

Optimizing the Post-Acute Care Continuum: An Interdisciplinary Review of Safety, Quality, and Economic Outcomes in the Hospital-to-Home Transition for Technology-Dependent Patients

Musab Qasem Wasili ⁽¹⁾, Eman Ayoub Ahmad Alibrahim ⁽²⁾, Emad Essa A Wasili ⁽³⁾, Thamer Mohidi Alanazi ⁽⁴⁾, Bader Ibrahim Al Dayel ⁽⁵⁾, Fouad Shaddad Alasmari ⁽⁶⁾, Muteb Naif Bin Obaid Aldajani ⁽⁷⁾, Marzouq Quedan s Alotaibi ⁽⁸⁾, Hussain Ali Al Zaid ⁽⁹⁾, Naifah Muharib Mutarid Alruwaili ⁽¹⁰⁾, Essa Tuwayli Almutairi ⁽¹¹⁾, Mohammed Abdullah Asiri ⁽¹²⁾

(1) Middle Sector, Ministry of Health, Saudi Arabia,

(2) Omran General Hospital, Ministry of Health, Saudi Arabia,

(3) Jazan Regional Laboratory, Ministry of Health, Saudi Arabia,

(4) Al-Iman General Hospital – Riyadh, Ministry of Health, Saudi Arabia,

(5) Marat General Hospital, Ministry of Health, Saudi Arabia,

(6) King Faisal Medical City, Ascer Central Hospital, Ministry of Health, Saudi Arabia,

(7) Nefi General Hospital, Ministry of Health, Saudi Arabia,

(8) Nursing Specialist, Afif General Hospital, Third Health Cluster, Riyadh, Ministry of Health, Saudi Arabia,

(9) King Fahd Hofuf Hospital, Ministry of Health, Saudi Arabia,

(10) Al-Naifiyah Health Center, Hafar Al-Batin, Ministry of Health, Saudi Arabia,

(11) Maternity & Children's Hospital in Al-Kharj, Ministry of Health, Saudi Arabia,

(12) Jeddah branch of the Ministry of Health, Saudi Arabia

Abstract

Background: The shift of advanced medical care from institutional to home settings represents a transformative trend in healthcare delivery. For patients dependent on technologies such as home mechanical ventilation, intravenous therapies, and complex monitoring, this transition introduces multifaceted challenges spanning clinical safety, care quality, and health economics. The success of this model hinges on seamless interoperability between traditionally siloed hospital-based disciplines and community care structures. **Aim:** This narrative review aims to synthesize contemporary evidence on the hospital-to-home transition for technology-dependent patients, critically examining the integrated roles of health security, nursing, laboratory science, respiratory therapy, radiology, pharmacy, and hospital management in optimizing safety, ensuring quality, and achieving economic sustainability. **Methods:** A systematic search of peer-reviewed literature (2010-2024) was conducted across PubMed, CINAHL, Scopus, and Business Source Complete. **Results:** The review identifies critical success factors, including robust interdisciplinary discharge planning, comprehensive caregiver education, secure health information technology integration, and innovative payment models. Persistent gaps include cybersecurity vulnerabilities in connected health devices, fragmented data systems, and workforce shortages in home care. Evidence indicates that well-coordinated transitions significantly reduce preventable hospital readmissions and improve patient-reported quality of life. **Conclusion:** Effective management of the post-acute care continuum for technology-dependent patients requires a deliberately engineered, system-level approach that prioritizes interdisciplinary collaboration. Future efforts must standardize protocols, invest in secure remote monitoring technologies, and align reimbursement structures with longitudinal outcomes to ensure this care model is safe, high-quality, and economically viable.

