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Abstract  
Background: Deep learning (DL) has emerged as a transformative technology in the field of medical imaging, particularly in 

prenatal assessments. The application of DL algorithms in fetal imaging aims to address challenges such as human 

subjectivity and interobserver variability, while enhancing diagnostic accuracy. 

Methods: This review synthesizes recent advancements in the application of deep learning techniques for evaluating fetal 

anomalies. A comprehensive literature search was conducted to gather evidence on the efficacy of DL in various aspects of 

prenatal imaging, including anatomical assessment, biometric measurements, and the detection of congenital abnormalities. 

Results: The findings indicate that deep learning models exhibit superior performance in identifying normal and abnormal 

fetal anatomy compared to traditional methods. These models effectively classify images, localize anatomical structures, and 

segment key features, significantly reducing examination times and improving workflow. Furthermore, multiple studies 

demonstrate that DL can mitigate the impact of human error, achieving classifications that rival or exceed those of 

experienced sonographers. 

Conclusion: The integration of deep learning into prenatal imaging holds considerable promise for enhancing diagnostic 

capabilities and improving patient outcomes. As these technologies evolve, they offer the potential to support clinicians, 

particularly in resource-limited settings where access to skilled sonographers is limited. Future research should focus on 

refining these models and ensuring their clinical applicability to maximize the benefits of deep learning in obstetric care. 
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Introduction 

Deep learning (DL) is regarded as the 

preeminent artificial intelligence (AI) instrument for 

image analysis overall [1,2]. Deep learning 

algorithms excel in picture identification and 

classification, making them helpful in medical 

imaging. Deep learning models have shown the 

capacity to equal or surpass human performance in 

tasks like image categorization, detection, and 

segmentation [3-5]. Consequently, deep learning has 

been suggested as a prospective auxiliary instrument 

for physicians in medical imaging. A recent 

assessment determined that more than 80% of 

published research on the use of AI in medical 

imaging employed a deep learning technique [1,2,6]. 
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In recent years, deep learning has garnered 

significant appeal in the domain of prenatal imaging, 

as seen by the substantial volume of published 

scientific research using this methodology [7-10]. In 

fetal imaging, deep learning (DL) is anticipated to 

mitigate issues associated with human analysis, such 

as subjectivity and interobserver variability, while 

also decreasing examination durations. Additionally, 

it may be used in the instruction of novice and 

unskilled physicians [11-13]. This State-of-the-Art 

Review offers a thorough examination of the use of 

deep learning in prenatal imaging. We elucidate the 

use of deep learning in prenatal imaging, 

emphasizing the evaluation of normal and abnormal 

fetal anatomy, biometric measures, and intrapartum 

ultrasonography. 

Deep learning 

‘Artificial intelligence’ refers to a 

computer's capacity to execute activities linked to 

human intellect, including learning, decision-making, 

visual perception, and voice recognition. Unlike 

human thinking, AI algorithms are proficient at 

detecting intricate patterns in data to provide an 

automated quantitative answer to a problem [1]. This 

indicates that their outcomes are more precise and 

repeatable than those of people. Machine learning 

algorithms, a subset of artificial intelligence, 

empower computers to learn and improve their 

performance via 'experience' (utilizing available 

data), without explicit programming. Numerous 

machine-learning techniques exist, with deep learning 

(DL) being the most significant in the domain of 

medical imaging (Figure 1) [2]. 

 
Figure 1. Summary of primary categories of deep 

learning algorithms categorized by training 

methodologies. 

The architecture of deep learning models is 

complex and comprises several deep layers of 

artificial neural networks. Convolutional neural 

networks (CNN) are the most often used, however 

several other forms of deep neural networks exist 

(Figure 1). Deep learning models may examine 

extensive datasets in a layered, non-linear fashion, 

using pattern recognition to extract highly 

representative picture attributes for the purpose of 

labeling an image (e.g., as normal or abnormal). [14] 

Deep learning models may be constructed with either 

a supervised or unsupervised learning methodology. 

A supervised deep learning model, the most prevalent 

form, necessitates tagged or 'ground-truth' data as 

input for the neural networks during the training 

phase. The model's performance is then evaluated 

using unlabeled data, including normal brain scans 

and images exhibiting ventriculomegaly that have not 

been annotated by human operators, during the 

testing phase. Thereafter, the deep learning model 

will provide a forecast and categorize the picture. 

Conversely, unsupervised learning methods do not 

need labels. The deep learning model identifies 

primary patterns and similarities in the input data to 

categorize the photos in the output [15]. 

