

Prothrombin Time Testing: Principles, Methodology, Clinical Interpretation, and Quality Assurance in Hemostasis Laboratories

Mohammed Ibrahim Mohsen Gomer ⁽¹⁾, Abdullah Essa Magbool Oraybi, Khalid Hamoud Najea Somaily, Ahlam Mohammed Ahmed Arishi, Essa Ali Ali Oraybi, Abdullah Zain Abdullah Abbas, Muteeb Mohamed Alasiri ⁽²⁾, Badr Amer Alhrbi ⁽³⁾, Samar Ahmad Breagesh ⁽⁴⁾, Khlood Abdu Ali Dagreery ⁽⁵⁾

(1) Jazan Health Cluster, Ministry of Health, Saudi Arabia,

(2) King Salman Hospital, Ministry of Health, Saudi Arabia,

(3) Imam Abdulrahman Al Faisal Hospital Laboratory, Ministry of Health, Saudi Arabia,

(4) Riyadh Regional Lab, Ministry of Health, Saudi Arabia,

(5) Jazan Regional Laboratory, Ministry of Health, Saudi Arabia

Abstract

Background: Prothrombin time (PT) is a critical coagulation assay widely used to assess the extrinsic and common pathways of hemostasis. It plays a pivotal role in monitoring anticoagulant therapy, evaluating bleeding risk, and diagnosing systemic disorders such as liver disease and disseminated intravascular coagulation.

Aim: This review aims to provide a comprehensive overview of PT testing, including its principles, methodology, clinical interpretation, and quality assurance practices in modern hemostasis laboratories.

Methods: The article synthesizes current evidence and best practices regarding PT assay performance, specimen collection, endpoint detection technologies, and quality control measures. It also examines preanalytical, analytical, and postanalytical factors influencing test reliability.

Results: PT testing has evolved from manual tilt-tube techniques to automated optical and mechanical detection systems, improving precision and scalability. The introduction of the International Normalized Ratio (INR) standardized reporting across laboratories, enhancing safety in anticoagulation management. Point-of-care (POC) devices have expanded access to rapid testing, though limitations persist in critically ill patients. Quality assurance, including internal QC, reagent lot verification, and external proficiency testing, remains essential to ensure accuracy.

Conclusion: PT/INR testing is indispensable for clinical decision-making, but its reliability depends on rigorous preanalytical control, method-aware interpretation, and adherence to quality standards. Technological advances and decentralized testing models offer convenience but require careful oversight to maintain patient safety.

Keywords: Prothrombin time, INR, coagulation testing, quality assurance, point-of-care, anticoagulation

Introduction

Prothrombin time (PT) is among the most frequently requested laboratory investigations in modern clinical practice because it provides a rapid, function-based assessment of key elements within the coagulation cascade. As a global screening assay, PT is primarily used to evaluate the integrity of the extrinsic and common coagulation pathways, and it is particularly sensitive to deficiencies or functional impairments in coagulation factors II (prothrombin), V, VII, and X, as well as to significantly reduced fibrinogen concentrations.[1][2] From a clinical standpoint, this makes PT indispensable in a range of scenarios, including the assessment of bleeding risk, evaluation of liver synthetic function, detection of vitamin K deficiency, monitoring of vitamin K

antagonist therapy, and guiding urgent hemostatic interventions. The continuing clinical relevance of PT reflects not only its diagnostic utility but also its role as a standardized metric that can be longitudinally followed to monitor dynamic changes in coagulation status over time. The PT assay is a clot-based measurement performed on citrated plasma. It measures the time, expressed in seconds, required for a patient's plasma to form a fibrin clot after the addition of thromboplastin.[1] Thromboplastin is not a single chemical entity but rather a reagent mixture containing tissue factor (which initiates the extrinsic pathway), calcium (to reverse citrate chelation and permit coagulation), and phospholipid (to provide a catalytic surface for the assembly of coagulation complexes).[1] When thromboplastin is added to

plasma, tissue factor binds factor VII/VIIa, activating factor X and thereby initiating the common pathway, which culminates in thrombin generation and conversion of fibrinogen to fibrin. The measured clotting time therefore reflects the functional adequacy of these interacting factors, as well as the presence of inhibitors or anticoagulant drugs that interfere with the pathway. Clinically, PT is often interpreted in conjunction with the activated partial thromboplastin time (aPTT), platelet count, fibrinogen, and markers of fibrinolysis to construct a more complete picture of hemostasis, particularly in critically ill patients where coagulopathy may have multifactorial etiologies [1].

A major limitation of PT, however, is that raw clotting times are not inherently standardized across laboratories. Multiple commercial thromboplastin reagents exist, and these differ in their sources (historically derived from human placenta, rabbit brain, or recombinant tissue factor), phospholipid content, responsiveness to factor deficiencies, and sensitivity to anticoagulants. As a result, the same plasma specimen may yield different PT values when tested using different thromboplastin preparations, even if the analytic technique is otherwise comparable.[3][4] This inter-reagent variability historically created significant challenges in clinical decision-making, particularly for patients receiving warfarin, where precise dose titration depends on consistent and comparable measurements. To address this problem, the World Health Organization (WHO) introduced the international normalized ratio (INR), a standardized reporting system designed to harmonize PT results across different laboratories and reagent systems.[3][4] The INR is conceptually based on comparing a patient's PT to a control PT, normalized by an internationally calibrated sensitivity index that links each thromboplastin reagent to a WHO reference preparation.[1] In practice, INR reporting improves comparability and supports safer anticoagulation management, enabling clinicians to apply therapeutic ranges with greater confidence across institutions. Historically, PT testing has been performed in centralized laboratories using standard coagulation analyzers, which provide controlled reaction conditions and automated endpoint detection. While this approach remains the benchmark for analytic reliability, the turnaround time associated with specimen transport, processing, and batching can be clinically limiting, particularly in acute care settings. In many institutions, traditional laboratory PT testing may take up to 90 minutes from order to result, depending on workflow and operational constraints.[5] In clinical environments where minutes can influence outcomes—such as emergency departments, trauma bays, intensive care units, and operating rooms—delays in coagulation data can hinder timely diagnosis of hemorrhagic risk and impede rapid correction of coagulopathy. In response,

point-of-care (POC) technologies have become increasingly attractive, offering near-patient PT/INR results in approximately five minutes.[5] These devices support time-sensitive decision-making in settings where rapid triage and procedural planning are essential, including perioperative anticoagulation management, urgent reversal strategies, and evaluation of active bleeding.[6]

Beyond acute care, POC PT/INR monitoring has gained prominence due to shifts in outpatient anticoagulation management, particularly with the longstanding use of vitamin K antagonists such as warfarin. Warfarin therapy requires individualized dosing and frequent monitoring because of its narrow therapeutic window and susceptibility to dietary vitamin K intake, drug–drug interactions, genetic variability in metabolism, and intercurrent illness. POC devices have enabled more flexible anticoagulation monitoring models, allowing PT/INR testing to occur not only in specialized thrombosis or anticoagulation clinics but also in primary care settings and, in some circumstances, through patient self-testing programs.[4] This decentralization can improve convenience, increase monitoring adherence, and facilitate timely dose adjustments, which may translate into better time-in-therapeutic range and fewer complications when implemented within structured oversight frameworks. Nevertheless, the convenience of POC testing introduces important analytic and interpretive considerations. While many POC devices demonstrate acceptable correlation with laboratory-based INR measurement in stable outpatient populations, evidence indicates that POC systems may underestimate hemostatic abnormality in certain contexts, particularly in critically ill or unstable patients where hematocrit extremes, hypoperfusion, or interfering substances may affect device performance.[7] Accordingly, POC results should be interpreted within clinical context, and confirmatory laboratory testing remains prudent when results are unexpected, when bleeding risk is high, or when major therapeutic decisions hinge on the value. Taken together, these developments underscore that PT is not simply a laboratory number; it is a clinically integrated biomarker whose reliability depends on standardized reporting, method-aware interpretation, and thoughtful selection of testing platforms based on patient acuity and clinical need.[1][3][7]