Keywords: care transitions, home care services, technology-dependent patients, interdisciplinary health team, patient safety

Introduction

The landscape of post-acute care is undergoing a profound transformation, driven by technological advancements, patient preference for home-based care, and persistent economic pressures to reduce hospital length of stay (Levine et al., 2020). A growing cohort of patients, once permanently institutionalized, now manage conditions of remarkable complexity in their homes, relying on

medical technologies such as invasive and non-invasive mechanical ventilation, parenteral nutrition, chemotherapy, intravenous antibiotics, and continuous physiological monitoring (Mokhtari et al., 2023). This migration of high-acuity care from the hospital to the home, while offering potential benefits in patient autonomy and cost containment, creates a vulnerable junction in the care continuum. The hospital-to-home transition for these technology-dependent patients is a

high-stakes process where safety lapses, information gaps, or support failures can lead to severe adverse events, patient and caregiver distress, and costly hospital readmissions (Levoy et al., 2022).

The inherent complexity of this transition defies unilateral management by any single clinical discipline. It demands an integrated, systems-based approach that synchronizes the expertise of diverse hospital-based fields with the realities of the home environment (Hewner et al., 2021). This narrative review synthesizes contemporary literature (2010-2024) to examine the hospital-to-home transition through the interdependent lenses of seven critical domains: Health Security, Nursing, Laboratory Science, Respiratory Therapy, Radiology, Pharmacy, and Hospital Management. By analyzing their combined roles, this review aims to elucidate a pathway for optimizing safety, ensuring quality, and achieving economic sustainability in the care of technology-dependent patients in the home setting.

The Interdisciplinary Framework for Safe Transition

The Coordinating and Educative Role of Nursing

The nurse, often as a designated transition coordinator, serves as the linchpin connecting inpatient care to sustainable home management. Their role extends far beyond discharge paperwork to encompass holistic assessment, rigorous education, and longitudinal follow-up. Effective transitions require nurses to conduct comprehensive assessments of the home environment, caregiver capacity, and social determinants of health (Ganz et al., 2018). A central task is the education and competency validation of family caregivers, who become de facto frontline clinicians. Studies show that structured, hands-on training programs for caregivers on equipment operation, emergency troubleshooting, and symptom recognition significantly reduce post-discharge complication rates (Mitchell et al., 2022). Furthermore, the advent of remote patient monitoring (RPM) platforms has expanded nursing's reach, enabling virtual assessments, medication adherence checks, and early intervention for deteriorating patients, thereby preventing crises (Annoor et al., 2021). However, the efficacy of RPM is contingent on adequate training and sustainable nursing workload models to avoid alert fatigue and ensure timely response (Bhavnani et al., 2016).

The Pharmacy as Manager of the Home Therapeutic Ecosystem

The pharmacy's role transforms from medication dispenser to manager of a complex, home-based therapeutic ecosystem. Technology-dependent patients often have intricate regimens involving high-risk medications (IV inotropes, opioids, chemotherapeutics), specialized compounding (parenteral nutrition), and time-sensitive administration (Carter et al., 2021). Clinical pharmacists are essential in conducting medication reconciliation at discharge, simplifying regimens

where possible, and providing clear, standardized instructions for patients and home health nurses (Mekonnen et al., 2018). They coordinate with specialized infusion companies to ensure the timely and safe delivery of supplies and drugs, verifying sterility, stability, and storage requirements in the home. Pharmacist-led interventions, including post-discharge phone follow-up, have been strongly associated with reduced medication-related problems and readmissions (Van der Linden et al., 2022). The management of opioid therapy for pain or dyspnea in this population requires particular vigilance to balance efficacy with risks of respiratory depression and misuse, necessitating clear protocols shared with the entire care team (Chou et al., 2023).

