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Abstract

Background: Deep learning (DL) has emerged as a transformative technology in the field of medical imaging, particularly in
prenatal assessments. The application of DL algorithms in fetal imaging aims to address challenges such as human
subjectivity and interobserver variability, while enhancing diagnostic accuracy.

Methods: This review synthesizes recent advancements in the application of deep learning techniques for evaluating fetal
anomalies. A comprehensive literature search was conducted to gather evidence on the efficacy of DL in various aspects of
prenatal imaging, including anatomical assessment, biometric measurements, and the detection of congenital abnormalities.
Results: The findings indicate that deep learning models exhibit superior performance in identifying normal and abnormal
fetal anatomy compared to traditional methods. These models effectively classify images, localize anatomical structures, and
segment key features, significantly reducing examination times and improving workflow. Furthermore, multiple studies
demonstrate that DL can mitigate the impact of human error, achieving classifications that rival or exceed those of
experienced sonographers.

Conclusion: The integration of deep learning into prenatal imaging holds considerable promise for enhancing diagnostic
capabilities and improving patient outcomes. As these technologies evolve, they offer the potential to support clinicians,
particularly in resource-limited settings where access to skilled sonographers is limited. Future research should focus on
refining these models and ensuring their clinical applicability to maximize the benefits of deep learning in obstetric care.
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Introduction tasks like image categorization, detection, and

Deep learning (DL) is regarded as the segmentation [3-5]. Consequently, deep learning has
preeminent artificial intelligence (Al) instrument for been suggested as a prospective auxiliary instrument
image analysis overall [1,2]. Deep learning for physicians in medical imaging. A recent
algorithms excel in picture identification and assessment determined that more than 80% of
classification, making them helpful in medical published research on the use of Al in medical
imaging. Deep learning models have shown the imaging employed a deep learning technique [1,2,6].

capacity to equal or surpass human performance in
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In recent years, deep learning has garnered
significant appeal in the domain of prenatal imaging,
as seen by the substantial volume of published
scientific research using this methodology [7-10]. In
fetal imaging, deep learning (DL) is anticipated to
mitigate issues associated with human analysis, such
as subjectivity and interobserver variability, while
also decreasing examination durations. Additionally,
it may be used in the instruction of novice and
unskilled physicians [11-13]. This State-of-the-Art
Review offers a thorough examination of the use of
deep learning in prenatal imaging. We elucidate the
use of deep learning in prenatal imaging,
emphasizing the evaluation of normal and abnormal
fetal anatomy, biometric measures, and intrapartum
ultrasonography.

Deep learning

‘Artificial  intelligence’ refers to a
computer's capacity to execute activities linked to
human intellect, including learning, decision-making,
visual perception, and voice recognition. Unlike
human thinking, Al algorithms are proficient at
detecting intricate patterns in data to provide an
automated quantitative answer to a problem [1]. This
indicates that their outcomes are more precise and
repeatable than those of people. Machine learning
algorithms, a subset of artificial intelligence,
empower computers to learn and improve their
performance via ‘experience’ (utilizing available
data), without explicit programming. Numerous
machine-learning techniques exist, with deep learning
(DL) being the most significant in the domain of
medical imaging (Figure 1) [2].

Arcificial intelligence

Figure 1. Summary of primary categories of deep

learning  algorithms
methodologies.

The architecture of deep learning models is
complex and comprises several deep layers of
artificial neural networks. Convolutional neural
networks (CNN) are the most often used, however
several other forms of deep neural networks exist
(Figure 1). Deep learning models may examine
extensive datasets in a layered, non-linear fashion,
using pattern recognition to extract highly
representative picture attributes for the purpose of
labeling an image (e.g., as normal or abnormal). [14]
Deep learning models may be constructed with either

categorized by training
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a supervised or unsupervised learning methodology.
A supervised deep learning model, the most prevalent
form, necessitates tagged or 'ground-truth' data as
input for the neural networks during the training
phase. The model's performance is then evaluated
using unlabeled data, including normal brain scans
and images exhibiting ventriculomegaly that have not
been annotated by human operators, during the
testing phase. Thereafter, the deep learning model
will provide a forecast and categorize the picture.
Conversely, unsupervised learning methods do not
need labels. The deep learning model identifies
primary patterns and similarities in the input data to
categorize the photos in the output [15].
1. The Advantages of Utilizing Deep Learning In