Specimen Collection

Accurate interpretation of prothrombin time (PT) results depends heavily on the integrity of the preanalytical phase, making specimen collection and handling central determinants of test validity. Because coagulation assays measure the functional activity of clotting factors, even small deviations in specimen identification, anticoagulant ratio, or collection technique can produce clinically misleading results. For this reason, strict adherence to standardized specimen collection policies is essential in both

hospital and outpatient settings. At the outset, all specimens and accompanying request documentation must be correctly and completely labeled to ensure unequivocal patient identification. Required identifiers generally include the patient's full name, a second unique identifier such as a medical record number or date of birth, the date (and often time) of collection, and the specimen source when relevant.[8] Proper labeling is not merely an administrative requirement; it is a primary patient-safety practice designed to prevent specimen misidentification and the downstream risk of inappropriate clinical decisions. Coagulation testing must be performed on plasma rather than serum. This distinction is fundamental: serum is obtained after blood has clotted, and as clot formation occurs, fibrinogen and other clotting factors are consumed and removed from the liquid phase. Consequently, serum cannot accurately reflect *in vivo* coagulation factor activity and is unsuitable for PT and related assays. In contrast, plasma is collected in the presence of an anticoagulant, preserving clotting factors in an inactive state until the assay is initiated. Venous blood is typically collected via standard percutaneous phlebotomy, which is the preferred method because it reduces the risk of contamination with intravenous fluids and minimizes hemolysis or activation of coagulation that can occur with difficult draws.[9] Nonetheless, when clinically necessary—such as in critically ill patients with limited venous access—samples may be obtained from indwelling intravenous lines. In these situations, careful technique is required, including appropriate flushing and discarding of initial blood volume, to minimize dilutional effects and heparin contamination that can prolong clot-based assays and distort PT interpretation.[9]

The standard collection container for PT testing is a plastic light-blue-top tube containing 3.2% sodium citrate.[10] Sodium citrate functions as an anticoagulant by chelating ionized calcium, a required cofactor for multiple enzymatic reactions within the coagulation cascade.[11] By binding calcium, citrate effectively prevents thrombin generation and fibrin formation, maintaining the specimen in a stable, nonclotted state suitable for later functional testing. This stability is contingent on the correct anticoagulant-to-blood proportion. For routine coagulation assays, the tube must be filled to at least 90% of its intended volume to achieve the required 9:1 blood-to-citrate ratio.[7] Underfilling increases the relative citrate concentration, resulting in excess calcium chelation during testing and an artifactual prolongation of PT. Overfilling, though less common, can reduce the citrate proportion and permit partial clot activation, potentially leading to factor consumption and unreliable results. Because PT is often used to guide anticoagulant dosing or urgent clinical interventions, these preanalytical errors can carry significant patient risk. After collection, the tube should be gently inverted several times to ensure

thorough mixing of blood with citrate. Vigorous shaking should be avoided because it increases the likelihood of hemolysis and can introduce cellular debris or biochemical interference that may affect optical clot detection and overall assay accuracy. Once the specimen is ready for analysis, the laboratory initiates coagulation by adding a calcium-containing reagent, typically calcium chloride, thereby reversing citrate's anticoagulant effect and restoring the calcium required for physiologic coagulation activation.[11] The clotting endpoint—formation of a fibrin clot—is then measured by the analyzer using either mechanical methods (detecting viscosity or movement changes) or optical methods (detecting changes in turbidity or light transmission as fibrin forms), depending on the instrumentation.[12] Collectively, these steps highlight that PT is not solely an analytical measurement but a chain of processes in which specimen collection and handling are essential for producing clinically trustworthy results.

Fig. 1: Prothrombin Test.

Procedures

Clot-based coagulation assays occupy a central place in laboratory evaluation of hemostasis because they translate the complex enzymatic events of coagulation into a measurable time interval, thereby providing clinically actionable information about factor activity, anticoagulant effects, and pathway integrity. Tests such as the prothrombin time/international normalized ratio (PT/INR), activated partial thromboplastin time (aPTT), and thrombin time (TT) share a common conceptual endpoint: each measures the elapsed time between the initiation of coagulation under standardized reagent conditions and the formation of a detectable fibrin clot. Although this principle appears straightforward, the technical challenge has always been the reliable detection of “clot formation” in a manner that is reproducible, scalable, and resistant to analytical interference. Over decades, the methods used to identify this endpoint have evolved from manual visual techniques to sophisticated automated systems that integrate temperature control, precision dispensing, and algorithmic signal interpretation.[13] Historically, coagulation assays were performed manually using the tilt-tube technique. In this approach, a plasma sample was combined with reagents to initiate clotting, and the technologist repeatedly tilted the tube while visually observing for the moment when the plasma ceased to flow smoothly and instead formed a gel-like fibrin clot. Because

coagulation enzyme kinetics are temperature dependent, the reaction required maintenance at physiologic temperature, which was commonly achieved using a water bath set to 37 °C.[14] While conceptually simple, the tilt-tube method is labor intensive, highly operator dependent, and vulnerable to variability introduced by subjective endpoint recognition. Nevertheless, the manual approach retains a limited but important role: because it can be executed under strictly controlled conditions without platform-specific calibration constraints, it is still used in niche settings such as testing with international reference thromboplastins, where maintaining continuity with reference standards can outweigh the inefficiencies of manual operation.[14]

The contemporary coagulation laboratory, however, must contend with high specimen volumes and demand for rapid, standardized reporting. These pressures have driven the widespread adoption of automated coagulation analyzers capable of regulating reaction temperature, handling reagent addition with high precision, and detecting clot formation via objective physical or optical signals.[15] Automated systems typically maintain samples at 37 °C internally and execute assays in cuvettes where plasma and reagents are mixed under controlled conditions. The critical feature is endpoint detection, and most platforms rely on either mechanical sensing of physical property changes as fibrin forms or optical sensing of altered light transmission or scatter produced by polymerized fibrin.[15] These strategies are not merely technological preferences; they represent distinct approaches to translating the biochemical event of fibrin polymerization into a quantifiable and reproducible signal. Mechanical endpoint detection methods exploit the fact that as soluble fibrinogen is converted into insoluble fibrin strands, the sample's viscosity and physical consistency change in a measurable manner. One widely used mechanical approach places a small metal ball at the bottom of a test cuvette. A magnet drives the ball in a back-and-forth motion, and the analyzer continuously monitors the ball's movement. When fibrin monomers polymerize into fibrin strands, they progressively impede ball motion; the point at which motion is sufficiently restricted is interpreted as the clotting endpoint.[16] A related mechanical system uses a magnet to hold a ball to the side of a rotating cuvette. During the early liquid phase, centrifugal and magnetic forces maintain a consistent ball position. As fibrin strands form, they physically displace or "pull" the ball away from its resting location, and the instrument records this displacement as the endpoint.[16] The practical advantage of mechanical detection is its relative insensitivity to optical interferences that commonly complicate clot-based assays, an issue that becomes clinically relevant in specimens with hemolysis, hyperbilirubinemia, or lipemia.

