

A Narrative Review: The Day-Case Surgery Model: Maximizing Efficiency, Safety, and Patient Satisfaction

Suoad Albalawi ⁽¹⁾, Ashwag Mohammed Alasmarei ⁽²⁾, Anwar Ali Alzahrani ⁽³⁾, Fahad Ali Alshamrani ⁽⁴⁾, Yahya Ebrahim Mohammad Hamed ⁽⁵⁾, Mohammed Fulayyih Marshad Alsharifi ⁽⁶⁾, Khairat Majrshi ⁽⁷⁾, Zahra Mohammed Ahmed Alhazmi ⁽⁸⁾, Ohud Nawi Sukhayl Alruwaili ⁽⁹⁾, Mohammed Hathal Thunayyan Alotaibi ⁽¹⁰⁾, Meshal Muidh Nawahi A Mutiri ⁽¹¹⁾, Bader Ibrahim Al Dayel ⁽¹²⁾, Bandr Hadi Hassan ⁽¹³⁾

(1) King Salman Hospital, Riyadh, Ministry of Health, Saudi Arabia,

(2) Riyadh King Salman Hospital, Ministry of Health, Saudi Arabia,

(3) Jeddah Infection Control Department, Ministry of Health, Saudi Arabia,

(4) first health cluster Riyadh, Ministry of Health, Saudi Arabia,

(5) Sabya General Hospital, Ministry of Health, Saudi Arabia,

(6) Mental Health in Qurayyat, Qurayyat, Ministry of Health, Saudi Arabia,

(7) Forensic Services Department, Ministry of Health, Saudi Arabia,

(8) Al Quwayiyah General Hospital, Ministry of Health, Saudi Arabia,

(9) Erada Hospital & Mental Health, Ministry of Health, Saudi Arabia,

(10) Health Security Al Fawaz Health Center, Ministry of Health, Saudi Arabia,

(11) Third Health Cluster, Ministry of Health, Saudi Arabia,

(12) Marat General Hospital, Ministry of Health, Saudi Arabia,

(13) Eradah Mental Health Complex – Riyadh, Ministry of Health, Saudi Arabia

Abstract

Background: The day-case (ambulatory) surgery model represents a cornerstone of modern healthcare delivery, shifting appropriate surgical procedures from inpatient to same-day discharge settings. This transition demands flawless system engineering and interdisciplinary coordination to ensure patient safety, optimize resource utilization, and maintain high satisfaction. **Aim:** This narrative review aims to synthesize current evidence on the operational, clinical, and human factors required for a successful day-case surgery program. It will analyze the integrated roles of pharmacy, surgery, nursing, radiology, laboratory, medical administration, and health security. **Methods:** A comprehensive literature search was conducted in PubMed, CINAHL, and Scopus (2010-2024) for peer-reviewed articles, reviews, and clinical guidelines about ambulatory surgery efficiency, safety protocols, and interdisciplinary coordination. **Results:** Success hinges on meticulous pre-operative optimization, standardized clinical pathways, and seamless intraoperative coordination. Critical elements include patient selection, procedure-specific analgesia, streamlined ancillary services, and rigorous discharge criteria managed by nursing. Administrative efficiency and robust infection control are foundational to system performance. **Conclusion:** The day-case model is a viable, safe, and cost-effective standard for numerous procedures. Its success is not serendipitous but the product of deliberate system design, requiring unwavering collaboration across all seven defined fields to create a patient journey that is efficient, secure, and satisfactory.

Keywords: Ambulatory Surgical Procedures; Patient Discharge; Operative Time; Interdisciplinary Communication; Patient Safety

Introduction

The landscape of elective surgical care has undergone a seismic transformation over the past four decades, marked by the relentless migration of procedures from inpatient to day-case settings (Beals et al., 2021). Once reserved for minor interventions under local anesthesia, day-case surgery now encompasses a broad spectrum of intermediate-complexity procedures across surgical specialties, including laparoscopic cholecystectomy, inguinal

hernia repair, anterior cruciate ligament reconstruction, and transurethral prostate resection (Fanelli et al., 2021). This evolution is propelled by a powerful convergence of drivers: advancements in minimally invasive surgical technologies that reduce tissue trauma; the refinement of short-acting anesthetic agents and regional analgesic techniques that minimize postoperative side effects; compelling economic imperatives to lower the per-case cost of care and optimize fixed infrastructure; and a growing

body of evidence demonstrating equivalent or superior patient outcomes and satisfaction when appropriate cases are managed in an ambulatory pathway (Hulet et al., 2017).