The Respiratory Therapist as Engineer of the Home Ventilatory System

For the ventilator-dependent patient, a safe transition is an engineering feat. Respiratory therapists (RTs) are responsible for configuring the home ventilatory system, which includes not just the ventilator, but also backup power, suction equipment, oxygen concentrators, and humidification systems (Nasa et al., 2021). Their pre-discharge work involves meticulous assessment of the home's electrical safety, identification of backup power solutions, and ensuring adequate supplies of disposables (tracheostomy tubes, circuits, suction catheters). A critical and often emotionally charged component is training caregivers in life-sustaining skills: tracheostomy care, secretion management, ventilator alarm interpretation, and manual resuscitation bag use (Lindahl & Lindblad, 2013). Competency must be demonstrated, not merely discussed. Post-discharge, RTs from durable medical equipment (DME) companies provide equipment maintenance and emergency troubleshooting. However, communication gaps between hospital RTs, DME RTs, and home health nurses can lead to dangerous oversights, highlighting the need for shared care plans (Jabre et al., 2022).

Diagnostic Data Continuity through Laboratory and Radiology

The continuity of diagnostic data is a cornerstone of safe home care. Laboratory services must adapt to the home setting, requiring logistical solutions for phlebotomy, point-of-care testing (POCT), and seamless data integration. For patients on warfarin or parenteral nutrition, home INR or electrolyte monitoring via POCT devices allows for real-time dose adjustment (Lafferty et al., 2023). However, the reliability of these devices and the competency of users (patient or caregiver) must be validated. Data from home glucose monitors, INR devices, and wearable pulse oximeters need to flow reliably into the electronic medical record (EMR) to inform clinical decisions, a process often hindered by incompatible technologies and privacy concerns (Sim, 2019). Similarly, radiology's role extends into the home via teleradiology. The ability to remotely interpret chest radiographs from a portable machine in

the home of a ventilated patient with suspected pneumonia can prevent an unnecessary and burdensome emergency department visit (Goelz et al., 2021). This model depends on secure image transmission, technician mobility, and clear guidelines for its appropriate use within a bundled care pathway (Agrawal, 2022).

Health Security for Clinical and Digital Home Fronts

The home, when transformed into a clinical space, inherits two primary security threats: infection risks and cybersecurity vulnerabilities. Infection prevention and control (IPC) principles must be translated for the home. Caregivers require training in aseptic techniques for central line care, ventilator circuit changes, and wound management to prevent devastating infections like ventilator-associated pneumonia (VAP) or central line-associated bloodstream infections (CLABSI) (Anderson et al., 2022). The proliferation of connected health devices—from ventilators and infusion pumps to RPM wearables—creates a new attack vector. These Internet of Medical Things (IoMT) devices are often built on insecure software, lacking basic encryption and regular security patches, making them susceptible to hacking that could disrupt therapy or steal protected health information (PHI) (Shah et al., 2023). Health security in this context requires collaboration between clinical teams, biomedical engineering, and IT security to mandate device security standards in procurement contracts and educate families on basic digital hygiene (network passwords) (Affia et al., 2023).

Hospital Management for Architecting Systems and Financial Viability

Hospital leadership is tasked with designing the systems and financial frameworks that make complex home care viable. This involves moving beyond fee-for-service thinking to value-based models. Bundled payment initiatives, such as the Medicare Care for Patients with Respiratory Failure model, create a fixed episodic payment for an acute hospitalization and post-acute care, incentivizing the hospital to invest in robust transition planning to avoid costly readmissions (Whaley et al., 2021). Management must also forge and manage strategic partnerships with high-quality home health agencies,

DME vendors, and infusion pharmacies. These partnerships require shared protocols, performance metrics (response time for equipment failure), and integrated communication platforms (Gadbois et al., 2023; McGilton et al., 2022). Crucially, hospital administrators must advocate for policy changes that address reimbursement gaps for critical transition services, such as comprehensive caregiver training and interdisciplinary discharge planning meetings, which are often poorly compensated under current structures (Werner et al., 2022). Figure 1 illustrates the coordinated roles of nursing, pharmacy, respiratory therapy, laboratory services, radiology, health security, and hospital management across the hospital-to-home transition for technology-dependent patients.

Figure 1: Interdisciplinary Framework for a Safe Hospital-to-Home Transition in Technology-Dependent Patients.