Optical detection methods, by contrast, are predicated on changes in light behavior as fibrin forms. Optical clot detection is commonly nephelometric—measuring increased light scatter—or turbidimetric—measuring reduced light transmission—as fibrin polymerization turns a relatively clear plasma-reagent mixture into a more opaque suspension.[17][18] In many analyzers, a light source passes through the cuvette and a detector measure transmitted or scattered light continuously. As fibrin strands develop, the optical density of the sample changes in a characteristic pattern, allowing the instrument to determine the clotting time. Some systems define the endpoint using a preset threshold, such as a specific percentage decrease in transmitted light or a predefined increase in scatter. Other systems use kinetic approaches, analyzing the curve of optical change over time and identifying a mathematically defined point such as the maximum acceleration of fibrin polymerization.[19] The kinetic approach can reduce subjectivity and improve consistency, particularly when clot development is gradual or when the specimen contains mild turbidity that might otherwise confound a fixed-threshold system. The performance of optical methods is closely linked to the characteristics of the instrument's light source and detection optics. Traditional analyzers often relied on halogen lamps or lasers. Halogen sources provide broad-spectrum light but can degrade over time, while laser sources are stable and intense but may be susceptible to specific interference patterns depending on wavelength and sample properties. Newer analyzers increasingly use light-emitting diodes (LEDs), which offer improved longevity and stable output, and importantly, allow selection of wavelengths that overlap less with common interfering substances such as hemoglobin, bilirubin, and lipids.[19] This design choice is not trivial: the optical absorbance spectra of these substances can overlap with traditional measurement wavelengths, increasing noise and potentially biasing clot detection. Accordingly, the move toward LEDs reflects both engineering optimization and the clinical need to improve analytical resilience across diverse specimen qualities. Despite these technological advances, no detection method is universally superior in all circumstances. Mechanical detection is often described as less vulnerable to optical interference because it does not depend on light transmission or scatter. Therefore, in samples with marked hemolysis, icterus, or lipemia—conditions that can alter optical signals—mechanical detection may yield more reliable results.[20] However, mechanical systems can have their own limitations, such as susceptibility to vibration, maintenance needs related to cuvette and ball integrity, or issues when clot formation is atypical. Optical systems, conversely, can be highly precise and offer rich kinetic data, but may require built-in interference checks, wavelength optimization, or

reflex testing policies to manage compromised specimens. In practice, laboratories select platforms based not only on analytic principles but also on workflow needs, test menu integration, maintenance capacity, and local patient population characteristics.

Because PT and aPTT results guide high-stakes decisions—such as anticoagulant dosing, bleeding risk assessment, and perioperative planning—continuous performance verification is indispensable. Like all clinical assays, the accuracy and consistency of PT and aPTT measurements must be monitored through systematic quality control (QC) procedures.[21] QC in the analytical phase is designed to verify that the measurement process continues to meet predefined performance specifications suitable for patient care, and to indicate when an error condition exists that requires correction before patient results can be safely reported.[22] This framing emphasizes that QC is not an administrative burden but a safety barrier: it provides real-time assurance that instrument function, reagent integrity, and procedural execution remain within acceptable limits. Operational QC requirements vary depending on whether testing is automated or manual, but both models share the expectation of routine, structured monitoring. Automated hematology and coagulation systems commonly require at least two levels of controls (typically representing normal and abnormal ranges) every eight hours of testing, and additionally whenever a reagent change occurs.[23] Many laboratories increase QC frequency further, particularly for high-impact assays or during periods of instrument instability, to reduce the risk of reporting erroneous results. Manual coagulation testing carries additional vulnerability to operator variability and environmental conditions; accordingly, each analyst performing manual testing is expected to run two levels of controls prior to patient testing and with each reagent change. In some manual protocols, both patient and control samples are tested in duplicate to improve precision and reduce the likelihood that random error or subjective endpoint recognition will drive reporting.[24] These practices reflect a risk-based approach: the less automated and standardized the procedure, the more safeguards are needed to preserve analytic reliability [24].

The nature of QC material itself influences how QC is interpreted and how target ranges are established. Controls may be “assayed” or “unassayed.”[25] Assayed QC materials are supplied with manufacturer-assigned target values that are specific to the reagent and analyzer combination used to generate those values. This specificity matters because clotting times are influenced by reagent sensitivity and analyzer detection mechanics; therefore, laboratories must ensure they are using the correct target ranges aligned to their exact platform and reagent configuration. Unassayed controls, in contrast, do not come with assigned target values; when laboratories use unassayed materials, they must

generate their own target ranges based on local validation data.[26] While unassayed QC can offer flexibility and sometimes cost advantages, it requires rigorous internal data collection and statistical treatment to establish appropriate mean values and control limits, reinforcing that QC choice is also a laboratory quality decision.

Interpreting QC results requires balancing two competing priorities: sensitivity to meaningful analytical error and avoidance of excessive false alerts that can disrupt workflow without improving patient safety. Thus, acceptable QC ranges and decision rules are typically selected based on the probability of detecting a significant analytical error condition while maintaining an acceptably low false rejection rate.[27] Laboratories must define desired process control performance characteristics—such as allowable imprecision and allowable bias—before selecting QC rules that fit the assay’s clinical risk profile.[28] Westgard multirules are commonly used because they combine multiple statistical criteria (for example, assessing whether control results exceed defined standard deviation limits or demonstrate trends) to improve error detection. When a QC run is deemed “out of control,” laboratories must suspend patient testing and investigate potential causes, which may include instrument malfunction, calibration drift, reagent degradation, improper storage, or procedural error. No patient analysis should resume until the root cause is identified and corrective action restores the process to an in-control state.[28] This “stop-and-fix” principle is essential in coagulation testing, where erroneous reporting can lead to inappropriate reversal of anticoagulation, unnecessary transfusions, or delayed recognition of hemorrhagic risk. Reagent lot changes represent a particularly important vulnerability in coagulation testing, because thromboplastin and aPTT reagents can differ in sensitivity even within the same manufacturer’s product line across different lots. Changing reagent lots can therefore produce unexpected shifts in QC results, and laboratories must perform careful lot-to-lot crossover evaluation to verify continuity of performance.[29] A critical nuance is that QC material may not perfectly model patient plasma. Because QC materials can have matrix characteristics distinct from native patient specimens, the interaction between a QC material and a reagent can change with a new reagent lot, potentially producing QC shifts that do not accurately reflect assay behavior on patient samples.[29] For that reason, QC alone may be an imperfect indicator of post-change performance. Best practice includes using clinical patient samples to verify consistency between old and new reagent lots, because patient specimens more reliably reflect the assay’s real-world analytic behavior and can reveal clinically meaningful bias that QC materials might obscure.[30] This strategy acknowledges the unpredictable nature of matrix-related bias and reinforces the importance of patient-based verification

in maintaining continuity of result interpretation across time.

Finally, internal QC must be complemented by external quality assurance processes that provide benchmarking and accountability beyond the individual laboratory. Participation in external quality control or proficiency testing is not merely recommended; it is a regulatory requirement under the Clinical Laboratory Improvement Amendments framework published by the Centers for Medicare and Medicaid Services (CMS).[31] Proficiency testing serves multiple purposes: it verifies that a laboratory's results align with those of peer laboratories using comparable methods; it detects systematic bias that may not be apparent through internal QC; and it reinforces staff competence in routine procedures and problem-solving.[32] Participation must be planned, documented, and integrated into the laboratory's broader quality assurance program. The proficiency testing plan should be explicitly incorporated into the laboratory's QA plan and overall quality program to ensure results are reviewed systematically, corrective actions are implemented when needed, and ongoing compliance is sustained.[33] In this way, proficiency testing becomes a continuous improvement mechanism rather than a periodic administrative exercise. In summary, PT/INR and related clot-based tests depend on a sequence of tightly controlled procedural elements: accurate initiation of coagulation, stable reaction temperature, objective endpoint detection, and rigorous quality oversight. The progression from manual tilt-tube techniques to automated mechanical and optical detection reflects the laboratory's need for scalable precision and reproducibility.[13][15] Yet even highly automated platforms require robust QC practices, thoughtful interpretation rules, careful reagent lot management, and external proficiency testing participation to ensure that reported results remain analytically valid and clinically reliable.[21][28][31] Because coagulation testing directly informs urgent decisions in anticoagulation management, bleeding assessment, and perioperative care, procedural excellence in PT/INR testing is not optional—it is a patient-safety imperative.[22]