The core promise of the day-case model is the efficient delivery of high-quality surgical care, enabling patients to recover in the comfort of their own homes, thereby reducing exposure to hospital-acquired infections and the psychological stressors of prolonged hospitalization. Yet, this promise is inherently fragile (Friedlander et al., 2021). The model represents a feat of clinical and operational compression, where the margin for error is slender. The traditional inpatient buffer—time for extended observation, gradual mobilization, and titration of oral medications—is eliminated. Consequently, every step in the pathway must be meticulously planned, flawlessly executed, and seamlessly dovetailed with the next. A delay in preoperative laboratory results, a suboptimal analgesic plan, a poorly coordinated patient handoff, or an inefficient operating room turnover can each trigger a cascade of disruptions, leading to case cancellations, delayed discharges, unplanned hospital admissions, and compromised patient safety (Healy et al., 2020). Figure 1 illustrates the seven interdependent professional domains essential for the successful implementation of a day-case surgery program.

Figure 1. Integrated Domains of the Day-Case Surgery Microsystem

This review posits that the day-case surgery unit is best understood not as a mere physical location but as a high-reliability microsystem. Its performance is governed by the complex, real-time integration of seven distinct but deeply interdependent professional domains. These domains—Pharmacy, Operation (Surgery/Anesthesia), Nursing, Radiology, Laboratory, Medical Administration, and Health Security—must function with the precision of a Swiss watch, where the performance of each gear is critical to the movement of the whole. Through a synthesis of contemporary literature (2010-2024), this narrative review will deconstruct this microsystem. It will provide a detailed examination of each domain's unique responsibilities and, critically, analyze the essential interfaces between them. The ultimate objective is to articulate a coherent, evidence-based framework—the Integrated Day-Case Pathway

(IDCP)—that can guide healthcare institutions in designing, implementing, auditing, and continually improving their ambulatory surgery programs, ensuring that the pursuit of efficiency is inextricably linked to the imperatives of safety and patient-centered care.

The Pillars of the Day-Case Microsystem: A Domain-Specific Analysis

Orchestrating Medication Management Across the Perioperative Continuum

The pharmacist's role in day-case surgery is transformational, shifting from a reactive dispenser to a proactive clinical strategist embedded within the perioperative team. Their influence spans the entire care episode, with the primary goal of preventing medication-related mishaps that could derail the day's plan.

The foundation is laid well before the day of surgery. A comprehensive medication history and reconciliation process, ideally conducted in a dedicated pre-admission clinic, is paramount. This involves not only compiling a complete list of prescription medications but also documenting over-the-counter products, herbal supplements, and recreational substances. The clinical pharmacist then formulates an individualized plan for each medication, informed by procedure-specific bleeding and infection risks. Critical decisions include the perioperative management of antithrombotics (e.g., following consensus guidelines for bridging therapy), the continuation of essential cardiometabolic drugs, and the adjustment of diabetic medications to accommodate fasting protocols (Douketis et al., 2022). This proactive review mitigates last-minute cancellations and reduces postoperative complications such as thromboembolic events or glycemic instability.

Uncontrolled pain and postoperative nausea and vomiting (PONV) are the most frequent culprits behind failed same-day discharge. To combat this, the development of procedure-specific, standardized discharge analgesia packs represents a gold-standard intervention (Fillingham et al., 2022). These packs operationalize the principle of multimodal analgesia, combining non-opioid agents with different mechanisms of action—typically acetaminophen and a non-steroidal anti-inflammatory drug (NSAID)—with a limited, judicious quantity of an oral opioid for breakthrough pain (Chou et al., 2016). Pre-packaging these combinations enhances efficiency, reduces dispensing errors, ensures consistency of practice, and proactively limits excessive opioid prescribing, thereby addressing a critical public health concern (Hannon et al., 2022).