Identifying Synergies and Gaps

The interdependent nature of these fields reveals both powerful synergies and persistent gaps. A successful transition is characterized by a virtuous cycle: clear hospital management policies enable structured interdisciplinary planning; this planning drives thorough nursing and RT education; education supports safe medication and technology use managed by pharmacy and RTs; data from laboratory and radiology inform adjustments; and all are underpinned by health security protocols. For example, a pharmacist's adjustment of a diuretic for a heart failure patient on home inotropes, informed by daily weight and electrolyte data transmitted via RPM (nursing/lab), prevents readmission—a key goal of the bundled payment model (management). Table 1 summarizes the core responsibilities of each discipline across the transition timeline.

Table 1: Key Responsibilities in the Hospital-to-Home Transition by Discipline

Discipline	Pre-Discharge Responsibilities	Post-Discharge/Home-Based Responsibilities
Nursing	Comprehensive needs assessment; Caregiver training & competency validation; Care coordination; RPM setup.	Remote monitoring & triage; Home health nursing oversight; Ongoing caregiver support.
Pharmacy	Medication reconciliation; Regimen simplification; Patient/caregiver education; Coordination with infusion company.	Monitoring adherence & response; Managing supply chain; Addressing drug-related problems.
Respiratory Therapy	Home environment assessment; Equipment selection & setup; Caregiver training on ventilator/trach care.	Equipment troubleshooting (via DME); Emergency protocol review.

Laboratory	Establishing plan for home blood draws/POCT; Training on POCT devices.	Managing data from home tests; Integrating POCT data into EMR.
Radiology	Developing protocols for home imaging appropriateness.	Providing teleradiology services for portable home X-rays.
Health Security	IPC education for home; Assessing device cybersecurity features.	Monitoring for infection trends; Responding to device security incidents.
Hospital Management	Designing bundled payment pathways; Establishing partner contracts; Allocating resources for transition services.	Monitoring readmission & cost metrics; Managing partner performance.

However, significant fissures remain. The digital divide is prominent: EMRs rarely integrate data from home devices seamlessly, creating information silos (Sim, 2019). Workforce challenges abound, with shortages of home health nurses and therapists making consistent care difficult (Spetz et al., 2019). Regulatory and reimbursement misalignment often fails to pay for the multidisciplinary time required for optimal planning (Singh et al., 2022). Finally, the cybersecurity of IoMT remains a largely unaddressed systemic risk, with liability and responsibility poorly defined between manufacturers, providers, and patients (Bracciale et al., 2023). Table 2 outlines common systemic challenges and proposes interdisciplinary solutions to address them. Figure 2 illustrates the key systemic challenges encountered during the hospital-to-home transition—including fragmented data systems, inadequate caregiver preparedness, cybersecurity vulnerabilities, workforce shortages, and payment misalignment—and corresponding interdisciplinary solutions designed to optimize safety, quality, and long-term outcomes for technology-dependent patients.

Figure 2: Systemic Challenges and Interdisciplinary Solutions in Home-Based Care for Technology-Dependent Patients

Table 2: Common Challenges and Proposed Interdisciplinary Solutions in the Transition to Home Care

Challenge	Impact	Proposed Interdisciplinary Solution
Fragmented Data	Clinical decisions based on incomplete information; missed trends.	IT/Management: Invest in interoperable platforms that integrate hospital EMR, RPM, and home device data. Clinical Teams: Designate a data review protocol.
Inadequate Caregiver Preparedness	Panic during emergencies, procedural errors, and caregiver burnout.	Nursing/RT/Pharmacy: Implement mandatory, structured, hands-on “teach-back” training programs before discharge.
Unsecured Connected Devices	Risk of disruption; privacy breaches.	Management/Health Security: Establish mandatory cybersecurity standards in DME/IoMT procurement contracts. Nursing: Include basic digital safety in caregiver training.
Payment Model Misalignment	Underinvestment in planning services; focus on volume over outcomes.	Management/Advocacy: Pursue alternative payment models (APMs) like bundled payments. Design internal cost-accounting to show ROI of transition programs.
Poorly Defined Partner Accountability	Delays in equipment/service delivery; communication breakdowns.	Management: Develop formal partnership agreements with shared KPIs (e.g., DME response time <2 hrs). Establish joint communication channels.