Indications

Prothrombin time (PT), most often interpreted through the international normalized ratio (INR), is a foundational coagulation assay used to evaluate the functional integrity of the extrinsic and common pathways. Its clinical indications are broad because abnormalities in PT can reflect deficiencies of vitamin K-dependent and non-vitamin K-dependent clotting factors, impaired hepatic synthesis of coagulation proteins, consumptive coagulopathy, or the pharmacodynamic effects of anticoagulant therapy. Among all indications, monitoring vitamin K antagonists—particularly warfarin—remains the most common and clinically consequential reason to obtain

PT.[10] Warfarin exerts its anticoagulant effect by inhibiting vitamin K epoxide reductase, thereby reducing gamma-carboxylation and functional activity of factors II, VII, IX, and X, as well as proteins C and S. Because factor VII has a short half-life, PT/INR responds relatively quickly to changes in warfarin dose, making it the preferred test for therapeutic monitoring, dose adjustment, and assessment of anticoagulation intensity in both inpatient and outpatient settings. PT is also routinely ordered in the evaluation of unexplained bleeding, particularly when the bleeding phenotype suggests a systemic coagulation disorder rather than an isolated platelet or vascular abnormality. In patients presenting with mucosal bleeding, postoperative hemorrhage, unexplained bruising, or prolonged bleeding after procedures, PT helps identify clotting factor deficiencies, vitamin K deficiency, malabsorption states, or medication-related coagulopathy. When interpreted alongside aPTT, platelet count, fibrinogen, and clinical context, PT contributes to narrowing the differential diagnosis and guiding targeted therapy such as vitamin K replacement, plasma products, or factor concentrates.

Another important indication is the diagnostic evaluation of disseminated intravascular coagulation (DIC), a syndrome characterized by pathologic activation of coagulation with consumption of clotting factors and platelets. PT is frequently prolonged in DIC due to depletion of factors in the common and extrinsic pathways, and serial PT/INR measurements can assist clinicians in tracking disease progression and response to source control and supportive management. In addition, obtaining a baseline PT prior to initiating anticoagulation therapy is clinically prudent in many patients, particularly those with suspected liver dysfunction, malnutrition, prior bleeding history, or potential coagulopathy, as it establishes a reference point and identifies preexisting abnormalities that may increase bleeding risk during therapy. Finally, PT serves as a clinically meaningful surrogate of hepatic synthetic capacity because the liver produces most coagulation factors. In chronic liver disease and acute hepatic failure, impaired synthesis can prolong PT, and PT/INR is incorporated into prognostic scoring systems, including the Model for End-Stage Liver Disease (MELD) score, to estimate disease severity and prioritize transplantation decisions.[10] Through these roles—therapeutic monitoring, bleeding evaluation, DIC assessment, baseline risk stratification, and liver disease staging—PT remains a high-value test that links laboratory measurement directly to clinical decision-making [22].

Potential Diagnosis

A prolonged prothrombin time (PT), typically interpreted clinically through the international normalized ratio (INR), is an important laboratory abnormality that signals impaired function

of the extrinsic and/or common coagulation pathways. Because PT is sensitive to deficiencies or functional inhibition of factors I (fibrinogen), II (prothrombin), V, VII, and X, an elevated PT/INR should prompt a structured differential diagnosis that integrates clinical history, medication exposure, nutritional status, liver function, and evidence of systemic illness. In practice, PT prolongation is not a diagnosis itself but a physiologic indicator that can reflect reduced factor synthesis, increased factor consumption, direct factor inhibition, or impaired vitamin K-dependent activation of clotting proteins. Understanding the principal etiologies allows clinicians and laboratory professionals to prioritize confirmatory testing and guide urgent management. Liver disease is one of the most common and clinically significant causes of PT prolongation because the liver is responsible for synthesizing most coagulation factors, including factors II, V, VII, IX, and X, as well as fibrinogen. When hepatic synthetic function is impaired—whether due to cirrhosis, acute liver failure, cholestatic disease, or severe hepatic congestion—production of these proteins declines, producing a measurable increase in PT.^[4] Clinically, this may manifest as easy bruising, mucocutaneous bleeding, or petechiae; however, it is important to recognize that patients with advanced liver disease can have a “rebalanced” hemostatic system with simultaneous reductions in procoagulant and anticoagulant factors, meaning bleeding risk is not determined by PT alone. Nevertheless, PT/INR remains a key marker of hepatic synthetic dysfunction and is widely incorporated into prognostic frameworks.

Vitamin K deficiency is another frequent driver of PT prolongation because vitamin K is required for gamma-carboxylation of factors II, VII, IX, and X, a post-translational modification essential for calcium binding and normal coagulation activity.^[10] Factor VII's short half-life makes PT particularly sensitive to early vitamin K depletion. Clinically relevant vitamin K deficiency can result from poor intake or malnutrition, prolonged broad-spectrum antibiotic exposure (which reduces gut flora-derived vitamin K), and disorders of fat absorption, such as cholestasis, pancreatic insufficiency, or inflammatory bowel disease.^[10] In such cases, the PT may correct with vitamin K administration, making response to replacement both diagnostic and therapeutic. The laboratory's role includes recognizing this pattern and ensuring preanalytical variables—such as improper citrate ratio or specimen handling—are excluded before interpreting the result as true coagulopathy. Inherited or acquired factor deficiencies can also prolong PT, particularly deficiencies of factors II, V, or X, and in some cases severe hypofibrinogenemia. While inherited single-factor deficiencies are relatively uncommon, they may present with lifelong bleeding tendencies, family history, or abnormal coagulation profiles discovered during preoperative screening.

Acquired factor deficiencies may occur secondary to liver disease, vitamin K deficiency, consumptive coagulopathy, or inhibitors. Differentiation often requires mixing studies and specific factor assays, particularly when the PT is markedly prolonged or when bleeding is disproportionate to the apparent abnormality [4].

Disseminated intravascular coagulation (DIC) represents a high-acuity cause of prolonged PT because it reflects systemic activation of coagulation with rapid consumption of clotting factors and platelets, often in response to sepsis, malignancy, trauma, obstetric emergencies, or severe inflammatory states. In DIC, PT prolongation typically coexists with thrombocytopenia, elevated D-dimer, reduced fibrinogen (in advanced cases), and clinical evidence of bleeding and/or thrombosis. Serial PT trends can help monitor progression and response to source control and supportive treatment, but PT must be interpreted within a broader coagulation panel to avoid underestimating severity. Vitamin K-antagonist therapy, especially warfarin, is a predictable and intentional cause of prolonged PT. Warfarin reduces the functional activity of factors II, VII, IX, and X by inhibiting vitamin K recycling, and PT/INR is the standard test for monitoring therapeutic effect. In this context, the diagnostic question shifts from “why is PT prolonged?” to “is anticoagulation within the intended therapeutic range, and are there interacting factors that increase bleeding risk?” Interacting medications, dietary changes, hepatic dysfunction, heart failure exacerbations, and acute illness can all amplify warfarin effect and produce supratherapeutic INR values. Finally, antiphospholipid antibodies (APA) add complexity to the interpretation of PT prolongation. Antiphospholipid antibody syndrome is classically associated with thrombosis or pregnancy morbidity in the presence of persistent antiphospholipid antibodies.^[34] Although many APA-related laboratory abnormalities are more prominent in aPTT testing, certain APA profiles can be associated with hypoprothrombinemia, in which prothrombin levels fall due to antibody-mediated effects. APA may promote increased conversion of prothrombin to thrombin in vivo, resulting in lower circulating prothrombin and a prolonged PT.^[35] Clinically, this is notable because antiphospholipid syndromes can paradoxically present with thrombosis risk while some patients may also develop bleeding tendencies when hypoprothrombinemia is pronounced. Recognizing this possibility is important, particularly when PT prolongation does not fit common patterns such as liver dysfunction or vitamin K deficiency. In summary, prolonged PT is a clinically meaningful signal that requires integration of patient history, medication exposure, nutritional and hepatic status, and supporting laboratory findings. Systematic evaluation helps distinguish benign or expected causes from urgent consumptive states and guides the

appropriate use of confirmatory studies and timely intervention.[4][10][34][35]