The final, critical pharmaceutical intervention occurs at discharge. Clear, comprehensible, and reinforced medication instructions are non-negotiable for patient safety. The pharmacist, in close collaboration with the discharging nurse, must ensure the patient and their responsible

adult escort understand: which home medications to resume and when, how to take new discharge medications, the purpose of each drug, common side effects, and clear parameters for seeking medical help. This counseling session, complemented by detailed written information, is a proven strategy to reduce adverse drug events and readmissions in the vulnerable post-discharge period (Khalil et al., 2020).

Surgical and Anesthetic Technique

The feasibility and success of a day-case procedure are fundamentally determined within the operating room. The surgical and anesthetic teams must work in concert to select and execute techniques that inherently support rapid physiological and functional recovery.

The catalog of day-case-eligible procedures continues to expand, guided by principles of minimal physiological trespass. The integration of Enhanced Recovery After Surgery (ERAS) principles into ambulatory pathways has been a game-changer. These protocols provide a structured, evidence-based approach to perioperative care, emphasizing elements like carbohydrate loading up to two hours before surgery, goal-directed fluid therapy to avoid overload, and the avoidance of routine nasogastric tubes and surgical drains—all of which facilitate quicker mobilization and oral intake (Ljungqvist et al., 2021).

Modern ambulatory anesthesia is characterized by a focus on rapid onset and offset. Total Intravenous Anesthesia (TIVA) with agents like propofol and remifentanil allows for a quick, clear-headed emergence with a lower incidence of PONV compared to some volatile anesthetics in high-risk patients. The cornerstone technique, however, is regional anesthesia (Ilfeld et al., 2021). Ultrasound-guided nerve blocks (adductor canal block for knee surgery, transversus abdominis plane block for abdominal surgery) provide profound, targeted analgesia that lasts 12-24 hours, dramatically reducing systemic opioid consumption, minimizing opioid-related side effects (sedation, nausea, constipation), and enabling early, comfortable mobilization (Ilfeld, 2017). This aligns perfectly with the day-case goal.

The anesthetic plan must be proactive (Williams et al., 2023). Given that PONV and pain are the two primary reasons for delayed discharge, evidence-based protocols mandate the prophylactic administration of multi-modal antiemetics (dexamethasone, ondansetron, aprepitant in high-risk patients) to all but the lowest-risk individuals (Gan et al., 2020). This pre-emptive approach is far more effective than treating established symptoms in the recovery unit.

Nursing as the Conductor and Constant in the Patient Journey

The nursing role is the most extensive and influential in the day-case pathway, embodying the functions of coordinator, clinician, educator, advocate, and final safety gatekeeper. Their presence is

continuous, providing a thread of stability for the patient amidst the whirlwind of the day.

Nursing-led pre-operative assessment, often conducted via a dedicated clinic, is the critical first step in risk stratification and pathway customization. This holistic evaluation extends beyond medical history to encompass social and environmental determinants of health. Nurses assess the availability of a responsible adult escort for a minimum of 24 hours, the suitability of the home environment for recovery (e.g., stairs, bathroom access), and the patient's cognitive ability to understand and comply with post-discharge instructions (Aronson et al., 2020). Identifying deficiencies in these areas *before* the day of surgery allows for proactive problem-solving or rescheduling, preventing costly and distressing last-minute cancellations.

In the operating room, day-case nurses are masters of efficiency and anticipation. They facilitate rapid room turnover through standardized setup and count procedures, ensure the immediate availability of specialized equipment, and provide expert surgical assistance. Their documentation must be both accurate and succinct, capturing key information that will directly inform postoperative care in the PACU (Lees-Deutsch & Robinson, 2019).

The post-anesthesia care unit (PACU) is where nursing judgment is most acutely tested. Nurses utilize validated scoring systems, most commonly the Modified Post-Anesthetic Discharge Scoring System (PADSS), to objectively assess a patient's readiness for discharge across five criteria: vital signs, ambulation, nausea/vomiting, pain, and surgical bleeding (Chung et al., 2017). However, these scores are a guide, not an algorithm. The nurse's clinical judgment—assessing the patient's comfort, coherence, and the caregiver's understanding—remains paramount. Concurrently, they deliver comprehensive discharge education, verbally reinforcing and providing written instructions on wound care, activity restrictions, medication management, and recognition of red-flag symptoms. The final authorization for discharge represents the most significant patient safety decision in the day-case pathway (Nagappa et al., 2015).