Conclusion and Future Directions

The hospital-to-home transition for technology-dependent patients epitomizes the complexity and promise of modern healthcare. It is a multidisciplinary endeavor where success is measured not at the hospital door, but in the sustained well-being

of patients and caregivers in the community. This review underscores that safety, quality, and economic viability are inextricably linked and achievable only through deliberate, system-level integration of clinical, technological, and managerial functions.

Future progress depends on several key actions. First, standardization is critical: developing and validating evidence-based transition protocols for specific patient cohorts (e.g., ventilator-dependent, home infusion) that can be adapted across health systems (Naylor et al., 2018). Second, technology investment must prioritize secure interoperability to close the data gaps between hospital and home (Kremer et al., 2023). Third, policy and payment reform must accelerate, moving from rewarding volume to robustly financing coordinated, longitudinal care (Ridgely et al., 2014). Finally, research must expand to include caregiver outcomes and the long-term cost-effectiveness of comprehensive transition programs.

By viewing the post-acute continuum as a single, engineered system requiring the integrated expertise of all seven fields reviewed here, healthcare organizations can transform a period of profound vulnerability into one of supported resilience, delivering on the triple aim of better care, better health, and lower cost for some of medicine's most complex patients.

References

1. Affia, A. A. O., Finch, H., Jung, W., Samori, I. A., Potter, L., & Palmer, X. L. (2023). IoT health devices: exploring security risks in the connected landscape. *IoT*, 4(2), 150-182. <https://doi.org/10.3390/iot4020009>
2. Agrawal, A. (2022). Emergency teleradiology—past, present, and, is there a future?. *Frontiers in radiology*, 2, 866643. <https://doi.org/10.3389/fradi.2022.866643>
3. Anderson, L., Schmitz, E., Polgreen, P. M., Beekmann, S. E., & Safdar, N. (2022). Discontinuation of isolation precautions for coronavirus disease 2019 (COVID-19) patients. *Infection Control & Hospital Epidemiology*, 43(1), 109-113. doi:10.1017/ice.2021.188
4. Annoor, M., et al. (2021). *Telemedicine and patient satisfaction*. *Journal of General Internal Medicine*, *36*(2), 456-462.
5. Bhavnani, S. P., Narula, J., & Sengupta, P. P. (2016). Mobile technology and the digitization of healthcare. *European heart journal*, 37(18), 1428. <https://doi.org/10.1093/eurheartj/ehv770>
6. Bracciale, L., Loreti, P., & Bianchi, G. (2023). Cybersecurity vulnerability analysis of medical devices purchased by national health services. *Scientific reports*, 13(1), 19509. <https://doi.org/10.1038/s41598-023-45927-1>
7. Carter, B., Fisher-Smith, D., Porter, D., Lane, S., Peak, M., Taylor-Robinson, D., ... & Carroll, E. D. (2021). Paediatric Outpatient Parenteral Antimicrobial Therapy (OPAT): An e-survey of the experiences of parents and clinicians. *PLoS One*, 16(4), e0249514. <https://doi.org/10.1371/journal.pone.0249514>
8. Chou, R., Griffin, J. C., Blazina, I., Schwarz, E., Atchison, C., & Mauer, K. (2023). Systematic review on treatments for acute pain: surveillance report 1: literature update period: August 2020 through October 2021.