Normal and Critical Findings

Interpretation of prothrombin time (PT) and its standardized derivative, the international normalized ratio (INR), requires an appreciation of method-specific reference intervals, patient context, and the clinical consequences of abnormal values. Because PT is a clot-based assay that depends on the composition and sensitivity of thromboplastin reagents and on the analytic characteristics of the testing platform, reference ranges are not universal and may differ meaningfully between laboratories. Variability arises from differences in reagent source, instrument endpoint detection (optical versus mechanical), calibration practices, and local validation procedures. For this reason, clinicians and laboratory staff should interpret PT results using the reference interval established by the performing laboratory rather than relying on a single “fixed” normal value. Nonetheless, in many institutions, a commonly cited normal PT range is approximately 10 to 13 seconds.[11] Values within this interval generally suggest preserved function of the extrinsic and common pathways in individuals not receiving anticoagulant therapy and without significant hepatic dysfunction or factor deficiency. INR was developed to minimize interlaboratory variation and allow more reliable comparison of PT results across different reagent systems, particularly for patients receiving vitamin K antagonists (VKAs) such as warfarin.[4] In healthy individuals, the INR is typically 1.1 or below, reflecting normal coagulation factor activity under standardized reporting.[4] In contrast, the INR therapeutic range for most VKA-treated patients is intentionally higher—most commonly between 2.0 and 3.0—because anticoagulation at this intensity reduces the risk of thromboembolic events while maintaining an acceptable bleeding risk profile.[4] Importantly, the target range can differ for specific indications (for example, some mechanical valve patients may require higher targets), but the 2 to 3 range remains the most frequently applied therapeutic window in general practice.

Critical or high-risk findings often relate less to the absolute PT in seconds and more to the clinical implication of the INR level in a given patient. In individuals receiving VKAs, an increased PT/INR above the therapeutic goal may indicate a supratherapeutic anticoagulant effect, increasing the probability of spontaneous bleeding, gastrointestinal hemorrhage, hematuria, intracranial bleeding, or excessive procedural bleeding.[36] Such results generally warrant timely clinical action, which may include warfarin dose reduction or temporary withholding of therapy, evaluation for drug–drug or diet interactions, assessment of liver function and nutritional status, and consideration of vitamin K administration when elevations are significant or

accompanied by bleeding. Conversely, a subtherapeutic INR in a VKA-treated patient may suggest inadequate anticoagulation and an elevated risk of thrombosis, necessitating reassessment of adherence, dosing, and interacting conditions. A crucial laboratory consideration is that PT system sensitivity to clotting factor deficiency is not identical across reagent and instrument combinations. Different thromboplastin reagents vary in responsiveness to reduced activity of factors VII, X, V, and II, which means that the same degree of factor reduction may produce different PT prolongations depending on the assay system.[37] For this reason, laboratories benefit from understanding and, where feasible, characterizing the analytic sensitivity of their PT method to deficiencies in these factors.[37] This knowledge supports more accurate clinical interpretation, improves recognition of subtle coagulopathies, and strengthens patient safety—particularly when PT/INR results are used to guide urgent anticoagulation adjustments or perioperative decision-making.

Interfering Factors

Reliable interpretation of prothrombin time (PT) and other clot-based coagulation assays depends not only on analytic instrument performance but also, critically, on meticulous control of preanalytical variables. In coagulation testing, the preanalytical phase is uniquely vulnerable because the analytes of interest are functional proteins that can be consumed, activated, degraded, diluted, or inhibited before the specimen ever reaches the analyzer. Consequently, errors introduced during specimen collection, transport, processing, or storage can mimic true coagulopathies, obscure clinically important abnormalities, or produce misleading results that lead to inappropriate therapeutic decisions. Although hemolysis, icterus, and lipemia are widely recognized sample-quality problems, coagulation laboratories must pay particular attention to a distinct set of interfering factors that are especially relevant to clot-based testing and that may disproportionately affect PT and INR reporting.[38] One of the most critical preanalytical interferences is the presence of a clotted specimen. Coagulation assays require platelet-poor plasma collected in citrate, and any clotting within the tube indicates that the coagulation cascade was at least partially activated before testing. This activation consumes clotting factors and fibrinogen, producing test results that are inherently unreliable and often falsely prolonged.[39] Specimen clotting can occur for several reasons, including traumatic venipuncture, activation of coagulation within the collection device, delays in mixing blood with citrate, or inadequate inversion after collection.[39] Even small fibrin strands or microclots may interfere with optical clot detection and can cause erratic results across repeated measurements. From a quality perspective, laboratories should treat clotted samples as

unacceptable for PT testing, request recollection, and, when necessary, provide clinicians with clear guidance that reported values from such samples may not reflect the patient's true hemostatic status.

Closely related to clotting is the issue of improper blood-to-anticoagulant ratio. PT testing depends on a precise ratio of blood to trisodium citrate, typically 9:1, achieved when the tube is filled to the manufacturer's indicated volume. Commercial collection tubes contain a pre-aliquoted citrate volume with a fill line, and underfilling—often termed a “short draw”—creates excess anticoagulant relative to plasma.[40] Because citrate chelates calcium, excess citrate will bind more calcium when the assay is initiated, delaying coagulation and causing an artifactual prolongation of clotting time.[40] In clinical practice, falsely prolonged PT/INR values can trigger unnecessary dose reductions of warfarin, inappropriate reversal strategies, or unnecessary transfusion, each of which carries patient risk. Overfilling is less common but can conversely reduce effective anticoagulant concentration, promoting partial activation or microclot formation and thereby compromising result accuracy. For these reasons, collection staff training, fill-volume checks, and prompt rejection criteria are key components of coagulation laboratory quality systems. Specimen contamination is another frequent and clinically consequential interference. Blood drawn through or near intravenous lines may be contaminated with saline, heparin, or other anticoagulants, producing spurious prolongation of PT or aPTT and potentially masking the patient's true baseline coagulation status.[38] Contamination can occur when blood is collected from a line that has been flushed with heparin or anticoagulant-containing solutions and when an insufficient discard volume is removed before sample collection. This problem is particularly relevant in intensive care units and emergency departments, where indwelling catheters are common and time pressures may increase the likelihood of suboptimal technique. Samples obtained from indwelling catheters are therefore a recognized risk for contamination because these lines often require flushing protocols that introduce substances capable of interfering with coagulation assays.[9] When line draws are unavoidable, standardized protocols—appropriate flushing, adequate discard, and clear documentation—are essential to reduce preanalytical error.