Diagnostic Support Services

The efficiency of radiology and laboratory services is a silent but powerful determinant of operational tempo. Delays in these areas are often invisible to the patient but can cripple a carefully constructed surgical schedule.

The radiology department's role is to provide rapid-response imaging support. This includes ensuring that pre-operative diagnostic images (e.g., MRI for a meniscal tear) are available and reviewed before the procedure. More critically, it involves providing immediate intraoperative services, such as fluoroscopic guidance for complex regional blocks or surgical procedures in orthopedics and urology (Zaffino et al., 2020). Delays in radiology availability

can prolong anesthesia time, increase surgical risk, and create domino-effect delays for subsequent cases (Dargaville et al., 2021). Seamless integration via Picture Archiving and Communication Systems (PACS) and efficient patient/equipment transport protocols are essential.

The laboratory's core mandate is to process pre-operative tests with exemplary turnaround time. Results for essential blood work, urinalysis, and pregnancy tests must be available well in advance of the patient's arrival to allow for clinical review and intervention if needed. The implementation of point-of-care testing (POCT) within the pre-operative holding area for key parameters (e.g., hemoglobin, INR, pregnancy) can be a highly effective strategy to streamline the pathway for specific patient cohorts, eliminating transport and central lab processing delays (Ramsingh et al., 2020).

Medical Administration as the Architectural Mind Behind Patient Flow

The medical secretary or surgical coordinator is the logistical architect and central nervous system of the day-case unit. This role synthesizes information from all other domains to choreograph the daily performance.

This is a sophisticated exercise in predictive logistics. The secretary must balance surgeon and anesthetic team preferences, historical data on procedure durations, PACU bed capacity, and the availability of support services. Advanced scheduling software can aid in maximizing Operating Room (OR) utilization—the percentage of available OR time used for surgery—while minimizing overbooking, which leads to staff burnout and patient dissatisfaction (Daskivich et al., 2019). Strategic grouping of similar procedures (e.g., all cataract surgeries) can further enhance team efficiency and equipment use.

On the day of surgery, the secretary transitions to an air traffic control function. They manage patient arrival sequences, ensure pre-operative documentation is complete, liaise between the pre-op area, OR, and PACU, communicate procedural delays to anxious families, and coordinate timely transport. They are the central hub for real-time information exchange (Jørgensen et al., 2019).

Orchestrating systematic post-discharge telephone follow-up is a critical quality and safety function (Berg et al., 2018). A nurse-led call within 24-48 hours serves to assess recovery, identify early complications (e.g., uncontrolled pain, urinary retention), reinforce instructions, and provide

immense psychological support. This proactive contact significantly reduces unnecessary emergency department visits and captures valuable patient-reported outcome data, completing the care episode cycle (Husted et al., 2010).

Health Security as the Dual Mandate of Infection Prevention and Data Integrity

In a high-velocity environment with rapid patient turnover and digital information exchange, health security forms the non-negotiable foundation of safe care.

The risk of healthcare-associated infection (HAI) is persistent when multiple patients occupy the same physical spaces in quick succession. Therefore, rigorous and audited terminal cleaning protocols between every patient are mandatory. Strict adherence to hand hygiene, maximal sterile barrier precautions during invasive procedures (including peripheral nerve blocks), and appropriate, timely administration of prophylactic antibiotics are equally critical (Allegranzi et al., 2016). The unit's physical design, with surfaces conducive to cleaning and layouts that minimize cross-traffic between "clean" and "dirty" pathways, is a foundational element of this security.

The digital footprint of the day-case journey is vast. Electronic health records are accessed and updated by multiple providers in rapid succession (Al-Aboosi et al., 2022). Ensuring patient data privacy and security during these digital handoffs is paramount. This requires robust, role-based access controls, secure authentication methods (e.g., two-factor authentication), encrypted communication channels for sharing discharge summaries with primary care, and ongoing staff education on phishing and social engineering threats (Prasad et al., 2023). A data breach constitutes a fundamental violation of patient trust and safety, independent of clinical outcomes (Lieneck et al., 2023).

The Integrated Day-Case Pathway (IDCP) Framework

Excellence is achieved not through the excellence of individual domains, but through the excellence of their integration. The proposed Integrated Day-Case Pathway (IDCP) framework conceptualizes care as a series of parallel, synchronized workflows converging at defined decision points, rather than a linear sequence. This model emphasizes proactive coordination and shared situational awareness (Table 1).