9. Gadbois, E. A., Brazier, J. F., Meehan, A., Madrigal, C., White, E. M., Rafat, A., ... & Shield, R. R. (2023). COVID-19 vaccination among skilled nursing facility staff: Challenges and strategies identified by administrators. *Medical Care Research and Review*, 80(6), 608-618. <https://doi.org/10.1177/10775587231168435>
10. Ganz, D. A., Barnard, J. M., Smith, N. Z., Miake-Lye, I. M., Delevan, D. M., Simon, A., ... & Rubenstein, L. V. (2018). Development of a web-based toolkit to support improvement of care coordination in primary care. *Translational behavioral medicine*, 8(3), 492-502. <https://doi.org/10.1093/tbm/ibx072>
11. Goelz, L., Arndt, H., Hausmann, J., Madeja, C., & Mutze, S. (2021, December). Obstacles and solutions driving the development of a national teleradiology network. In *Healthcare* (Vol. 9, No. 12, p. 1684). MDPI. <https://doi.org/10.3390/healthcare9121684>
12. Hewner, S., Chen, C., Anderson, L., Pasek, L., Anderson, A., & Popejoy, L. (2021). Transitional care models for high-need, high-cost adults in the United States: A scoping review and gap analysis. *Professional Case Management*, 26(2), 82-98. DOI: 10.1097/NCM.0000000000000442
13. Jabre, N. A., Raisanen, J. C., Shipman, K. J., Henderson, C. M., Boss, R. D., & Wilfond, B. S. (2022). Parent perspectives on facilitating decision-making around pediatric home ventilation. *Pediatric pulmonology*, 57(2), 567-575. <https://doi.org/10.1002/ppul.25749>
14. Kremer, T., Murray, N., Buckley, J., & Rowan, N. J. (2023). Use of real-time immersive digital training and educational technologies to improve patient safety during the processing of reusable medical devices: Quo Vadis?. *Science of The Total Environment*, 900, 165673. <https://doi.org/10.1016/j.scitotenv.2023.165673>
15. Lafferty, L., Cochrane, A., Sheehan, Y., Treloar, C., Grebely, J., & Lloyd, A. R. (2022). "That was quick, simple, and easy": patient perceptions of acceptability of point-of-care hepatitis C RNA testing at a reception prison. *International Journal of Drug Policy*, 99, 103456. <https://doi.org/10.1016/j.drugpo.2021.103456>
16. Levine, D. M., Ouchi, K., Blanchfield, B., Saenz, A., Burke, K., Paz, M., ... & Schnipper, J. L. (2020). Hospital-level care at home for acutely ill adults: a randomized controlled trial. *Annals of internal medicine*, 172(2), 77-85. <https://doi.org/10.7326/M19-0600>
17. Levoy, K., Rivera, E., McHugh, M., Hanlon, A., Hirschman, K. B., & Naylor, M. D. (2022). Caregiver engagement enhances outcomes among

randomized control trials of transitional care interventions: a systematic review and meta-analysis. *Medical Care*, 60(7), 519-529. DOI: 10.1097/MLR.0000000000001728

18. Lindahl, B., & Lindblad, B. M. (2013). Being the parent of a ventilator-assisted child: Perceptions of the family–health care provider relationship when care is offered in the family home. *Journal of Family Nursing*, 19(4), 489-508. <https://doi.org/10.1177/1074840713506786>

19. Mekonnen, A. B., McLachlan, A. J., Brien, J. A. E., Mekonnen, D., & Abay, Z. (2018). Evaluation of the impact of pharmacist-led medication reconciliation intervention: a single centre pre–post study from Ethiopia. *International journal of clinical pharmacy*, 40(5), 1209-1216. <https://doi.org/10.1007/s11096-018-0722-9>

20. McGilton, K. S., Krassikova, A., Wills, A., Durante, V., Yeung, L., Vellani, S., ... & Escrig-Pinol, A. (2022). Nurse practitioners navigating the consequences of directives, policies, and recommendations related to the COVID-19 pandemic in long-term care homes. *Journal of Applied Gerontology*, 41(11), 2296-2306. <https://doi.org/10.1177/07334648221110210>

