitoring to neurological and
neonatal care. Al integration enhances the predictive
and adaptive capabilities of these devices, enabling
real-time intervention, personalized health
recommendations, and longitudinal tracking of
disease progression. The combination of biosensors
and Al facilitates precision healthcare, allowing
clinicians to tailor treatment plans, improve patient
adherence, and optimize outcomes. The convergence
of wearable biosensors, continuous monitoring, and
Al-driven analytics represents a significant
advancement in healthcare delivery. For metabolic
health, CGMs and Al models provide real-time
glycemic control, risk prediction, and personalized
lifestyle guidance. In neonatal care, continuous
monitoring of vital parameters combined with
predictive Al allows early detection of life-
threatening  events, improving survival and
developmental outcomes. Cardiovascular and
neurological applications further illustrate the
transformative potential of biosensors in chronic
disease management, rehabilitation, and proactive
health maintenance. By enabling continuous, non-
invasive, and data-driven assessment, biosensors are
shaping the future of personalized medicine, offering
scalable solutions for real-time health monitoring,
early intervention, and improved patient outcomes. In
conclusion, biosensors serve as foundational
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components of modern healthcare ecosystems. Their
applications in metabolic, neonatal, cardiovascular,
and neurological health highlight their versatility,
while integration with Al ensures real-time,
predictive, and personalized health management. The
ongoing evolution of biosensor technology, in
combination  with  sophisticated computational
models, promises to expand their utility further,
creating opportunities for preventive care, precision
medicine, and enhanced quality of life across diverse
patient populations.
Challenges with Al-Powered Biosensors
Al-powered  biosensors  represent a
significant advancement in modern healthcare,
providing continuous monitoring, early diagnosis,
and personalized health management. Despite their
promise, these systems face a range of technical,
operational, and regulatory challenges that must be
addressed to ensure safe, effective, and scalable
deployment. Central among these challenges are
issues related to data privacy, model personalization,
robustness, integration with biological systems, and
regulatory compliance. A primary concern in Al-
powered biosensors is data privacy. Traditional
machine learning methods require centralizing user
data in cloud servers for model training, which poses
significant security and privacy risks. Health data are
particularly sensitive, and unauthorized access could
lead to serious consequences for individuals.
Federated learning has emerged as a potential
solution to this challenge. In this approach, models
are trained locally on individual devices, such as
smartphones, smartwatches, or wearable biosensors,
and only model updates, rather than raw data, are
transmitted to central servers. This decentralized
methodology allows Al models to learn
collaboratively across users while maintaining strict
privacy standards, ensuring sensitive health
information remains secure. In conjunction with
federated learning, Edge-Al techniques are
transforming the way data from biosensors are
processed. Edge-Al enables the deployment of Al
algorithms directly on local devices, reducing
reliance on cloud infrastructure. This local processing
minimizes latency, enhances privacy, reduces
bandwidth usage, and allows for critical real-time
decisions in health monitoring, autonomous vehicles,
or industrial automation [44,45]. Edge-Al also
supports offline operation, allowing devices to
function in areas with limited or unreliable internet
connectivity. Specialized hardware, such as Al
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accelerators, combined with optimized neural
network architectures, ensures that Al computations
are feasible within the resource constraints of
wearable biosensors.

Device heterogeneity presents another
significant challenge. Variations in sensor types,
hardware quality, environmental conditions, and user
behavior can result in inconsistent data streams that
reduce model performance. Transfer learning offers a
solution by leveraging pre-trained models to adapt
quickly to new devices or contexts without requiring
full retraining. This approach allows Al models to
generalize across different populations and hardware
while maintaining accuracy. Additionally, biosensors
often generate noisy, incomplete, or imbalanced
datasets, particularly when detecting rare but critical
health events. Such data inconsistencies can
significantly impair the predictive accuracy and
reliability of Al models, making robust data
preprocessing, anomaly detection, and augmentation
strategies essential [25,38,39]. Adaptability and
interpretability are critical for Al-powered biosensors
deployed in  dynamic  real-world  settings.
Physiological signals are influenced by numerous
factors, including aging, lifestyle changes, illness, or
stress. Continual learning is a method that enables
models to update incrementally with new data while
retaining previously acquired knowledge, preventing
catastrophic forgetting. Human-in-the-loop systems
further enhance adaptability by incorporating real-
time feedback from users or expert annotations,
improving model reliability and increasing user trust.
For example, users can confirm or correct alerts,
while clinicians can annotate complex physiological
signals, ensuring that Al predictions remain clinically
meaningful. Combining federated learning, continual
learning, transfer learning, and human-in-the-loop
methodologies allows Al-powered biosensors to
achieve higher robustness, personalization, and
security in health monitoring applications [27].
Despite algorithmic advancements, the integration of
wearable electronics with biological systems remains
a fundamental challenge. Biological tissues are
flexible, soft, hydrated, and dynamic, whereas most
wearable electronics are rigid, brittle, dry, and
optimized for controlled conditions. This mismatch
introduces mechanical, functional, and operational
barriers. Table 4 summarizes these differences,
highlighting the need for innovative materials, design
strategies, and fabrication techniques to bridge the
gap between biological and electronic systems.
Flexible electronics, biocompatible polymers, and
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hybrid bioelectronic interfaces are being investigated
to improve comfort, signal fidelity, and long-term
wearability, but achieving reliable, long-term
integration remains an open challenge.