Table 1: The Integrated Day-Case Pathway (IDCP): Role Synchronization at Critical Control Points

Perioperative Phase	Synchronization Point & Lead	Pharmacy	Surgery Anesthesia	Nursing	Radiology/ Lab	Medical Secretary	Health Security
Pre-Operative (Weeks/Days Prior)	Pre-Admission Assessment Sign-	Medication reconciliation	Procedure & anesthesia plan	Medical & social suitability confirmed;	All required pre-op test results available	Patient schedule; pre-op	Screening for active infection/M

	Off (Lead: Nursing/Medicine)	complete; plan for high-risk meds documented.	finalized and documented.	patient education initiated.	and reviewed in EHR.	instructions & package dispatched.	RSA status complete.
Day of Surgery: Pre-Op	Patient "Ready for Transfer to OR" (Lead: Nursing)	Confirm pre-op antibiotics (if required) administered.	Surgical team briefed; anesthetic pre-op evaluation done.	Pre-op checklist & consent verified; IV established; patient emotionally prepared.	Any last-minute imaging (e.g., repeat X-ray) completed & reviewed.	Confirms patient identity, procedure, and side; next patient in pre-op.	Aseptic technique for IV starts & prep followed.
Intra-Operative	Pre-Incision "Time-Out" (Lead: Surgery/Anesthesia)	N/A (unless specific drug required).	Entire team verbally confirms patient, procedure, site, and critical steps.	Verifies instrument/equipment counts; ensures equipment functionality.	Imaging team/equipment on standby if required for case.	Confirms next case is prepped and ready to minimize turnover time.	Sterile field integrity confirmed by all team members.
Post-Operative	Discharge Readiness Assessment (Lead: Nursing)	Discharge analgesia pack provided & counseled on; final medication review.	Surgeon & anesthetist aware of intraop course and any specific post-op concerns.	PADSS score achieved; discharge education completed & comprehension verified by escort.	N/A	Follow-up call scheduled; transport home confirmed; discharge summary sent to PCP.	Bed space terminally cleaned; all patient data securely handed off/archived.

To evaluate the performance of this integrated system, a balanced scorecard of metrics is essential (Table 2). Figure 2 summarizes the principal benefits of the day-case surgery model for patients and healthcare systems, including faster recovery in the

home environment, reduced risk of hospital-acquired infections, decreased length of hospital stay, cost-effectiveness, improved patient satisfaction, and more efficient utilization of healthcare resources.

Table 2: Key Performance Indicators for a Day-Case Surgery Program

Category	Process Indicators (Measures of How We Work)	Outcome Indicators (Measures of What We Achieve)
Efficiency & Utilization	First-case on-time start rate (%); OR turnover time (minutes); Case cancellation rate (and causal breakdown).	Day-case conversion rate (% of planned cases discharged same day); OR utilization rate (%); Average length of stay in PACU.
Clinical Safety & Quality	Compliance with pre-op antibiotic timing (%); % of patients receiving multimodal analgesia; % with completed medication reconciliation.	Unplanned hospital admission/readmission rate within 7 days; Postoperative complication rate (SSI, PONV, urinary retention); Patient-reported pain & nausea scores at discharge.
Patient-Centered Care	% of patients receiving structured discharge education; % contacted by post-discharge follow-up call within 48h.	Patient satisfaction scores (e.g., NPS or specific ambulatory surgery surveys); Rate of

Financial & Operational	Cost per case (benchmarked); satisfaction/turnover rate in day-case unit.	Staff	unplanned primary care/ED contacts post-discharge.
			Contribution margin per case; Comparison of total episode cost vs. inpatient equivalent.

Challenges, Future Directions, and Conclusion

Despite its merits, the model faces hurdles. Patient Selection Complexity persists; while criteria expand, accurately predicting social support and recovery resilience remains challenging. System Rigidity means a single major delay can disrupt an entire day's list without robust contingency plans. Reimbursement Models in many regions still favor volume over the value of complex coordination, potentially underfunding the intensive pre- and post-operative work essential for success. Furthermore, achieving true interdisciplinary culture change, where every team member understands and values the roles of others, requires sustained leadership and dedicated training.

