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Abstract

Background: The management of chronic diseases in primary care is undergoing a profound transformation driven by the
convergence of digital health technologies. Traditional pharmacovigilance, reliant on spontaneous reporting and periodic
reviews, is ill-suited for detecting subtle, longitudinal adverse drug reactions (ADRs) in ambulatory patients. The emergence
of continuous data streams from wearable medical devices and advanced analytics within electronic health records (EHRS)
presents an unprecedented opportunity to establish a proactive, real-time safety surveillance system embedded within routine
care. Aim: This narrative review aims to synthesize contemporary evidence on an integrated digital pharmacovigilance
ecosystem for chronic disease management. Methods: A systematic search of peer-reviewed literature (2010-2024) was
conducted across PubMed, IEEE Xplore, Scopus, CINAHL, and ACM Digital Library. Results: The review identifies that a
functional digital pharmacovigilance ecosystem requires seamless data interoperability, validated Al algorithms, and clear
clinical workflows. Key findings highlight that wearables provide continuous physiological data serving as potential digital
biomarkers for ADRs; EHR-integrated Al can flag anomalous patterns against individual and population baselines; this
system empowers general practitioners with actionable insights for treatment personalization. Conclusion: Moving from
passive to active pharmacovigilance necessitates a fundamental re-engineering of the primary care chronic disease pathway.
Success depends on interdisciplinary collaboration to address challenges of data quality, regulatory frameworks, clinical
validation, and equitable access. This ecosystem promises to enhance medication safety, optimize therapeutic outcomes, and
usher in a new era of data-driven, preventive pharmacotherapy.
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Introduction

The global burden of chronic diseases—
such as hypertension, diabetes, heart failure, and
chronic obstructive pulmonary disease (COPD)—is
intrinsically linked to long-term pharmacotherapy
(Boers et al., 2023). While these medications prolong
life and improve quality of life, they also carry risks
of adverse drug reactions (ADRs) that can be
insidious, multifactorial, and difficult to detect in the
intermittent snapshots of traditional clinic visits
(Giardina et al., 2018). Conventional
pharmacovigilance systems, primarily dependent on

voluntary reporting by healthcare professionals and
patients, are notoriously plagued by under-reporting,
significant latency, and a lack of contextual patient
data, making them ineffective for personalized, real-
time risk mitigation (Guan et al., 2023). This reactive
model leaves a critical safety gap in the ambulatory
setting where patients manage their conditions daily
(Gonzalez-Hernandez et al., 2022).

A paradigm shift is emerging at the
intersection of digital health and clinical care
(Tavakoli et al., 2020). The proliferation of consumer
and medical-grade wearable devices—capable of
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continuously monitoring vital signs (heart rate,
rhythm, oxygen saturation), physical activity, sleep,
and even biochemical markers—generates vast,
longitudinal datasets of an individual’s physiological
"fingerprint” (Dunn et al., 2022). Concurrently, the
widespread adoption of Electronic Health Records
(EHRs) and pharmacy databases has created
structured repositories of medication histories,
laboratory results, and clinical notes. When bridged
by Artificial Intelligence (Al) and machine learning,
these parallel data streams can be analyzed to detect
subtle deviations signaling potential ADRSs,
transforming pharmacovigilance from a passive,
population-level exercise into an active, patient-
centric safeguard (Bate & Hobbiger, 2021).

This narrative review synthesizes literature
from 2010 to 2024 to conceptualize and analyze
the Digital Pharmacovigilance  Ecosystem. We
examine its functional pillars: data acquisition
via Medical Devices (Wearables); data integration
and intelligent signal detection
via Pharmacy databases and Al; clinical action
by General Practitioners; population-level validation

by Epidemiology; policy translation by Public
Health; confirmatory diagnostic support from X-ray
Radiology; and the application

of Anesthesiology principles for procedure safety
within ~ chronic care. By exploring this
interdisciplinary  framework, we elucidate the
potential, challenges, and necessary collaborations to
realize a future where medication safety is
continuously assured.

The Architecture of the Digital Pharmacovigilance
Ecosystem

The Data Acquisition and Integration Layer

The foundation of the ecosystem is the
continuous, real-world data generated by patients
(Ding et al., 2023). Wearable Medical Devices have
evolved from simple pedometers to sophisticated
biosensors. Electrocardiogram (ECG)-enabled
smartwatches can detect atrial fibrillation, a potential
ADR of certain chemotherapies or respiratory drugs
(Perez et al., 2019). Continuous glucose monitors
(CGMs) provide rich dynamics beyond HbAlc,
revealing patterns of hypoglycemia that may be
exacerbated by medications like beta-blockers or
fluoroquinolones  (Battelino et al., 2023).
Photoplethysmography (PPG) sensors can track heart
rate variability (HRV), a marker of autonomic tone
that may be suppressed by tricyclic antidepressants or
opioids (Alinia et al., 2021). These devices generate a
high-frequency, longitudinal "digital phenotype" of
the patient.

