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Abstract  

Background: The management of chronic diseases in primary care is undergoing a profound transformation driven by the 

convergence of digital health technologies. Traditional pharmacovigilance, reliant on spontaneous reporting and periodic 

reviews, is ill-suited for detecting subtle, longitudinal adverse drug reactions (ADRs) in ambulatory patients. The emergence 

of continuous data streams from wearable medical devices and advanced analytics within electronic health records (EHRs) 

presents an unprecedented opportunity to establish a proactive, real-time safety surveillance system embedded within routine 

care. Aim: This narrative review aims to synthesize contemporary evidence on an integrated digital pharmacovigilance 

ecosystem for chronic disease management. Methods: A systematic search of peer-reviewed literature (2010-2024) was 

conducted across PubMed, IEEE Xplore, Scopus, CINAHL, and ACM Digital Library. Results: The review identifies that a 

functional digital pharmacovigilance ecosystem requires seamless data interoperability, validated AI algorithms, and clear 

clinical workflows. Key findings highlight that wearables provide continuous physiological data serving as potential digital 

biomarkers for ADRs; EHR-integrated AI can flag anomalous patterns against individual and population baselines; this 

system empowers general practitioners with actionable insights for treatment personalization. Conclusion: Moving from 

passive to active pharmacovigilance necessitates a fundamental re-engineering of the primary care chronic disease pathway. 

Success depends on interdisciplinary collaboration to address challenges of data quality, regulatory frameworks, clinical 

validation, and equitable access. This ecosystem promises to enhance medication safety, optimize therapeutic outcomes, and 

usher in a new era of data-driven, preventive pharmacotherapy. 
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Introduction 

The global burden of chronic diseases—

such as hypertension, diabetes, heart failure, and 

chronic obstructive pulmonary disease (COPD)—is 

intrinsically linked to long-term pharmacotherapy 

(Boers et al., 2023). While these medications prolong 

life and improve quality of life, they also carry risks 

of adverse drug reactions (ADRs) that can be 

insidious, multifactorial, and difficult to detect in the 

intermittent snapshots of traditional clinic visits 

(Giardina et al., 2018). Conventional 

pharmacovigilance systems, primarily dependent on 

voluntary reporting by healthcare professionals and 

patients, are notoriously plagued by under-reporting, 

significant latency, and a lack of contextual patient 

data, making them ineffective for personalized, real-

time risk mitigation (Guan et al., 2023). This reactive 

model leaves a critical safety gap in the ambulatory 

setting where patients manage their conditions daily 

(Gonzalez-Hernandez et al., 2022). 

A paradigm shift is emerging at the 

intersection of digital health and clinical care 

(Tavakoli et al., 2020). The proliferation of consumer 

and medical-grade wearable devices—capable of 



The Digital Pharmacovigilance Ecosystem: An Interdisciplinary Review of Real-Time... 
_____________________________________________________________________________________________________________ 

________________________________________________ 

Saudi J. Med. Pub. Health Vol. 1 No. 2 (2024) 

 

1724 

continuously monitoring vital signs (heart rate, 

rhythm, oxygen saturation), physical activity, sleep, 

and even biochemical markers—generates vast, 

longitudinal datasets of an individual’s physiological 

"fingerprint" (Dunn et al., 2022). Concurrently, the 

widespread adoption of Electronic Health Records 

(EHRs) and pharmacy databases has created 

structured repositories of medication histories, 

laboratory results, and clinical notes. When bridged 

by Artificial Intelligence (AI) and machine learning, 

these parallel data streams can be analyzed to detect 

subtle deviations signaling potential ADRs, 

transforming pharmacovigilance from a passive, 

population-level exercise into an active, patient-

centric safeguard (Bate & Hobbiger, 2021). 

This narrative review synthesizes literature 

from 2010 to 2024 to conceptualize and analyze 

the Digital Pharmacovigilance Ecosystem. We 

examine its functional pillars: data acquisition 

via Medical Devices (Wearables); data integration 

and intelligent signal detection 

via Pharmacy databases and AI; clinical action 

by General Practitioners; population-level validation 

by Epidemiology; policy translation by Public 

Health; confirmatory diagnostic support from X-ray 

Radiology; and the application 

of Anesthesiology principles for procedure safety 

within chronic care. By exploring this 

interdisciplinary framework, we elucidate the 

potential, challenges, and necessary collaborations to 

realize a future where medication safety is 

continuously assured. 