1. The Advantages of Utilizing Deep Learning In 

Fetal Imaging 

Prenatal ultrasonography has significantly 

advanced over the years; nonetheless, the overall 

detection rates of congenital abnormalities continue 

to be low [16]. A primary reason for this is the 

human aspect. Navigating the ultrasound probe 

through intricate fetal anatomy to achieve the 

appropriate scanning plane, evaluating each fetal 

anatomical feature, and arriving at an accurate 

diagnosis requires years of training and 

comprehensive understanding of fetal anatomy [17-

20]. Furthermore, issues intrinsic to ultrasonography, 

such as acoustic shadows, speckle noise, motion 

blurring, and indistinct boundaries, may potentially 

exacerbate the poor detection rates [21]. A further 

drawback of ultrasonography is the significant intra- 

and interobserver variability, particularly in biometric 

measures, which may lead to considerable 

inaccuracies in fetal weight estimate, leading in the 

misclassification of small- or large-for-gestational 

age fetuses [22]. 

2. The Mechanisms of Deep Learning In Fetal 

Imaging 

The prospective applications of deep learning in 

obstetrics include the detection of normal and 

abnormal fetal anatomy as well as the assessment of 

fetal biometry. For these applications, deep learning 

models include one or a combination of up to four 

tasks: classification, localization, object 

identification, and segmentation, depending upon the 

required output. Classification designates a binary 

'class label' to a picture, such as normal/abnormal or 

correct/incorrect anatomical orientation. Localization 

determines the exact position of an item inside an 

image, facilitating the identification of anatomical 

landmarks and enabling automated measurements. 

Object detection integrates classification and 

localization, simultaneously identifying the position 

of fetal structures in a picture (and, if required, their 

measurement) while categorizing them as normal or 

abnormal. Ultimately, segmentation refers to the 

identification of an item inside the picture. It 

resembles localization, however, also evaluates the 

morphology (form, volume, and contour) of the item, 
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and may be integrated with classification tasks to 

categorize the picture as normal or aberrant [5].  

This innovative technology has characteristics 

that may assist both novice and seasoned operators. 

The automated assessment of biometric parameters or 

identification of anatomical landmarks would assist 

the novice operator conducting a fetal screening scan, 

while deep learning models designed to detect fetal 

malformations could bolster the confidence of the 

junior examiner in diagnosis and notify a more 

seasoned operator of subtle anomalies that might 

otherwise be missed [23,24]. 

3. The Potential of Deep Learning to Enhance 

Fetal Imaging 

Biometric measures are used to assess 

gestational age (GA) and track fetal development. To 

do this, many fetal components, including the fetal 

head, abdomen, femur, cerebellum, and crown–rump 

length (CRL) (before to 14 weeks of gestation), are 

assessed using conventional biometry planes [25-27]. 

The measurements are labor-intensive and dependent 

on the operator, necessitating accurate capture of the 

standard plane prior to the manual positioning of the 

calipers. Complete automation using deep learning 

may mitigate interobserver variability and decrease 

examination durations, hence enhancing workflow. 

This method may ultimately reduce tiredness and 

alleviate occupational injuries [28-30]. 

Various deep learning models have been created 

using diverse methodologies for the automated 

assessment of fetal head biometry (head 

circumference, occipitofrontal diameter, and 

biparietal diameter) and femur length [31-33]. The 

automatic measurement of fetal abdominal 

circumference presents more challenges owing to its 

uneven morphology and indistinct borders. 

Consequently, researchers have suggested using 

object identification or segmentation of fetal 

abdominal anatomical landmarks (stomach bubble, 

umbilical vein, fetal spine) before measuring the 

abdominal circumference [34-38] Recent 

advancements in artificial intelligence have enabled 

researchers to create multitasking deep learning 

models that use segmentation to automatically 

conduct all biometric measures in the three 

conventional fetal planes. This strategy allows the DL 

algorithm to concurrently estimate the GA and GA 

[39, 40]. 

The assessment of crown-rump length (CRL) 

and nuchal translucency (NT) is a crucial component 

of the prenatal ultrasonography evaluation during the 

first trimester of gestation [41]. Automatic 

measurement of CRL and NT via deep learning 

models has been facilitated by 3D imaging and 

segmentation methodologies [42-44]. The benefit of 

using 3D ultrasound is that the deep learning model 

can identify and choose the optimal planes for 

conducting biometric measurements of the fetal head, 

belly, and femur. 

For decades, ultrasonography has served as the 

primary imaging technique for diagnosing prenatal 

abnormalities. The standard procedure for prenatal 

ultrasound in evaluating fetal anatomy entails: first, 

accurate acquisition of standard fetal planes; second, 

identification and measurement of fetal anatomical 

structures; and third, categorization of the identified 

structures as normal or abnormal. Human operators 

take years of expertise to completely grasp this 

technique [45]. Conversely, deep learning algorithms 

may be taught in a very little period using substantial 

datasets, achieving performance comparable to or 

superior to that of human operators. 