Operationally, wearable biosensors must
cope with dynamic environmental conditions,
including motion artifacts, temperature fluctuations,
and variations in sweat composition or skin
hydration. These factors introduce signal noise and
variability that can degrade Al model performance.
Advanced signal processing and Al techniques, such
as denoising algorithms, adaptive filtering, and
context-aware learning, are essential to ensure
accurate measurements in real-world settings.
Regulatory and reimbursement challenges further
complicate the widespread adoption of Al-powered
biosensors. Regulatory frameworks for medical
devices are evolving to accommodate Al algorithms,
but clear, unified standards for evaluating safety,
efficacy, and fairness are lacking. Agencies such as
the FDA require rigorous clinical evidence,
algorithmic explainability, and reproducibility before
approving Al-driven medical devices [46]. This
regulatory scrutiny is essential to ensure patient
safety but can significantly delay the translation of
innovations into  clinical practice. On the
reimbursement side, fragmented policies and the
absence of standardized billing codes create financial
uncertainty. Insurers often demand longitudinal
evidence of clinical benefits and cost-effectiveness,
which can be expensive and time-consuming to
obtain, limiting the scalability of Al-powered
biosensors [47]. Finally, interpretability and user trust
remain critical hurdles. Users and clinicians may be
hesitant to rely on Al-driven recommendations
without clear explanations of how predictions are
generated. Explainable Al (XAI) techniques are
increasingly integrated with biosensor platforms to
provide transparent reasoning, confidence scores, and
actionable insights. This not only improves user
engagement but also enhances clinical acceptance,
facilitating more effective adoption in real-world
healthcare scenarios.

In summary, Al-powered biosensors face
multidimensional challenges spanning technical,
operational, biological, and regulatory domains. Data
privacy concerns are addressed through federated
learning and Edge-Al, while heterogeneity and noisy
data are mitigated with transfer learning and
advanced preprocessing. Continual learning and
human-in-the-loop systems improve adaptability and
interpretability, while material innovations and
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flexible electronics address mechanical and
operational mismatches between biological tissues
and  electronic  devices. Regulatory  and
reimbursement  frameworks remain significant
barriers, requiring rigorous evidence and standardized
policies. Despite these challenges, integrating
advanced Al methods, innovative hardware design,
and robust clinical validation positions Al-powered
biosensors as a cornerstone of personalized,
continuous, and proactive healthcare. Addressing
these challenges systematically will be essential to
unlock the full potential of biosensors in improving
health outcomes, optimizing clinical workflows, and
enabling precision medicine on a global scale.
Future of Al-Powered Biosensors

The future of Al-powered biosensors is
poised for transformative growth, driven by the
integration of advanced artificial intelligence
techniques, digital twins, and explainable Al
frameworks. These technologies will elevate
biosensors from passive monitoring devices to
intelligent systems capable of providing personalized,
predictive, and actionable insights. One key area of
innovation lies in diet and hydration management.
Optimal hydration is critical for maintaining physical
performance, cognitive function, and overall
metabolic health. Current wearable technologies can
monitor general physiological metrics such as heart
rate, sweat rate, or activity level, but they are limited
in their ability to track both fluid type and volume
with precision [12,31]. Future biosensors, equipped
with Al models and connected to sophisticated data
ecosystems, will be able to monitor dietary intake,
hydration levels, and nutrient consumption in real-
time. This capability will enable users to receive
personalized guidance for hydration, dietary
adjustments, and energy intake, supporting both
wellness and disease management strategies. Large
Language Models (LLMs) are expected to play a
pivotal role in enhancing the intelligence of biosensor
systems. LLMs can process vast amounts of
multimodal data collected from biosensors,
contextualize individual health patterns, and generate
tailored recommendations. For example, they can
identify correlations between lifestyle factors,
physiological responses, and clinical outcomes,
guiding interventions such as moadifications in
exercise routines, dietary intake, or sleep behavior
[10,48]. LLMs can also function as interactive agents,
enabling users to query their data and receive
comprehensible explanations. This bridges a critical
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gap between the complex outputs of Al models and
actionable human understanding, empowering
patients and clinicians to make informed decisions
based on clear, evidence-supported insights. The
integration of natural language processing into
biosensor  ecosystems  ensures  accessibility,
engagement, and transparency, which are essential
for long-term adherence and trust in Al-driven health
tools.