The Architecture of the Digital Pharmacovigilance 

Ecosystem 

The Data Acquisition and Integration Layer 

The foundation of the ecosystem is the 

continuous, real-world data generated by patients 

(Ding et al., 2023). Wearable Medical Devices have 

evolved from simple pedometers to sophisticated 

biosensors. Electrocardiogram (ECG)-enabled 

smartwatches can detect atrial fibrillation, a potential 

ADR of certain chemotherapies or respiratory drugs 

(Perez et al., 2019). Continuous glucose monitors 

(CGMs) provide rich dynamics beyond HbA1c, 

revealing patterns of hypoglycemia that may be 

exacerbated by medications like beta-blockers or 

fluoroquinolones (Battelino et al., 2023). 

Photoplethysmography (PPG) sensors can track heart 

rate variability (HRV), a marker of autonomic tone 

that may be suppressed by tricyclic antidepressants or 

opioids (Alinia et al., 2021). These devices generate a 

high-frequency, longitudinal "digital phenotype" of 

the patient. 

The critical challenge 

is interoperability. Health Informatics provides the 

essential bridge, requiring the development of Fast 

Healthcare Interoperability Resources (FHIR) 

standards and application programming interfaces 

(APIs) to stream wearable data securely and 

structured into the EHR (Mandel et al., 2016). This 

integration must be bidirectional; clinical context 

from the EHR (a new medication start) can inform 

the AI algorithms analyzing the wearable data stream. 

Without a robust informatics architecture, wearable 

data remains a siloed curiosity rather than a clinical 

asset (Ayaz et al., 2021).  

The Signal Detection and Analytics Engine 

Once integrated, this multimodal data lake 

becomes the substrate for advanced analytics. 

The Pharmacy component, specifically 

comprehensive medication records and prescription 

databases, provides the essential "exposure" variable. 

Linking precise medication start dates, dosage 

changes, and discontinuations to physiological 

timelines is paramount. 

Artificial Intelligence serves as the 

ecosystem's central nervous system. Supervised 

machine learning models can be trained on historical 

EHR data to recognize patterns associated with 

known ADRs (a gradual rise in creatinine following 

NSAID initiation) (Williams et al., 2019). More 

powerfully, unsupervised or semi-supervised 

approaches can detect novel, anomalous patterns in 

the combined wearable-EHR data stream that deviate 

from a patient’s personal baseline or from expected 

population trajectories (Yan et al., 2022). For 

example, an AI could flag a cluster of events: a new 

prescription for a leukotriene modifier, followed by a 

wearable-detected rise in resting heart rate and a drop 

in sleep duration, potentially signaling 

neuropsychiatric agitation (Davis et al., 2023). These 

AI-generated signals are then presented within 

the Medical Record via clinician-facing dashboards 

or passive alerts, prioritizing them by severity and 

confidence level to avoid alert fatigue (Yang et al., 

2018).  

The Clinical Interpretation and Action Hub 

The AI-generated signal is a hypothesis, not 

a diagnosis. The General Practitioner (GP), as the 

longitudinal care coordinator, is the indispensable 

human-in-the-loop. Equipped with a curated alert and 

a unified view of the patient’s wearable trends, 

medication list, and history, the GP interprets the 

signal within the full clinical context. This may lead 

to a telehealth check-in, dosage adjustment, 

medication change, or order for confirmatory tests 

(Chen et al., 2020). This model shifts the GP's role 

towards proactive, data-informed therapeutic 

management (Liu et al., 2020). 

Confirmatory diagnostics often involve X-

ray Radiology. For instance, a signal suggesting 

drug-induced interstitial lung disease (from certain 

chemotherapies or disease-modifying antirheumatic 

drugs) would necessitate a high-resolution CT scan 

for validation (Skeoch et al., 2018; Conte et al., 

2022). Furthermore, chronic disease management 

often involves minor procedures (joint injections, 

skin biopsies) requiring sedation. Here, principles 

from Anesthesiology—particularly regarding 

medication interactions, conscious sedation 
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protocols, and peri-procedural monitoring—are vital 

to navigate polypharmacy in this vulnerable 

population safely (Patel et al., 2019). 