21. Mitchell, H. R., Applebaum, A. J., Lynch, K. A., Reiner, A. S., Atkinson, T. M., Buthorn, J. J., ... & Diamond, E. L. (2022). Challenges and positive impact of rare cancer caregiving: a mixed-methods study of caregivers of patients with Erdheim-Chester disease and other histiocytic neoplasms. *EClinicalMedicine*, 54. <https://doi.org/10.1016/j.eclim.2022.101670>

22. Mokhtari, F., Sanagoo, A., & Jouybari, L. (2023). The Key to Life; A Twenty-Three Year Lived Experience of Living with a Ventilator in Hospital: A Qualitative Case Study. *Journal of Critical Care Nursing*, 16(3), 41-50. <http://jccnursing.com/article-1-738-en.html>

23. Nasa, P., Azoulay, E., Khanna, A. K., Jain, R., Gupta, S., Javeri, Y., ... & Myatra, S. N. (2021). Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. *Critical Care*, 25(1), 106. <https://doi.org/10.1186/s13054-021-03491-y>

24. Naylor, M. D., Hirschman, K. B., Toles, M. P., Jarrín, O. F., Shaid, E., & Pauly, M. V. (2018). Adaptations of the evidence-based transitional care model in the US. *Social Science & Medicine*, 213, 28-36. <https://doi.org/10.1016/j.socscimed.2018.07.023>

25. Ridgely, M. S., De Vries, D., Bozic, K. J., & Hussey, P. S. (2014). Bundled payment fails to gain a foothold in California: the experience of the IHA bundled payment demonstration. *Health Affairs*, 33(8), 1345-1352. <https://doi.org/10.1377/hlthaff.2014.0114>

26. Shah, C., Nachand, D., Wald, C., & Chen, P. H. (2023). Keeping patient data secure in the age of radiology artificial intelligence: cybersecurity considerations and future directions. *Journal of the American College of Radiology*, 20(9), 828-835. <https://doi.org/10.1016/j.jacr.2023.06.023>

27. Sim, I. (2019). Mobile devices and health. *New England Journal of Medicine*, 381(10), 956-968. DOI: 10.1056/NEJMra1806949

28. Singh, S., Molina, E., Meyer, E., Min, S. J., & Fischer, S. (2022). Post-acute care outcomes and functional status changes of adults with new cancer discharged to skilled nursing facilities. *Journal of the American Medical Directors Association*, 23(11), 1854-1860. <https://doi.org/10.1016/j.jamda.2022.02.010>

29. Spetz, J., Stone, R. I., Chapman, S. A., & Bryant, N. (2019). Home and community-based workforce for patients with serious illness requires support to meet growing needs. *Health Affairs*, 38(6), 902-909. <https://doi.org/10.1377/hlthaff.2019.00021>

30. Van der Linden, L., Hias, J., Walgraeve, K., Flamaing, J., Tournoy, J., & Spriet, I. (2020). Clinical pharmacy services in older inpatients: an evidence-based review. *Drugs & aging*, 37(3), 161-174. <https://doi.org/10.1007/s40266-019-00733-1>

31. Werner, R. M., Coe, N., Kim, S., & Konetzka, R. T. (2022). Changes in Informal Caregiving with Post-Acute Care Payment Reform. Available at SSRN 4268042. <https://dx.doi.org/10.2139/ssrn.4268042>

32. Whaley, C. M., Dankert, C., Richards, M., & Bravata, D. (2021). An Employer-Provider Direct Payment Program Is Associated With Lower Episode Costs: Study examines impact on episode cost and patient cost sharing of a program that applies bundled payments for orthopedic and surgical procedures in a commercially insured population. *Health Affairs*, 40(3), 445-452. <https://doi.org/10.1377/hlthaff.2020.01488>.