Temperature and storage conditions introduce additional complexity, because coagulation factors can be activated or degraded depending on the specimen matrix (whole blood versus plasma), the duration of storage, and the temperature range. Proper storage requirements differ by assay; for example, plasma intended for PT is typically stored at room temperature, while plasma for aPTT may be stored at room temperature or refrigerated at 2 to 8 °C depending on institutional protocols and timing

constraints.[38] Whole blood specimens, however, present particular concerns. Whole-blood samples should generally be stored at 18 to 24 °C, and refrigeration should be avoided for PT because of potential “cold activation” of factor VII.[39] Cold activation can paradoxically shorten PT by increasing factor VII activity, leading to an artificially normal or shortened PT result that may conceal a clinically meaningful abnormality.[11][39] Refrigeration of whole blood also decreases factor VIII activity and von Willebrand factor (VWF) and may contribute to erroneous conclusions in bleeding disorder evaluation, including misdiagnosis of hemophilia A or von Willebrand disease, especially if the specimen is not promptly processed.[40] While cold storage may be acceptable for certain assays when plasma is separated and aliquoted, laboratories must align their handling protocols with assay-specific stability requirements and ensure that clinical areas understand these distinctions.[40] Time to processing is also critical for tests influenced by platelet activity. For example, specimens used for monitoring unfractionated heparin therapy should be centrifuged within 1 hour, because platelets can release platelet factor 4 (PF4), which neutralizes heparin and may lead to falsely low anticoagulant effect when interpreted through clot-based assays.[41] Although this consideration is most directly relevant to aPTT or anti-Xa monitoring rather than PT, it illustrates a broader principle: cellular components remaining in contact with plasma can alter the effective concentration of anticoagulants or coagulation proteins, creating time-dependent bias. Laboratories must therefore establish transport and processing timelines, monitor compliance, and implement rejection or cautionary reporting when stability windows are exceeded.

When specimens are frozen for delayed testing, thawing becomes an additional potential source of interference. Frozen plasma should be rapidly defrosted at 37 °C and mixed thoroughly to resuspend any coagulation protein precipitates that may form during freezing.[42] Inadequate mixing after thawing can lead to heterogeneous distribution of proteins and inconsistent assay results, particularly for functional tests that rely on uniform factor availability. Standardized thawing and mixing protocols, along with documentation of freeze–thaw cycles where relevant, support reproducibility and minimize preanalytical variability. Medication-related interference is increasingly important as anticoagulant prescribing patterns evolve. While warfarin remains the classic driver of prolonged PT/INR, direct-acting oral anticoagulants (DOACs) and certain parenteral agents can also prolong PT, often in reagent-dependent ways.[43] As noted, all direct-acting anticoagulants may prolong PT to some extent, and the magnitude of prolongation varies across agents and testing systems.[43] Clinically relevant examples include argatroban, dabigatran, rivaroxaban, apixaban, and edoxaban.[43] This is a frequent source of

interpretive error in acute care settings: a prolonged PT in a patient taking a DOAC may be misattributed to liver disease or vitamin K deficiency, or, conversely, a relatively normal PT may be incorrectly interpreted as absence of anticoagulant effect. Because PT sensitivity to DOACs is highly variable across thromboplastin reagents, PT cannot be relied upon as a universal measure of DOAC intensity, and laboratories should consider providing interpretive comments or reflex testing strategies when DOAC use is suspected or confirmed.[43] Accurate medication reconciliation is therefore a laboratory–clinical interface priority, since the same PT result can have very different implications depending on anticoagulant exposure.

Storage limits for PT specimens are another preanalytical factor that requires explicit operational control. Blood samples for PT testing are generally considered acceptable only if stored for less than 24 hours at either room temperature or 4 °C, according to many laboratory policies and stability recommendations.[1] Exceeding validated storage times can permit factor degradation or activation that shifts clotting time unpredictably, creating both false prolongation and false normalization depending on the factor and temperature profile. Importantly, prolonged cold storage at 4 °C or lower can activate factor VII, potentially shortening PT and masking coagulopathy.[11] This creates a particularly hazardous scenario in which the laboratory may report a reassuring value that is not reflective of the patient's in vivo risk. Therefore, laboratories should validate stability claims for their specific collection tubes, reagents, and analyzers and should enforce time–temperature acceptance criteria at accessioning. Patient-specific biological variables can also interfere with PT measurement and interpretation. High lipid levels, such as those seen in hypercholesterolemia or hypertriglyceridemia, have been associated with shorter PT measurements, attributed to elevated fibrinogen and factor VII levels in some patients.[44] While the laboratory may detect lipemia visually or via analyzer flags, the interpretive challenge is that the PT result may be “normal” or even shortened despite underlying clinical risk, and the biological association may confound interpretation in patients with concurrent inflammatory states or metabolic disease. Moreover, severe lipemia can also interfere with optical endpoint detection by increasing turbidity, reinforcing the importance of recognizing whether the platform uses optical or mechanical clot detection and whether alternative methods or sample processing (such as ultracentrifugation in select contexts) is warranted.

Polycythemia, particularly when the hematocrit exceeds 55%, is a well-established preanalytical concern in citrate-based coagulation testing.[11] In high-hematocrit samples, the plasma fraction is reduced, meaning that the fixed citrate

volume in the collection tube is relatively excessive for the available plasma. This produces disproportionate calcium chelation during testing and can falsely prolong PT and other clot-based assays. To prevent this artifact, sodium citrate levels must be adjusted to account for decreased plasma volume, using validated formulas and protocols to reduce the anticoagulant amount prior to collection or to use specialized tubes.[11] Failure to make this adjustment can lead to misclassification of coagulation status, unnecessary interventions, or inappropriate delay of procedures. Therefore, laboratories should maintain clear policies for identifying high-hematocrit patients, communicating collection requirements, and documenting citrate adjustment when performed. In aggregate, these interfering factors demonstrate that PT/INR accuracy is inseparable from disciplined specimen management. Clotted specimens, incorrect citrate ratios, and contamination with saline or heparin represent immediate threats to result validity and must be actively prevented through standardized collection training and rejection criteria.[38][39][40] Storage and temperature conditions require assay-specific protocols that recognize the risks of cold activation and factor instability, especially when whole blood is refrigerated or when processing is delayed.[11][39][40] Medication effects from DOACs and parenteral anticoagulants demand clinical–laboratory coordination and reagent-aware interpretation, since PT responsiveness is method dependent and can be misleading without medication context.[43] Finally, patient-specific biological factors such as severe hyperlipidemia and polycythemia can bias PT values through both analytic and physiologic mechanisms, making it essential to identify these conditions and apply corrective measures such as citrate adjustment for hematocrit greater than 55%. [11][44] A robust coagulation testing program therefore treats preanalytical control not as an ancillary activity but as a core quality function that protects patients by ensuring that reported PT/INR values truly reflect coagulation physiology rather than artifacts of collection and handling.[38]

Complications

Although prothrombin time (PT) and INR testing is considered low risk, complications can still arise, primarily from specimen collection procedures and, less directly, from downstream clinical decisions influenced by PT/INR values. The most immediate and recognizable complications relate to standard percutaneous phlebotomy. Venipuncture can cause localized pain due to needle entry and tissue irritation, and minor bleeding at the puncture site is expected as the skin and vessel wall are breached. In many patients, this bleeding resolves quickly with direct pressure; however, individuals with fragile veins, thrombocytopenia, anticoagulant therapy, or underlying coagulopathy may bleed longer than usual and develop more extensive bruising. Hematoma

formation is another possible complication, occurring when blood leaks into surrounding tissue because of inadequate post-draw pressure, vein wall injury, or difficult access requiring multiple attempts. These outcomes are usually self-limited but can be clinically relevant in patients with compromised vascular access or those requiring frequent monitoring, such as patients receiving vitamin K antagonists. Beyond procedural effects, complications may also arise from biological and behavioral factors that shift PT/INR results and complicate clinical interpretation. A decreased PT/INR—particularly in a patient treated with warfarin—often reflects reduced anticoagulant effect and may increase the risk of thromboembolism if the INR falls below the intended therapeutic range. One important contributor is increased intake of vitamin K through supplements or dietary sources, which can counteract vitamin K-antagonist therapy and lower the INR.[7][1] High consumption of vitamin K-rich foods can similarly reduce PT/INR, particularly when intake fluctuates markedly from week to week.[7][1] In contrast, fasting or poor nutritional intake may reduce levels of factors II, VII, and X, potentially increasing PT/INR and increasing bleeding risk if anticoagulant therapy is not adjusted appropriately.[7][1] These fluctuations become “complications” not because the test itself is harmful, but because unstable PT/INR values can precipitate a cycle of frequent dose changes, additional clinic visits, avoidable bleeding, or preventable thrombotic events. Accordingly, the safe use of PT/INR hinges on both proper sampling technique and recognition of modifiable lifestyle and nutritional factors that can shift results in clinically meaningful ways.[7][1]