The Population Validation and Policy Translation 

Layer 

Individual clinical actions feed into a larger 

learning cycle (Table 1). Epidemiology utilizes 

aggregated, de-identified data from the ecosystem to 

conduct large-scale, real-world evidence studies (Lu 

et al., 2021). By analyzing patterns across thousands 

of patients, epidemiologists can validate AI-

discovered signals, quantify ADR incidence rates in 

real-world use, and identify sub-populations at 

heightened risk (based on genetics, comorbidities, or 

social determinants) (Wang et al., 2022). This 

continuous feedback refines the AI models, creating a 

learning health system. 

Public Health entities translate these insights 

into action (Song et al., 2021). Regulatory agencies 

(FDA, EMA) could potentially accept curated, real-

world digital biomarker data in post-marketing 

surveillance commitments (Corrigan-Curay et al., 

2018). Public health departments can design 

targeted prevention campaigns—for example, 

educating patients on specific wearable-monitored 

signs of an ADR or guiding primary care networks on 

monitoring protocols for high-risk drugs. This closes 

the loop from individual patient care to population-

level health protection (Li et al., 2021). Figure 1 

illustrates the integrated digital pharmacovigilance 

ecosystem in primary care. 

Table 1: The Digital Pharmacovigilance Ecosystem: Data Flow and Interdisciplinary Actions 

System Layer Key Components & Data Interdisciplinary Actors & Primary Actions 

Data Acquisition Wearables (ECG, PPG, 

CGM, accelerometry); 

Patient-reported outcomes via 

apps. 

Patient: Uses device consistently.  

Medical Devices/Informatics: Ensure accuracy, security, 

and standardized data output (e.g., FHIR). 

Data Integration 

& Storage 

EHRs, Pharmacy Databases, 

Regional Health Information 

Exchanges (HIEs). 

Health Informatics: Build and maintain interoperable APIs 

for seamless data ingestion.  

Pharmacy: Maintain accurate, timely medication records. 

Signal Detection 

& Analytics 

AI/ML models (supervised, 

unsupervised), Statistical 

process control charts. 

AI/Data Science: Develop, validate, and update models for 

anomaly detection.  

Pharmacy/Informatics: Curate medication data and 

provide clinical context for model training. 

Clinical 

Interpretation & 

Action 

AI-generated alerts in 

clinician dashboards; 

Integrated patient view. 

General Practitioner: Triages alert, reviews full context, 

contacts patient, adjusts therapy.  

Radiology/Anesthesiology: Provides diagnostic 

confirmation (imaging) and ensures procedural safety based 

on updated medication risk profile. 

Population 

Learning & 

Policy 

Aggregated, de-identified 

datasets from the ecosystem. 

Epidemiology: Conducts RWE studies, validates signals, 

and identifies risk factors.  

Public Health: Updates drug safety guidelines, designs 

prevention programs, and informs regulatory policy based 

on ecosystem-derived evidence. 

 
Figure 1. Architecture of the Digital 

Pharmacovigilance Ecosystem for Chronic 

Disease Management 

Opportunities, Challenges, and the Path to 

Implementation 

The envisioned ecosystem promises a 

revolution in chronic disease management: 

personalized medication safety, optimized therapeutic 

efficacy, reduced emergency visits from severe 

ADRs, and a richer evidence base for 

pharmacotherapy. It exemplifies a true learning 

health system, where data from routine care 

continuously improves future care (Johnson et al., 

2021). 