The future of day-case surgery lies in greater personalization and technological augmentation. Digital Health Platforms will play an expanding role: smartphone apps for pre-operative multimedia education, post-operative symptom diaries, and virtual recovery check-ins can enhance patient engagement and provide real-time data to care teams (Robinson et al., 2020). Predictive Analytics using machine learning on electronic health record data can refine scheduling, identify patients at high risk for delayed recovery or readmission, and enable personalized care pathway modifications (Sridhar et al., 2023). The frontier will continue to push towards Major Ambulatory Surgery (MAS), where selected patients undergo procedures like total joint arthroplasty or spinal decompression in a true 23-hour setting, demanding even more robust pathways, advanced pain management, and integrated home-care services (DeCook, 2019).

Figure 2. Clinical and Operational Advantages of the Day-Case Surgery Model

Conclusion

The day-case surgery model stands as a testament to the potential of meticulously engineered, patient-centric healthcare delivery. It successfully aligns clinical innovation with operational discipline to achieve the triple aim of improving the patient experience, enhancing population health, and reducing per capita cost. However, as this comprehensive review has delineated, its safety, efficiency, and sustainability are wholly predicated on the flawless

integration of seven core domains. From the pharmacist's strategic review to the surgeon's minimally invasive approach, from the nurse's vigilant stewardship to the secretary's masterful orchestration, and from the lab's rapid processing to the uncompromising protocols of infection and data control, each element is a vital strand in a single, interconnected web.

Viewing the day-case unit through the lens of an integrated microsystem, as formalized in the IDCP framework, is essential for moving from ad-hoc success to reliable, high-performance operation. By investing in the structured interdisciplinary collaboration, process standardization, and enabling technologies outlined herein, healthcare institutions can fully realize the promise of day-case surgery: delivering exceptional surgical care that is not only efficient and safe but also profoundly respectful of the patient's time and preference for healing at home.

References

1. Al-Aboosi, A. M. M., Abdullah, S. N. H. S., Murah, M. Z., & Dharhani, G. S. A. (2022, October). Cybersecurity Trends in Health Information Systems. In *2022 International Conference on Cyber Resilience (ICCR)* (pp. 01-04). IEEE. <https://doi.org/10.1109/ICCR56254.2022.999595>
2. Allegranzi, B., Bischoff, P., De Jonge, S., Kubilay, N. Z., Zayed, B., Gomes, S. M., ... & Solomkin, J. S. (2016). New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. *The Lancet Infectious Diseases*, 16(12), e276-e287. [https://doi.org/10.1016/S1473-3099\(16\)30398-X](https://doi.org/10.1016/S1473-3099(16)30398-X)
3. Aronson, S., Murray, S., Martin, G., Blitz, J., Crittenden, T., Lipkin, M. E., ... & Kirk, A. D. (2020). Roadmap for transforming preoperative assessment to preoperative optimization. *Anesthesia & Analgesia*, 130(4), 811-819. *DOI: 10.1213/ANE.0000000000004571*
4. Beals, C., Chow, R., Vadivelu, N., & Rajput, K. (2021). Special considerations—indwelling spinal cord stimulators and intrathecal pumps. In *Pain Control in Ambulatory Surgery Centers* (pp. 335-343). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-55262-6_25
5. Berg, U., BüLow, E., Sundberg, M., & Rolfson, O. (2018). No increase in readmissions or adverse events after implementation of fast-track program in total hip and knee replacement at 8 Swedish

hospitals: an observational before-and-after study of 14,148 total joint replacements 2011–2015. *Acta orthopaedica*, 89(5), 522-527. <https://doi.org/10.1080/17453674.2018.1492507>