Fetal Imaging

Prenatal ultrasonography has significantly
advanced over the years; nonetheless, the overall
detection rates of congenital abnormalities continue
to be low [16]. A primary reason for this is the
human aspect. Navigating the ultrasound probe
through intricate fetal anatomy to achieve the
appropriate scanning plane, evaluating each fetal
anatomical feature, and arriving at an accurate
diagnosis  requires years of training and
comprehensive understanding of fetal anatomy [17-
20]. Furthermore, issues intrinsic to ultrasonography,
such as acoustic shadows, speckle noise, motion
blurring, and indistinct boundaries, may potentially
exacerbate the poor detection rates [21]. A further
drawback of ultrasonography is the significant intra-
and interobserver variability, particularly in biometric
measures, which may lead to considerable
inaccuracies in fetal weight estimate, leading in the
misclassification of small- or large-for-gestational
age fetuses [22].
2. The Mechanisms of Deep Learning In Fetal

Imaging

The prospective applications of deep learning in
obstetrics include the detection of normal and
abnormal fetal anatomy as well as the assessment of
fetal biometry. For these applications, deep learning
models include one or a combination of up to four
tasks: classification, localization, object
identification, and segmentation, depending upon the
required output. Classification designates a binary
‘class label' to a picture, such as normal/abnormal or
correct/incorrect anatomical orientation. Localization
determines the exact position of an item inside an
image, facilitating the identification of anatomical
landmarks and enabling automated measurements.
Object detection integrates classification and
localization, simultaneously identifying the position
of fetal structures in a picture (and, if required, their
measurement) while categorizing them as normal or
abnormal. Ultimately, segmentation refers to the
identification of an item inside the picture. It
resembles localization, however, also evaluates the
morphology (form, volume, and contour) of the item,
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and may be integrated with classification tasks to
categorize the picture as normal or aberrant [5].

This innovative technology has characteristics
that may assist both novice and seasoned operators.
The automated assessment of biometric parameters or
identification of anatomical landmarks would assist
the novice operator conducting a fetal screening scan,
while deep learning models designed to detect fetal
malformations could bolster the confidence of the
junior examiner in diagnosis and notify a more
seasoned operator of subtle anomalies that might
otherwise be missed [23,24].

3. The Potential of Deep Learning to Enhance

Fetal Imaging

Biometric measures are used to assess
gestational age (GA) and track fetal development. To
do this, many fetal components, including the fetal
head, abdomen, femur, cerebellum, and crown—rump
length (CRL) (before to 14 weeks of gestation), are
assessed using conventional biometry planes [25-27].
The measurements are labor-intensive and dependent
on the operator, necessitating accurate capture of the
standard plane prior to the manual positioning of the
calipers. Complete automation using deep learning
may mitigate interobserver variability and decrease
examination durations, hence enhancing workflow.
This method may ultimately reduce tiredness and
alleviate occupational injuries [28-30].

Various deep learning models have been created
using diverse methodologies for the automated
assessment of fetal head biometry (head
circumference,  occipitofrontal  diameter, and
biparietal diameter) and femur length [31-33]. The
automatic  measurement of fetal abdominal
circumference presents more challenges owing to its
uneven morphology and indistinct  borders.
Consequently, researchers have suggested using
object identification or segmentation of fetal
abdominal anatomical landmarks (stomach bubble,
umbilical vein, fetal spine) before measuring the
abdominal circumference [34-38] Recent
advancements in artificial intelligence have enabled
researchers to create multitasking deep learning
models that use segmentation to automatically
conduct all biometric measures in the three
conventional fetal planes. This strategy allows the DL
algorithm to concurrently estimate the GA and GA
[39, 40].

The assessment of crown-rump length (CRL)
and nuchal translucency (NT) is a crucial component
of the prenatal ultrasonography evaluation during the
first trimester of gestation [41]. Automatic
measurement of CRL and NT via deep learning
models has been facilitated by 3D imaging and
segmentation methodologies [42-44]. The benefit of
using 3D ultrasound is that the deep learning model
can identify and choose the optimal planes for
conducting biometric measurements of the fetal head,
belly, and femur.
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For decades, ultrasonography has served as the
primary imaging technique for diagnosing prenatal
abnormalities. The standard procedure for prenatal
ultrasound in evaluating fetal anatomy entails: first,
accurate acquisition of standard fetal planes; second,
identification and measurement of fetal anatomical
structures; and third, categorization of the identified
structures as normal or abnormal. Human operators
take years of expertise to completely grasp this
technique [45]. Conversely, deep learning algorithms
may be taught in a very little period using substantial
datasets, achieving performance comparable to or
superior to that of human operators.