Patient Safety and Education

Patient safety in PT/INR monitoring depends on a clear understanding that warfarin and other vitamin K antagonists have a narrow therapeutic window and substantial variability across individuals. As the use of vitamin K antagonists increases, structured education becomes essential to reduce adverse events, prevent avoidable hospitalizations, and promote consistent therapeutic control. Patients should be taught why routine PT/INR monitoring is required, how test results are used to adjust dosing, and what symptoms warrant urgent clinical evaluation. Education is particularly important because bleeding risk can rise rapidly when INR increases above target, while thromboembolic risk increases when INR falls below target. Patients should be instructed to report signs of bleeding—such as gum bleeding, epistaxis, melena, hematuria, or unusual bruising—as well as symptoms that may indicate thrombosis, including unilateral leg swelling, chest pain, dyspnea, or new neurologic deficits. In addition, patients should receive practical counseling about maintaining a consistent intake of vitamin K-containing foods rather than avoiding them entirely, since abrupt dietary changes can destabilize INR results.[7][1] Medication safety education must also address drug-drug

interactions, including antibiotics, antifungals, and antiarrhythmics, and emphasize the importance of consulting clinicians or pharmacists before starting any new prescription, over-the-counter product, or herbal supplement. Patient adherence strategies should be reinforced, such as taking warfarin at the same time daily, using pill organizers, and keeping a written or digital log of INR values and dose changes. For individuals using point-of-care testing (POCT) devices for self-monitoring, safety depends on competency-based training in device operation, quality control procedures, hand hygiene, strip storage, and appropriate timing of testing.[4] Because accurate self-testing requires attention to detail, the patient's cognitive capacity, vision, dexterity, and ability to follow instructions must be assessed before relying on home POCT for clinical decisions.[4] When family members assist, they should be trained to the same standard, and clear escalation pathways should be provided so that abnormal results trigger timely clinician contact rather than ad hoc self-adjustment of doses.[4]

Clinical Significance

PT and INR hold substantial clinical significance because they provide an accessible, standardized assessment of the extrinsic and common coagulation pathways and function as the principal monitoring tools for vitamin K antagonists. In routine practice, PT/INR measurement supports safe anticoagulation by allowing clinicians to calibrate therapy to achieve effective thromboembolism prevention while limiting bleeding risk. This function is particularly important in chronic conditions such as atrial fibrillation, venous thromboembolism, and mechanical heart valve management, where long-term anticoagulation is common and therapeutic precision directly influences outcomes. Beyond anticoagulant monitoring, PT/INR provides clinically meaningful information in suspected coagulopathy states—such as liver dysfunction, vitamin K deficiency, or consumptive processes—because it reflects reduced activity of key coagulation factors involved in hemostasis. However, the clinical significance of PT/INR is greatest when interpreted as part of an integrated hemostatic evaluation rather than as an isolated result. PT/INR is typically used in conjunction with activated partial thromboplastin time (aPTT), which evaluates the intrinsic and common pathways, and with additional parameters such as platelet count, fibrinogen, and D-dimer when clinically indicated. This combined approach strengthens diagnostic accuracy, as different patterns of PT and aPTT prolongation can help distinguish factor deficiencies, anticoagulant effects, inhibitors, liver disease, and disseminated intravascular coagulation. In perioperative medicine and emergency care, PT/INR results can guide urgency of correction, selection of reversal agents, or the need for blood products when bleeding risk is high. Importantly, PT/INR also serves as a prognostic marker in liver disease and is

incorporated into severity scoring systems, reinforcing its relevance beyond anticoagulation alone. Ultimately, PT/INR testing is clinically significant because it links laboratory measurement to actionable decisions: dose adjustment, reversal strategies, bleeding risk mitigation, and targeted diagnostic pathways. When laboratories deliver accurate results and clinicians interpret them within the broader clinical context, PT/INR becomes a high-impact tool that improves safety, supports evidence-based management, and enables individualized care in patients with complex coagulation-related needs.[4]

Conclusion:

Prothrombin time (PT) and its standardized derivative, INR, remain cornerstone assays in coagulation diagnostics and anticoagulation management. Their clinical utility spans therapeutic monitoring, bleeding risk assessment, liver function evaluation, and diagnosis of systemic coagulopathies. Despite technological progress—from manual methods to automated optical and mechanical systems—accuracy is not guaranteed without stringent quality practices. Preanalytical integrity, including correct specimen collection, anticoagulant ratio, and avoidance of contamination, is fundamental to valid results. Analytical reliability hinges on calibrated instruments, reagent-specific sensitivity awareness, and robust internal QC protocols, while external proficiency testing ensures benchmarking and regulatory compliance. Emerging point-of-care technologies provide rapid results that support urgent decision-making, yet they introduce interpretive challenges in unstable patients and require structured oversight. Ultimately, PT/INR testing is not merely a laboratory metric but a clinically integrated tool whose impact depends on disciplined execution across all phases of testing. Laboratories and clinicians must collaborate to uphold standards, interpret results within context, and apply corrective measures promptly when errors arise. By embedding PT/INR testing within a comprehensive quality framework, healthcare systems can optimize safety, improve outcomes, and sustain confidence in one of the most widely used assays in modern medicine.

References:

- Levy JH, Szlam F, Wolberg AS, Winkler A. Clinical use of the activated partial thromboplastin time and prothrombin time for screening: a review of the literature and current guidelines for testing. *Clinics in laboratory medicine*. 2014 Sep;34(3):453-77. doi: 10.1016/j.cll.2014.06.005.
- Triplett DA. Coagulation and bleeding disorders: review and update. *Clinical chemistry*. 2000 Aug;46(8 Pt 2):1260-9
- van den Besselaar AM, Chantarangkul V, Tripodi A. Thromboplastin standards. *Biologicals : journal of the International Association of Biological Standardization*. 2010 Jul;38(4):430-6. doi: 10.1016/j.biologicals.2010.02.012.
- Barcellona D, Fenu L, Marongiu F. Point-of-care testing INR: an overview. *Clinical chemistry and laboratory medicine*. 2017 May 1;55(6):800-805. doi: 10.1515/cclm-2016-0381.
- Stein P, Kaserer A, Spahn GH, Spahn DR. Point-of-Care Coagulation Monitoring in Trauma Patients. *Seminars in thrombosis and hemostasis*. 2017 Jun;43(4):367-374. doi: 10.1055/s-0037-1598062.
- Ebner M, Birschmann I, Peter A, Spencer C, Härtig F, Kuhn J, Blumenstock G, Zuern CS, Ziemann U, Poli S. Point-of-care testing for emergency assessment of coagulation in patients treated with direct oral anticoagulants. *Critical care (London, England)*. 2017 Feb 15;21(1):32. doi: 10.1186/s13054-017-1619-z.
- Bolliger D, Tanaka KA. Point-of-Care Coagulation Testing in Cardiac Surgery. *Seminars in thrombosis and hemostasis*. 2017 Jun;43(4):386-396. doi: 10.1055/s-0037-1599153.
- Magnette A, Chatelain M, Chatelain B, Ten Cate H, Mullier F. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories. *Thrombosis journal*. 2016;14():49. doi: 10.1186/s12959-016-0123-z.
- Hinds PS, Quargnenti A, Gattuso J, Kumar Srivastova D, Tong X, Penn L, West N, Cathey P, Hawkins D, Wilimas J, Starr M, Head D. Comparing the results of coagulation tests on blood drawn by venipuncture and through heparinized tunneled venous access devices in pediatric patients with cancer. *Oncology nursing forum*. 2002 Apr;29(3):E26-34.
- Kamal AH, Tefferi A, Pruthi RK. How to interpret and pursue an abnormal prothrombin time, activated partial thromboplastin time, and bleeding time in adults. *Mayo Clinic proceedings*. 2007 Jul;82(7):864-73.
- Winter WE, Flax SD, Harris NS. Coagulation Testing in the Core Laboratory. *Laboratory medicine*. 2017 Nov 8;48(4):295-313. doi: 10.1093/labmed/lmx050.
- Lippi G, Plebani M, Favaloro EJ. Interference in coagulation testing: focus on spurious hemolysis, icterus, and lipemia. *Seminars in thrombosis and hemostasis*. 2013 Apr;39(3):258-66. doi: 10.1055/s-0032-1328972.
- Opaprakittikul N. Standardization of coagulation tests. *The Southeast Asian journal of tropical medicine and public health*. 1999;30 Suppl 3():79-85
- Kagawa K. [Prothrombin time and its standardization]. *Rinsho byori. The Japanese journal of clinical pathology*. 2002 Aug;50(8):779-85