6. Chou, R., Gordon, D. B., de Leon-Casasola, O. A., Rosenberg, J. M., Bickler, S., Brennan, T., ... & Wu, C. L. (2016). Management of Postoperative Pain: a clinical practice guideline from the American pain society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists' committee on regional anesthesia, executive committee, and administrative council. *The journal of pain*, 17(2), 131-157. <https://doi.org/10.1016/j.jpain.2015.12.008>
7. Chung, D. T., Ryan, C. J., Hadzi-Pavlovic, D., Singh, S. P., Stanton, C., & Large, M. M. (2017). Suicide rates after discharge from psychiatric facilities: a systematic review and meta-analysis. *JAMA psychiatry*, 74(7), 694-702. doi:10.1001/jamapsychiatry.2017.1044
8. Dargaville, P. A., Kamlin, C. O. F., Orsini, F., Wang, X., De Paoli, A. G., Kutman, H. G. K., ... & OPTIMIST-A Trial Investigators. (2021). Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome: the OPTIMIST-A randomized clinical trial. *Jama*, 326(24), 2478-2487. doi:10.1001/jama.2021.21892
9. Daskivich, T. J., Houman, J., Lopez, M., Luu, M., Fleshner, P., Zaghiyan, K., ... & Spiegel, B. (2019). Association of wearable activity monitors with assessment of daily ambulation and length of stay among patients undergoing major surgery. *JAMA network open*, 2(2), e187673-e187673. doi:10.1001/jamanetworkopen.2018.7673
10. DeCook, C. A. (2019). Outpatient joint arthroplasty: transitioning to the ambulatory surgery center. *The Journal of Arthroplasty*, 34(7), S48-S50. <https://doi.org/10.1016/j.arth.2019.01.006>
11. Douketis, J. D., Spyropoulos, A. C., Murad, M. H., Arcelus, J. I., Dager, W. E., Dunn, A. S., ... & Moores, L. K. (2022). Perioperative management of antithrombotic therapy: an American College of Chest Physicians clinical practice guideline. *Chest*, 162(5), e207-e243. <https://doi.org/10.1016/j.chest.2022.07.025>
12. Fanelli, D., Warfield Jr, D. J., Smith, S., Alinani, A., Kaye, A. D., & Liu, H. (2021). Challenges of Pain Control in Ambulatory Surgery Setting. In *Pain Control in Ambulatory Surgery Centers* (pp. 49-64). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-55262-6_5
13. Fillingham, Y. A., Hannon, C. P., Austin, M. S., Kopp, S. L., Sershon, R. A., Stronach, B. M., ... & Della Valle, C. J. (2022). Regional Nerve Blocks in Primary Total Knee Arthroplasty: The Clinical Practice Guidelines of the American Association of Hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic Surgeons, Hip Society, and Knee Society. *The Journal of Arthroplasty*, 37(9), 1691-1696. <https://doi.org/10.1016/j.arth.2022.02.120>
14. Friedlander, D. F., Krimphove, M. J., Cole, A. P., Marchese, M., Lipsitz, S. R., Weissman, J. S., ... & Trinh, Q. D. (2021). Where is the value in ambulatory versus inpatient surgery?. *Annals of surgery*, 273(5), 909-916. DOI: 10.1097/SLA.0000000000003578
15. Gan, T. J., Belani, K. G., Bergese, S., Chung, F., Diemunsch, P., Habib, A. S., ... & Philip, B. K. (2020). Fourth consensus guidelines for the management of postoperative nausea and vomiting. *Anesthesia & Analgesia*, 131(2), 411-448. DOI: 10.1213/ANE.0000000000004833
16. Hannon, C. P., Fillingham, Y. A., Spangehl, M. J., Karas, V., Kamath, A. F., Hamilton, W. G., ... & Sterling, R. S. (2022). Periarticular injection in Total joint arthroplasty: the clinical practice guidelines of the American Association of hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic surgeons, hip society, and knee society. *The Journal of Arthroplasty*, 37(9), 1701-1707. <https://doi.org/10.1016/j.arth.2022.03.048>
17. Healy, R., Bao, B., Xie, W., Madeira, T., Sussman, M., Whitman, G., ... & Searson, P. C. (2020). Assessment of patient ambulation profiles to predict hospital readmission, discharge location, and length of stay in a cardiac surgery progressive care unit. *JAMA network open*, 3(3), e201074-e201074. doi:10.1001/jamanetworkopen.2020.1074
18. Hulet, C., Rochcongar, G., & Court, C. (2017). Developments in ambulatory surgery in orthopedics in France in 2016. *Orthopaedics & Traumatology: Surgery & Research*, 103(1), S83-S90. <https://doi.org/10.1016/j.otsr.2016.11.005>
19. Husted, H., Otte, K. S., Kristensen, B. B., Ørsnes, T., & Kehlet, H. (2010). Readmissions after fast-track hip and knee arthroplasty. *Archives of orthopaedic and trauma surgery*, 130(9), 1185-1191. <https://doi.org/10.1007/s00402-010-1131-2>
20. Ilfeld, B. M. (2017). Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. *Anesthesia & Analgesia*, 124(1), 308-335. DOI: 10.1213/ANE.0000000000001581
21. Ilfeld, B. M., Khatibi, B., Maheshwari, K., Madison, S. J., Esa, W. A. S., Mariano, E. R., ... & PAINfRE Investigators. (2021). Ambulatory continuous peripheral nerve blocks to treat postamputation phantom limb pain: a multicenter,