The International Society of Ultrasound in 

Obstetrics and Gynecology (ISUOG) has 

recommended many fetal standard planes to 

standardize the precise acquisition of these planes 

and minimize intra- and interobserver variability. A 

comprehensive assessment of fetal anatomy is an 

arduous and time-intensive endeavor. Deep learning 

algorithms may be taught to reliably detect several 

fetal standard planes, and multiple deep learning 

models have been built to automatically identify the 

primary fetal standard planes, including the brain, 

heart, face, and belly. In identifying fetal standard 

planes, deep learning models that execute object 

detection and segmentation tasks demonstrate greater 

accuracy than classification models, as they localize 

fetal anatomical landmarks prior to classifying the 

plane, akin to human methodology. Burgos-Artizzu 

et al. [46] conducted a comparison of 19 deep 

learning algorithms concerning the accurate 

identification of four anatomical standard planes 

(abdomen, brain, femur, and thorax) and discovered 

that the performance of the top models was 

comparable to that of a fully trained sonographer, 

while achieving a classification speed 25 times 

greater [47-50]. 

In the second phase, precise identification of 

normal fetal anatomy is essential to rule out 

congenital abnormalities. Deep learning algorithms 

can identify and annotate fetal anatomical 

components across several standard planes using 

object recognition and segmentation tasks. Manual 

structural segmentation is a tedious endeavor, 

characterized by significant intra- and interobserver 

heterogeneity. Segmentation deep learning 

algorithms have shown superior performance 

compared to both people and other AI models for this 

task [51]. 

4. The central nervous system (CNS) of the fetus 

The fetal brain is among the most intricate fetal 

structures, and its examination during the second 

trimester necessitates the acquisition and assessment 

of many standard brain planes. Furthermore, the fetal 

brain experiences significant changes in structure and 

morphology throughout pregnancy, complicating its 

evaluation. Multiple deep learning models have been 

created for the automated detection of standard 

planes in the embryonic brain and have shown 
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effective performance [52-55]. Deep learning models 

can accurately recognize several brain anatomical 

features, including the lateral ventricles, choroid 

plexus, cavum septi pellucidi, thalami, cerebellum, 

cisterna magna, Sylvian fissure, and brainstem. 

Furthermore, deep learning models may be taught to 

execute automated assessments of fetal brain regions, 

including the lateral ventricles and cavum septi 

pellucidi. Another use of deep learning models in 

brain examination is the evaluation of embryonic 

cortical development. Deep learning algorithms may 

evaluate the morphology of cortical structures to 

predict the associated gestational age; if this 

gestational age does not align with the actual 

gestational age, the operator will be notified of a 

potential cortical developmental defect [56]. 

Central nervous system (CNS) malformations are 

among the most common congenital abnormalities. 

Nevertheless, some CNS abnormalities may not 

result in significant structural alterations and may 

remain undiagnosed during prenatal ultrasonography 

assessments [57,58]. Deep learning might serve as a 

diagnostic assistance instrument to enhance the 

detection rates of prenatal brain malformations and 

assist in the decision-making process. Deep learning 

models may be taught to identify structural anomalies 

in the fetal brain or spine on conventional screening 

planes and notify the operator of the existence and 

location of potential malformations. Furthermore, 

deep learning models may categorize the specific 

kind of abnormality (e.g., ventriculomegaly, 

intraventricular cyst, non-visualization of cavum septi 

pellucidi) seen in the fetal picture [59]. Lin et al. [60] 

revealed the development of a deep learning system 

capable of localizing and classifying nine distinct 

brain abnormalities using routine screening planes, 

with an overall accuracy of 99%. 

Accurate evaluation of embryonic heart 

architecture necessitates the examination of many 

fetal anatomical landmarks and cardiac structures in 

well-defined standard planes. Fetal standard cardiac 

planes, including the four-chamber view, left 

ventricular outflow tract, right ventricular outflow 

tract, and three-vessel-and-trachea views, may be 

automatically obtained via deep learning models [61]. 

Fetal cardiac structures may be seen using deep 

learning algorithms that execute object identification 

or segmentation tasks. Current deep learning models 

can identify the four distinct chambers of the 

embryonic heart, as well as the foramen ovale, mitral 

and tricuspid valves, aorta, apex cordis, moderator 

band, left and right ventricular walls, interventricular 

septum, and pulmonary veins [62,63]. DL models 

could ascertain whether the picture corresponds to the 

end-systolic or end-diastolic phase of the fetal cardiac 

cycle based on the opening or closure of the 

atrioventricular valves. Segmentation deep learning 

algorithms facilitate the assessment of cardiac 

morphology by enabling automated quantification of 

fetal cardiac features, including the dimensions of the 

fetal heart chambers. It is crucial to note that, in 

several fetal diseases, including fetal growth 

restriction, cardiac shape may serve as a marker of 

pathology [64]. Deep learning models may also be 

used in the Doppler assessment of the fetal heart, as 

suggested by Sulas et al. [65]. The authors created a 

model capable of automatically evaluating pulsed-

wave Doppler traces of left ventricular inflows and 

outflows, identifying early and late diastole and 

systole. Ultimately, deep learning algorithms may 

provide biometric heart metrics, including the 

cardiothoracic ratio and the cardiac axis angle 

[66,67]. 