Digital twin technology represents another
transformative advance in the evolution of Al-
powered biosensors. A digital twin is a
computational, virtual replica of an individual’s
physiological and metabolic systems, which
continuously  integrates real-time data from
biosensors alongside historical and contextual health
information [49,50]. Unlike static predictive models,
digital twins are dynamic and adaptive, capable of
simulating interventions and predicting their potential
outcomes. For example, a digital twin could simulate
the effect of adjusting insulin doses in a patient with
diabetes, assess the impact of different exercise
regimens on cardiovascular function, or predict the
consequences of changes in dietary intake.
Continuous real-time data from wearable biosensors
feed into these digital twins, ensuring that
simulations remain accurate and personalized to the
user’s current state. This allows for proactive,
predictive healthcare where potential complications
or suboptimal health behaviors can be identified and
corrected before they manifest clinically.
Counterfactual explanations further complement
these innovations by enhancing interpretability and
user trust. Counterfactual methods illustrate how
slight changes in behavior or treatment could
influence outcomes, providing users with actionable
insights. For instance, a counterfactual explanation
may demonstrate that increasing daily physical
activity by 30 minutes could lower predicted blood
glucose spikes, or that reducing sodium intake could
positively influence blood pressure trends. By
showing the “what if” scenarios, users are
empowered to make informed decisions and engage
more actively in their health management. Combined
with digital twins and Al-driven predictive analytics,
counterfactual reasoning ensures that biosensor
systems are not only intelligent but also explainable
and trustworthy. In addition to these capabilities,
future Al-powered biosensors will increasingly
leverage federated learning and edge computing to
maintain privacy, reduce latency, and ensure real-
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time responsiveness. Edge-Al will enable continuous
local processing of sensor data, while federated
learning allows collaborative model updates across
devices without compromising user privacy. This
combination ensures that predictive and personalized
models are both robust and secure, addressing a
critical barrier to widespread adoption in healthcare.

Collectively, the convergence of LLMs,
digital twins, counterfactual explanations, and edge-
Al represents a paradigm shift in healthcare delivery.
Biosensors will evolve from passive monitoring
devices to proactive partners in health decision-
making, capable of predicting disease trajectories,
guiding interventions, and offering real-time,
personalized recommendations. They will support a
truly preventive and precision-based approach to
medicine, integrating seamlessly into daily life, and
enabling clinicians and individuals to act on health
insights before adverse events occur. The trajectory
of Al-powered biosensors indicates a future where
monitoring, prediction, and intervention converge
within a single intelligent system. By providing
actionable, explainable, and individualized insights,
these devices have the potential to fundamentally
transform healthcare, improve patient outcomes, and
optimize quality of life. The integration of biosensors
with advanced Al technologies ensures a future in
which  healthcare is  continuously  adaptive,
personalized, and anticipatory rather than reactive,
ushering in an era of intelligent, user-centered health
management.

Conclusion:

Al-enabled wearable biosensors represent a
paradigm shift in modern healthcare by enabling
continuous, data-driven, and personalized health
monitoring across clinical and real-world settings.
Their integration with advanced Al techniques allows
early detection of disease, prediction of adverse
health events, and adaptive interventions tailored to
individual  physiological profiles. Applications
spanning metabolic, cardiovascular, neurological, and
neonatal health highlight the versatility and clinical
relevance of these technologies. Despite rapid
progress, several challenges persist, including data
privacy concerns, model robustness under real-world
variability, biological-electronic integration, and
evolving regulatory frameworks. Emerging solutions
such as federated learning, edge Al, explainable Al,
and digital twin technologies offer promising
pathways to address these limitations. As sensor
technologies and Al methodologies continue to
mature, interdisciplinary  collaboration among

Saudi J. Med. Pub. Health Vol. 2 No. 2 (2025)

engineers, clinicians, and data scientists will be
critical. Overall, Al-powered wearable biosensors are
poised to become foundational tools in precision
medicine, enabling a transition from reactive to
proactive and preventive healthcare.
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