randomized, quadruple-masked, placebo-controlled clinical trial. *Pain*, 162(3), 938-955. DOI: 10.1097/j.pain.0000000000002087

22. Jørgensen, C. C., Petersen, P. B., Kehlet, H., Madsen, F., Hansen, T. B., Husted, H., ... & Jorn, L. P. (2019). Days alive and out of hospital after fast-track total hip and knee arthroplasty: an observational cohort study in 16 137 patients. *British journal of anaesthesia*, 123(5), 671-678. <https://doi.org/10.1016/j.bja.2019.07.022>

23. Khalil, H., Kynoch, K., & Hines, S. (2020). Interventions to ensure medication safety in acute care: an umbrella review. *JBI Evidence Implementation*, 18(2), 188-211. DOI: 10.1097/XEB.0000000000000232

24. Lees-Deutsch, L., & Robinson, J. (2019). A systematic review of criteria-led patient discharge. *Journal of nursing care quality*, 34(2), 121-126. DOI: 10.1097/NCQ.0000000000000356

25. Lieneck, C., McLauchlan, M., & Phillips, S. (2023, November). Healthcare cybersecurity ethical concerns during the COVID-19 global pandemic: a rapid review. In *Healthcare* (Vol. 11, No. 22, p. 2983). MDPI. <https://doi.org/10.3390/healthcare11222983>

26. Nagappa, M., Mokhlesi, B., Wong, J., Wong, D. T., Kaw, R., & Chung, F. (2015). The effects of continuous positive airway pressure on postoperative outcomes in obstructive sleep apnea patients undergoing surgery: a systematic review and meta-analysis. *Anesthesia & Analgesia*, 120(5), 1013-1023. DOI: 10.1213/ANE.0000000000000634

27. Prasad, G., Gujjar, P., Kumar, H. N., Kumar, M. A., & Chandrappa, S. (2023). Advances of cyber security in the healthcare domain for analyzing data. In *Cyber Trafficking, Threat Behavior, and Malicious Activity Monitoring for Healthcare Organizations* (pp. 1-14). IGI Global. DOI: 10.4018/978-1-6684-6646-9.ch001

28. Ramsingh, D., Bronshteyn, Y. S., Haskins, S., & Zimmerman, J. (2020). Perioperative point-of-care ultrasound: from concept to application. *Anesthesiology*, 132(4), 908-916. DOI: 10.1097/ALN.0000000000003113

29. Robinson, A., Husband, A. K., Slight, R. D., & Slight, S. P. (2021). Digital technology to support lifestyle and health behaviour changes in surgical patients: systematic review. *BJS open*, 5(2), zraa009. <https://doi.org/10.1093/bjsopen/zraa009>

30. Sridhar, S., Hunter, A. M., & McCrory, B. (2023). Digital patient engagement at a perioperative surgical home implemented community hospital. *Patient Experience Journal*, 10(1), 141-154.

31. Williams, B. A., Holder-Murray, J. M., Nettour, J. F., Ibinson, J. W., DeRenzo, J. S., Dalessandro, C., ... & Herlich, A. (2023). Aim for zero: prevention of postoperative nausea and vomiting using an off-patent five-drug multimodal approach. *British journal of anaesthesia*, 131(1), e1-e4. <https://doi.org/10.1016/j.bja.2023.01.005>

32. Zaffino, P., Moccia, S., De Momi, E., & Spadea, M. F. (2020). A review on advances in intraoperative imaging for surgery and therapy: imagining the operating room of the future. *Annals of Biomedical Engineering*, 48(8), 2171-2191. <https://doi.org/10.1007/s10439-020-02553-6>.