Congenital heart disease (CHD) is the most 

prevalent birth abnormality and is linked to elevated 

infant death rates. The prenatal detection of 

congenital heart disease facilitates early planning and 

therapy of the problem, hence enhancing perinatal 

outcomes. Detection rates, however, exhibit 

significant variability mostly attributable to 

disparities in operator experience. The use of deep 

learning models may enhance prenatal identification 

rates of congenital heart disease by offering an 

objective and operator-independent evaluation of 

fetal cardiac pictures. Certain writers have suggested 

using deep learning models to notify the operator 

when a cardiac anomaly is observed. Nonetheless, 

there is a need for deep learning models that can 

recognize and classify numerous congenital heart 

defects in the field. As of now, deep learning models 

capable of identifying hypoplastic left heart 

syndrome and ventricular septal abnormalities have 

been developed via object detection or segmentation 

techniques. Concerning ventricular septal 

abnormalities, segmentation deep learning algorithms 

can accurately identify and isolate the whole defect 

on the fetal heart septum, enabling precise 

determination of its dimensions [68-70]. 

The routine assessment of the placenta often 

includes ascertaining its position and echogenicity, as 

well as identifying characteristics indicative of 

aberrant invasive placentation. Placental biometry, 

associated with fetal smallness, pre-eclampsia, and 

other negative pregnancy outcomes, is not frequently 

conducted due to its time-consuming and operator-

dependent nature. An entirely automated deep 

learning model might execute this work swiftly and 

consistently, therefore reducing interobserver 

variability, perhaps becoming placental biometry a 

valuable imaging biomarker [71]. Furthermore, these 

algorithms may evaluate the placenta's placement 

(anterior or posterior) and appearance (normal or 

pathological). Segmentation deep learning methods 

used with 3D ultrasonography may provide 

supplementary insights about the anatomy and 

volume of the placenta [72]. 

Placental lacunae are hypoechoic cavities located 

inside the placenta. While prevalent in most 
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pregnancies, extensive, many, and/or irregular 

placental lacunae may indicate aberrant placental 

invasion. Abnormal invasive placentation is an 

obstetric disorder linked to increased maternal 

morbidity and death. Segmentation deep learning 

algorithms can effectively identify and localize 

placental lacunae with high accuracy [73]. 

A comprehensive prenatal ultrasound 

examination includes the evaluation of other fetal 

structures in addition to the brain, heart, and placenta. 

The use of deep learning (DL) is progressively 

broadening, with DL algorithms capable of 

identifying various fetal tissues, including the face, 

spine, kidneys, lungs, fat tissue, and sexual organs. 

Certain ultrasound manufacturers have begun 

including checklists of requisite standard planes and 

fetal anatomical components into the software of 

ultrasound machines, to assist and direct the operator 

throughout the examination [74,75]. 

5. Deep learning and ultrasonography during 

childbirth 

Ultrasound is being used in the labor ward, 

proving effective in evaluating fetal head station, 

degree of bending, and position. Obtaining the 

accurate picture and doing the requisite 

measurements may need many minutes, in a context 

where delays in decision-making might lead to 

detrimental consequences. The deployment of a deep 

learning model capable of concurrently evaluating the 

station, angle, and position of the fetal head may 

contribute to routine labor ward operations. Research 

efforts have so far focused on creating deep learning 

models to evaluate the fetal occiput position during 

the second stage of labor, classifying it as occiput 

anterior, posterior, or transverse [76,77]. 

6. Conclusion 

The eventual integration of deep learning in 

obstetrics and fetal imaging seems unavoidable. Deep 

learning has several benefits, including objectivity, 

repeatability, rapidity, and precision, with significant 

promise as an auxiliary instrument for prenatal 

ultrasonography. It is essential to recognize that these 

novel procedures are designed not to supplant 

specialists in the field, but to assist them and enhance 

workflow, so conserving time for both patients and 

clinicians. Furthermore, this technique may enhance 

healthcare in rural regions or low-income nations, 

where experienced sonographers are few and patients 

must traverse considerable distances for 

consultations. A considerable journey remains before 

deep learning may be completely integrated into 

therapeutic practice. Nevertheless, since the volume 

of papers in the subject increases annually, this may 

be realized sooner than anticipated. 
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