The critical challenge
is interoperability. Health Informatics provides the
essential bridge, requiring the development of Fast
Healthcare  Interoperability —Resources (FHIR)
standards and application programming interfaces
(APIs) to stream wearable data securely and
structured into the EHR (Mandel et al., 2016). This
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integration must be bidirectional; clinical context
from the EHR (a new medication start) can inform
the Al algorithms analyzing the wearable data stream.
Without a robust informatics architecture, wearable
data remains a siloed curiosity rather than a clinical
asset (Ayaz et al., 2021).

The Signal Detection and Analytics Engine

Once integrated, this multimodal data lake
becomes the substrate for advanced analytics.
The Pharmacy component, specifically
comprehensive medication records and prescription
databases, provides the essential "exposure™ variable.
Linking precise medication start dates, dosage
changes, and discontinuations to physiological
timelines is paramount.

Artificial  Intelligence serves as  the
ecosystem's central nervous system. Supervised
machine learning models can be trained on historical
EHR data to recognize patterns associated with
known ADRs (a gradual rise in creatinine following
NSAID initiation) (Williams et al.,, 2019). More
powerfully,  unsupervised or  semi-supervised
approaches can detect novel, anomalous patterns in
the combined wearable-EHR data stream that deviate
from a patient’s personal baseline or from expected
population trajectories (Yan et al., 2022). For
example, an Al could flag a cluster of events: a new
prescription for a leukotriene modifier, followed by a
wearable-detected rise in resting heart rate and a drop
in sleep duration, potentially  signaling
neuropsychiatric agitation (Davis et al., 2023). These
Al-generated signals are then presented within
the Medical Record via clinician-facing dashboards
or passive alerts, prioritizing them by severity and
confidence level to avoid alert fatigue (Yang et al.,
2018).

The Clinical Interpretation and Action Hub

The Al-generated signal is a hypothesis, not
a diagnosis. The General Practitioner (GP), as the
longitudinal care coordinator, is the indispensable
human-in-the-loop. Equipped with a curated alert and
a unified view of the patient’s wearable trends,
medication list, and history, the GP interprets the
signal within the full clinical context. This may lead
to a telehealth check-in, dosage adjustment,
medication change, or order for confirmatory tests
(Chen et al., 2020). This model shifts the GP's role
towards  proactive, data-informed therapeutic
management (Liu et al., 2020).

Confirmatory diagnostics often involve X-
ray Radiology. For instance, a signal suggesting
drug-induced interstitial lung disease (from certain
chemotherapies or disease-modifying antirheumatic
drugs) would necessitate a high-resolution CT scan
for validation (Skeoch et al., 2018; Conte et al.,
2022). Furthermore, chronic disease management
often involves minor procedures (joint injections,
skin biopsies) requiring sedation. Here, principles
from Anesthesiology—particularly regarding
medication  interactions,  conscious  sedation
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protocols, and peri-procedural monitoring—are vital
to navigate polypharmacy in this vulnerable
population safely (Patel et al., 2019).
The Population Validation and Policy Translation
Layer

Individual clinical actions feed into a larger
learning cycle (Table 1). Epidemiology utilizes
aggregated, de-identified data from the ecosystem to
conduct large-scale, real-world evidence studies (Lu
et al., 2021). By analyzing patterns across thousands
of patients, epidemiologists can validate Al-
discovered signals, quantify ADR incidence rates in
real-world use, and identify sub-populations at
heightened risk (based on genetics, comorbidities, or
social determinants) (Wang et al., 2022). This

continuous feedback refines the Al models, creating a
learning health system.

Public Health entities translate these insights
into action (Song et al., 2021). Regulatory agencies
(FDA, EMA) could potentially accept curated, real-
world digital biomarker data in post-marketing
surveillance commitments (Corrigan-Curay et al.,
2018). Public health departments can design
targeted prevention campaigns—for example,
educating patients on specific wearable-monitored
signs of an ADR or guiding primary care networks on
monitoring protocols for high-risk drugs. This closes
the loop from individual patient care to population-
level health protection (Li et al., 2021). Figure 1
illustrates the integrated digital pharmacovigilance

ecosystem in primary care.

Table 1: The Digital Pharmacovigilance Ecosystem: Data Flow and Interdisciplinary Actions

System Layer Key Components & Data

Interdisciplinary Actors & Primary Actions

Wearables (ECG, PPG,
CGM, accelerometry);
Patient-reported outcomes via

apps.

Data Acquisition

Patient: Uses device consistently.
Medical Devices/Informatics: Ensure accuracy, security,
and standardized data output (e.g., FHIR).

Data Integration EHRs, Pharmacy Databases, Health Informatics: Build and maintain interoperable APIs

& Storage Regional Health Information for seamless data ingestion.

Exchanges (HIES). Pharmacy: Maintain accurate, timely medication records.

Signal Detection AI/ML models (supervised, Al/Data Science: Develop, validate, and update models for

& Analytics unsupervised), Statistical anomaly detection.

process control charts. Pharmacy/Informatics: Curate  medication data and
provide clinical context for model training.

Clinical Al-generated alerts in  General Practitioner: Triages alert, reviews full context,

Interpretation & clinician dashboards; contacts patient, adjusts therapy.