However, formidable challenges must be 

addressed to transition from concept to clinical 

reality. Technical and scientific hurdles include 

ensuring the clinical validity and reliability of 

wearable-derived digital biomarkers, overcoming 

persistent EHR interoperability issues, and 

developing transparent and explainable AI models 

that clinicians can trust (Steinhubl et al., 

2020). Ethical and Legal Concerns are paramount: 

data privacy (especially for continuous streams), 

security against breaches, informed consent for 

secondary data use, and the potential for algorithmic 

bias that could exacerbate health disparities (Vayena 

et al., 2023). Clinical and Organizational 

Barriers involve workflow integration, preventing 

alert fatigue for GPs, reimbursement for data review 

and telehealth follow-ups, and digital literacy gaps 
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among both providers and patients, particularly in 

elderly populations (Marzo et al., 2022). Table 2 & 

Figure 2 summarize the key challenges associated 

with implementing digital pharmacovigilance 

systems—including data quality limitations, 

regulatory compliance, clinical validation, and access 

inequities—and maps them to corresponding 

interdisciplinary solutions. 

Table 2: Key Challenges and Interdisciplinary Mitigation Strategies for Digital Pharmacovigilance 

Challenge Domain Specific Challenges Proposed Interdisciplinary Mitigation Strategies 

Data Quality & 

Interoperability 

Variable accuracy of 

consumer wearables; 

Proprietary data 

formats; Siloed EHR 

systems. 

Medical Devices/Informatics: Collaborate on regulatory 

standards for clinical-grade wearables. Advocate for and 

implement universal data standards (FHIR).  

Public Health: Support certification of devices for specific 

clinical use cases. 

AI Model 

Development & 

Bias 

"Black box" 

algorithms; Training 

data not 

representative of 

diverse populations. 

AI/Data Science/Epidemiology: Co-develop models using 

diverse, representative datasets. Prioritize explainable AI (XAI) 

techniques.  

Public Health: Fund and require bias audits of algorithms 

intended for clinical use. 

Clinical 

Integration & 

Workflow 

Alert fatigue; Unclear 

responsibility for 

monitoring; Lack of 

reimbursement. 

General Practitioner/Informatics: Co-design alert systems 

with tiered urgency and integrated into normal workflow.  

Health Administration/Public Health: Develop new payment 

models (e.g., bundled chronic care management codes) that value 

proactive safety monitoring. 

Ethical, Legal, & 

Equity Issues 

Data privacy for 

continuous 

monitoring; Informed 

consent models; 

Digital divide. 

Public Health/Law/Ethics: Develop dynamic consent 

frameworks. Enforce strict data governance.  

General Practitioner/Public Health: Implement programs to 

provide validated devices and digital navigation support to 

underserved populations to ensure equitable access. 

Regulatory & 

Validation 

Framework 

Lack of clear 

pathways for 

regulatory approval of 

AI-based 

pharmacovigilance 

tools. 

Public Health/Regulatory Science: Work with agencies (FDA, 

EMA) to create adaptive pathways for software as a medical 

device (SaMD) in pharmacovigilance.  

Epidemiology/AI: Design rigorous prospective trials to validate 

the clinical utility and cost-effectiveness of the ecosystem. 

 
Figure 2. Challenges and Interdisciplinary 

Solutions in Implementing Digital 

Pharmacovigilance 

Conclusion and Future Directions 

The integration of wearable devices, EHRs, 

and AI into a cohesive digital pharmacovigilance 

ecosystem represents a frontier in personalized 

medicine and patient safety. This review has outlined 

its interdisciplinary architecture, demonstrating that 

its success hinges not on technology alone, but on the 

synergistic collaboration of primary care, pharmacy, 

informatics, data science, epidemiology, and public 

health. The path forward requires concerted action. 

First, investment in interoperable digital health 

infrastructure is a public health necessity. Second, the 

development of rigorous, multidisciplinary 

research to validate digital biomarkers and AI 

algorithms for specific drug-ADR pairs. Third, the 

creation of new education and training programs for 

healthcare professionals in data-informed care. 

Fourth, proactive policy and regulatory innovation to 

foster safe and equitable development. By embracing 

this integrated model, we can move beyond the 

paradigm of "first, do no harm" as a passive hope, 

and towards "continuously ensure no harm" as an 

active, data-driven commitment. The result will be a 

fundamental enhancement in the safety, efficacy, and 

personalization of chronic disease management, 

ultimately improving the lives of millions of patients 

navigating long-term pharmacotherapy. 
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