The International Society of Ultrasound in
Obstetrics and  Gynecology (ISUOG) has
recommended many fetal standard planes to
standardize the precise acquisition of these planes
and minimize intra- and interobserver variability. A
comprehensive assessment of fetal anatomy is an
arduous and time-intensive endeavor. Deep learning
algorithms may be taught to reliably detect several
fetal standard planes, and multiple deep learning
models have been built to automatically identify the
primary fetal standard planes, including the brain,
heart, face, and belly. In identifying fetal standard
planes, deep learning models that execute object
detection and segmentation tasks demonstrate greater
accuracy than classification models, as they localize
fetal anatomical landmarks prior to classifying the
plane, akin to human methodology. Burgos-Artizzu
et al. [46] conducted a comparison of 19 deep
learning algorithms concerning the accurate
identification of four anatomical standard planes
(abdomen, brain, femur, and thorax) and discovered
that the performance of the top models was
comparable to that of a fully trained sonographer,
while achieving a classification speed 25 times
greater [47-50].

In the second phase, precise identification of
normal fetal anatomy is essential to rule out
congenital abnormalities. Deep learning algorithms
can identify and annotate fetal anatomical
components across several standard planes using
object recognition and segmentation tasks. Manual
structural segmentation is a tedious endeavor,
characterized by significant intra- and interobserver
heterogeneity. Segmentation  deep  learning
algorithms have shown superior performance
compared to both people and other Al models for this
task [51].

4. The central nervous system (CNS) of the fetus

The fetal brain is among the most intricate fetal
structures, and its examination during the second
trimester necessitates the acquisition and assessment
of many standard brain planes. Furthermore, the fetal
brain experiences significant changes in structure and
morphology throughout pregnancy, complicating its
evaluation. Multiple deep learning models have been
created for the automated detection of standard
planes in the embryonic brain and have shown
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effective performance [52-55]. Deep learning models
can accurately recognize several brain anatomical
features, including the lateral ventricles, choroid
plexus, cavum septi pellucidi, thalami, cerebellum,
cisterna magna, Sylvian fissure, and brainstem.
Furthermore, deep learning models may be taught to
execute automated assessments of fetal brain regions,
including the lateral ventricles and cavum septi
pellucidi. Another use of deep learning models in
brain examination is the evaluation of embryonic
cortical development. Deep learning algorithms may
evaluate the morphology of cortical structures to
predict the associated gestational age; if this
gestational age does not align with the actual
gestational age, the operator will be notified of a
potential cortical developmental defect [56].

Central nervous system (CNS) malformations are
among the most common congenital abnormalities.
Nevertheless, some CNS abnormalities may not
result in significant structural alterations and may
remain undiagnosed during prenatal ultrasonography
assessments [57,58]. Deep learning might serve as a
diagnostic assistance instrument to enhance the
detection rates of prenatal brain malformations and
assist in the decision-making process. Deep learning
models may be taught to identify structural anomalies
in the fetal brain or spine on conventional screening
planes and notify the operator of the existence and
location of potential malformations. Furthermore,
deep learning models may categorize the specific
kind of abnormality (e.g., ventriculomegaly,
intraventricular cyst, non-visualization of cavum septi
pellucidi) seen in the fetal picture [59]. Lin et al. [60]
revealed the development of a deep learning system
capable of localizing and classifying nine distinct
brain abnormalities using routine screening planes,
with an overall accuracy of 99%.

Accurate evaluation of embryonic heart
architecture necessitates the examination of many
fetal anatomical landmarks and cardiac structures in
well-defined standard planes. Fetal standard cardiac
planes, including the four-chamber view, left
ventricular outflow tract, right ventricular outflow
tract, and three-vessel-and-trachea views, may be
automatically obtained via deep learning models [61].
Fetal cardiac structures may be seen using deep
learning algorithms that execute object identification
or segmentation tasks. Current deep learning models
can identify the four distinct chambers of the
embryonic heart, as well as the foramen ovale, mitral
and tricuspid valves, aorta, apex cordis, moderator
band, left and right ventricular walls, interventricular
septum, and pulmonary veins [62,63]. DL models
could ascertain whether the picture corresponds to the
end-systolic or end-diastolic phase of the fetal cardiac
cycle based on the opening or closure of the
atrioventricular valves. Segmentation deep learning
algorithms facilitate the assessment of cardiac
morphology by enabling automated quantification of
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fetal cardiac features, including the dimensions of the
fetal heart chambers. It is crucial to note that, in
several fetal diseases, including fetal growth
restriction, cardiac shape may serve as a marker of
pathology [64]. Deep learning models may also be
used in the Doppler assessment of the fetal heart, as
suggested by Sulas et al. [65]. The authors created a
model capable of automatically evaluating pulsed-
wave Doppler traces of left ventricular inflows and
outflows, identifying early and late diastole and
systole. Ultimately, deep learning algorithms may
provide biometric heart metrics, including the
cardiothoracic ratio and the cardiac axis angle
[66,67].