Action Integrated patient view. Radiology/Anesthesiology: Provides diagnostic
confirmation (imaging) and ensures procedural safety based
on updated medication risk profile.

Population Aggregated, de-identified Epidemiology: Conducts RWE studies, validates signals,

Learning & datasets from the ecosystem.  and identifies risk factors.

Policy Public Health: Updates drug safety guidelines, designs
prevention programs, and informs regulatory policy based
on ecosystem-derived evidence.

@ a healt_h systen_], where data from routine care
continuously improves future care (Johnson et al.,
QE A& Signal Detection 2021)

‘ = .:fE: % ™ e However, formidable challenges must be
ke st ke A = addressed to transition from concept to clinical
- : a'= = : reality. Technical and scientific hurdles include
e Y[;, _‘ ensuring the clinical validity and reliability of
i g ks wearable-derived digital biomarkers, overcoming
- s Mo persistent EHR interoperability issues, and
. . - developing transparent and explainable Al models
Figure 1'. . Architecture  of  the D'g't‘?l that (F:Jlin%cians IOcan trust p(Steinhubl et al,

Pharmacovigilance  Ecosystem for  Chronic

Disease Management
Opportunities, Challenges,
Implementation

The envisioned ecosystem promises a
management:
personalized medication safety, optimized therapeutic
efficacy, reduced emergency visits from severe
base  for
It exemplifies a true learning

revolution in chronic disease

ADRs, and a richer evidence

pharmacotherapy.

and the Path to

2020). Ethical and Legal Concerns are paramount:
data privacy (especially for continuous streams),
security against breaches, informed consent for
secondary data use, and the potential for algorithmic
bias that could exacerbate health disparities (Vayena
et al, 2023).Clinical and  Organizational
Barriers involve workflow integration, preventing
alert fatigue for GPs, reimbursement for data review
and telehealth follow-ups, and digital literacy gaps
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among both providers and patients, particularly in
elderly populations (Marzo et al., 2022). Table 2 &
Figure 2 summarize the key challenges associated
pharmacovigilance

with  implementing

digital

systems—including  data  quality limitations,
regulatory compliance, clinical validation, and access
inequities—and maps them to corresponding
interdisciplinary solutions.

Table 2: Key Challenges and Interdisciplinary Mitigation Strategies for Digital Pharmacovigilance

Challenge Domain

Specific Challenges

Proposed Interdisciplinary Mitigation Strategies

Data Quality &
Interoperability

Variable accuracy of
consumer wearables;

Medical Devices/Informatics: Collaborate on  regulatory
standards for clinical-grade wearables. Advocate for and

Proprietary data implement universal data standards (FHIR).

formats; Siloed EHR Public Health: Support certification of devices for specific

systems. clinical use cases.
Al Model "Black box" Al/Data Science/Epidemiology: Co-develop models using
Development & algorithms; Training diverse, representative datasets. Prioritize explainable Al (XAl)
Bias data not techniques.

representative of Public Health: Fund and require bias audits of algorithms

diverse populations.

intended for clinical use.

Clinical
Integration &
Workflow

Alert fatigue; Unclear
responsibility for
monitoring; Lack of
reimbursement.

General Practitioner/Informatics: Co-design alert systems
with tiered urgency and integrated into normal workflow.

Health Administration/Public Health: Develop new payment
models (e.g., bundled chronic care management codes) that value
proactive safety monitoring.

Ethical, Legal, &
Equity Issues

Data privacy for
continuous

monitoring; Informed

Public  Health/Law/Ethics: Develop consent
frameworks. Enforce strict data governance.

General Practitioner/Public Health: Implement programs to

dynamic

consent models; provide validated devices and digital navigation support to
Digital divide. underserved populations to ensure equitable access.
Regulatory & Lack of clear Public Health/Regulatory Science: Work with agencies (FDA,
Validation pathways for EMA) to create adaptive pathways for software as a medical
Framework regulatory approval of device (SaMD) in pharmacovigilance.
Al-based Epidemiology/Al: Design rigorous prospective trials to validate
pharmacovigilance the clinical utility and cost-effectiveness of the ecosystem.
tools.
) creation of new education and training programs for
healthcare professionals in data-informed care.
1 o i W Fourth, proactive policy and regulatory innovation to
byt smevrs —— foster safe and equitable development. By embracing
Tl ’ Qﬂ 2 s eree Y this integrated model, we can move beyond the
M = 5& _ paradigm of "first, do no harm" as a passive hope,
L) Ebeopmoiiond é— ! . — e | and towards "continuously ensure no harm™ as an
[ A Bty e ag ,eg s cess L I8 active, data-driven commitment. The result will be a
A . iué M,:“{,, e ‘;"‘*;"’ﬁ‘_’? fundamental enhancement in the safety, efficacy, and
. Lo ersonalization of chronic disease management,
Flgur_e 2. Challenges and I_nterdISCIpll_nz_:lry Eltimately improving the lives of millions of gF])atients
Solutions in Implementing Digital

Pharmacovigilance

Conclusion and Future Directions

navigating long-term pharmacotherapy.
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