Congenital heart disease (CHD) is the most
prevalent birth abnormality and is linked to elevated
infant death rates. The prenatal detection of
congenital heart disease facilitates early planning and
therapy of the problem, hence enhancing perinatal
outcomes. Detection rates, however, exhibit
significant  variability mostly attributable to
disparities in operator experience. The use of deep
learning models may enhance prenatal identification
rates of congenital heart disease by offering an
objective and operator-independent evaluation of
fetal cardiac pictures. Certain writers have suggested
using deep learning models to notify the operator
when a cardiac anomaly is observed. Nonetheless,
there is a need for deep learning models that can
recognize and classify numerous congenital heart
defects in the field. As of now, deep learning models
capable of identifying hypoplastic left heart
syndrome and ventricular septal abnormalities have
been developed via object detection or segmentation
techniques. Concerning ventricular septal
abnormalities, segmentation deep learning algorithms
can accurately identify and isolate the whole defect
on the fetal heart septum, enabling precise
determination of its dimensions [68-70].

The routine assessment of the placenta often
includes ascertaining its position and echogenicity, as
well as identifying characteristics indicative of
aberrant invasive placentation. Placental biometry,
associated with fetal smallness, pre-eclampsia, and
other negative pregnancy outcomes, is not frequently
conducted due to its time-consuming and operator-
dependent nature. An entirely automated deep
learning model might execute this work swiftly and
consistently,  therefore  reducing interobserver
variability, perhaps becoming placental biometry a
valuable imaging biomarker [71]. Furthermore, these
algorithms may evaluate the placenta's placement
(anterior or posterior) and appearance (normal or
pathological). Segmentation deep learning methods
used with 3D ultrasonography may provide
supplementary insights about the anatomy and
volume of the placenta [72].

Placental lacunae are hypoechoic cavities located
inside the placenta. While prevalent in most



Bandr Abdullah Mohammed Al Jaloud et.al. 2867

pregnancies, extensive, many, and/or irregular
placental lacunae may indicate aberrant placental
invasion. Abnormal invasive placentation is an
obstetric disorder linked to increased maternal
morbidity and death. Segmentation deep learning
algorithms can effectively identify and localize
placental lacunae with high accuracy [73].

A comprehensive prenatal ultrasound
examination includes the evaluation of other fetal
structures in addition to the brain, heart, and placenta.
The use of deep learning (DL) is progressively
broadening, with DL algorithms capable of
identifying various fetal tissues, including the face,
spine, kidneys, lungs, fat tissue, and sexual organs.
Certain  ultrasound manufacturers have begun
including checklists of requisite standard planes and
fetal anatomical components into the software of
ultrasound machines, to assist and direct the operator
throughout the examination [74,75].

5. Deep learning and ultrasonography during
childbirth

Ultrasound is being used in the labor ward,
proving effective in evaluating fetal head station,
degree of bending, and position. Obtaining the
accurate  picture and doing the  requisite
measurements may need many minutes, in a context
where delays in decision-making might lead to
detrimental consequences. The deployment of a deep
learning model capable of concurrently evaluating the
station, angle, and position of the fetal head may
contribute to routine labor ward operations. Research
efforts have so far focused on creating deep learning
models to evaluate the fetal occiput position during
the second stage of labor, classifying it as occiput
anterior, posterior, or transverse [76,77].

6. Conclusion

The eventual integration of deep learning in
obstetrics and fetal imaging seems unavoidable. Deep
learning has several benefits, including objectivity,
repeatability, rapidity, and precision, with significant
promise as an auxiliary instrument for prenatal
ultrasonography. It is essential to recognize that these
novel procedures are designed not to supplant
specialists in the field, but to assist them and enhance
workflow, so conserving time for both patients and
clinicians. Furthermore, this technique may enhance
healthcare in rural regions or low-income nations,
where experienced sonographers are few and patients
must  traverse  considerable  distances  for
consultations. A considerable journey remains before
deep learning may be completely integrated into
therapeutic practice. Nevertheless, since the volume
of papers in the subject increases annually, this may
be realized sooner than anticipated.
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