15. Scherer-Burić RA, Lesser-Wetzold K, Nagel D, Weigand M, Spannagl M, Teupser D, Bruegel M. Performance testing of four automated coagulation analyzers in a university hospital setting with focus on global coagulation assays. *International journal of laboratory hematology*. 2022 Jun;44(3):643-653. doi: 10.1111/ijlh.13814.

16. Lim HY, Donnan G, Nandurkar H, Ho P. Global coagulation assays in hypercoagulable states. *Journal of thrombosis and thrombolysis*. 2022 Jul;54(1):132-144. doi: 10.1007/s11239-021-02621-1.

17. Huber AR, Méndez A, Brunner-Agten S. Automation in haemostasis. *Hamostaseologie*. 2013;33(4):295-8. doi: 10.5482/HAMO-12-05-0002.

18. Aggarwal S, Nayak DM, Manohar C. Discrepancy in optical & mechanical method in coagulation tests in a turbid sample. *Indian journal of hematology & blood transfusion : an official journal of Indian Society of Hematology and Blood Transfusion*. 2014 Sep;30(Suppl 1):402-4. doi: 10.1007/s12288-014-0438-5.

19. Tekkesin N, Kılinc C. Optical and mechanical clot detection methodologies: a comparison study for routine coagulation testing. *Journal of clinical laboratory analysis*. 2012 May;26(3):125-9. doi: 10.1002/jcla.21497.

20. Bai B, Christie DJ, Gorman RT, Wu JR. Comparison of optical and mechanical clot detection for routine coagulation testing in a large volume clinical laboratory. *Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis*. 2008 Sep;19(6):569-76. doi: 10.1097/MBC.0b013e3283070872.

21. Walenga JM, Fareed J. Automation and quality control in the coagulation laboratory. *Clinics in laboratory medicine*. 1994 Dec;14(4):709-28.

22. Hertzberg MS, Mammen J, McCraw A, Nair SC, Srivastava A. Achieving and maintaining quality in the laboratory. *Haemophilia : the official journal of the World Federation of Hemophilia*. 2006 Jul;12 Suppl 3(0):61-7.

23. Ruiz-de-Chávez-Ochoa AA, Núñez-Pérez E, Muñoz-Muñoz B, Majluf-Cruz A. [The quality control in the coagulation laboratory]. *Revista medica del Instituto Mexicano del Seguro Social*. 2008 May-Jun;46(3):339-48.

24. McFarlane A, Aslan B, Raby A, Moffat KA, Selby R, Padmore R. Internal Quality Control Practices in Coagulation Laboratories: recommendations based on a patterns-of-practice survey. *International journal of laboratory hematology*. 2015 Dec;37(6):729-38. doi: 10.1111/ijlh.12397.

25. Lu Y, Yang F, Wen D, Shi K, Gu Z, Lu Q, Wang X, Dong D. Assessment of patient based real-time quality control on comparative assays for common clinical analytes. *Journal of clinical laboratory analysis*. 2022 Sep;36(9):e24651. doi: 10.1002/jcla.24651.

26. Loh TP, Bietenbeck A, Cervinski MA, van Rossum HH, Kataev A, Badrick T, International Federation of Clinical Chemistry and Laboratory Medicine Committee on Analytical Quality. Recommendation for performance verification of patient-based real-time quality control. *Clinical chemistry and laboratory medicine*. 2020 Jul 28;58(8):1205-1213. doi: 10.1515/cclm-2019-1024.

27. Kinns H, Pitkin S, Housley D, Freedman DB. Internal quality control: best practice. *Journal of clinical pathology*. 2013 Dec;66(12):1027-32. doi: 10.1136/jclinpath-2013-201661.

28. Westgard JO. Internal quality control: planning and implementation strategies. *Annals of clinical biochemistry*. 2003 Nov;40(Pt 6):593-611.

29. Mrazek C, Lippi G, Keppel MH, Felder TK, Oberkofler H, Haschke-Becher E, Cadamuro J. Errors within the total laboratory testing process, from test selection to medical decision-making - A review of causes, consequences, surveillance and solutions. *Biochimia medica*. 2020 Jun 15;30(2):020502. doi: 10.11613/BM.2020.020502.

30. Ricós C, García-Victoria M, de la Fuente B. Quality indicators and specifications for the extra-analytical phases in clinical laboratory management. *Clinical chemistry and laboratory medicine*. 2004;42(6):578-82.

31. Badrick T. Integrating quality control and external quality assurance. *Clinical biochemistry*. 2021 Sep;95():15-27. doi: 10.1016/j.clinbiochem.2021.05.003.

32. Smock KJ, Moser KA. What have we learned from coagulation laboratory participation in external quality programs? *International journal of laboratory hematology*. 2019 May;41 Suppl 1():49-55. doi: 10.1111/ijlh.12998.

33. De la Salle B. Survey material choices in haematology EQA: a confounding factor in automated counting performance assessment. *Biochimia medica*. 2017 Feb 15;27(1):63-72. doi: 10.11613/BM.2017.008.

34. Della Valle P, Crippa L, Garlando AM, Patarini E, Safa O, Viganò D'Angelo S, D'Angelo A. Interference of lupus anticoagulants in prothrombin time assays: implications for selection of adequate methods to optimize the management of thrombosis in the antiphospholipid-antibody syndrome. *Haematologica*. 1999 Dec;84(12):1065-74.

35. Kremers RMW, Zuijly S, Kelchtermans H, Peters TC, Bloemen S, Regnault V, Hemker HC, de Groot PG, Wahl D, de Laat B. Prothrombin conversion is accelerated in the antiphospholipid syndrome and insensitive to thrombomodulin. *Blood advances*. 2018 Jun 12;2(11):1315-1324. doi: 10.1182/bloodadvances.2018018036.

36. Hanslik T, Prinseau J. The use of vitamin K in patients on anticoagulant therapy: a practical

guide. American journal of cardiovascular drugs : drugs, devices, and other interventions. 2004;4(1):43-55

37. Martinuzzo M, Barrera L, Rodriguez M, D'Adamo MA, López MS, Otaso JC. Do PT and APTT sensitivities to factors' deficiencies calculated by the H47-A2 2008 CLSI guideline reflect the deficiencies found in plasmas from patients? International journal of laboratory hematology. 2015 Dec;37(6):853-60. doi: 10.1111/ijlh.12424. Epub

38. Gosselin RC, Marlar RA. Preanalytical Variables in Coagulation Testing: Setting the Stage for Accurate Results. Seminars in thrombosis and hemostasis. 2019 Jul;45(5):433-448. doi: 10.1055/s-0039-1692700.

39. Lippi G, Favaloro EJ. Preanalytical Issues in Hemostasis and Thrombosis Testing. Methods in molecular biology (Clifton, N.J.). 2017;1646():29-42. doi: 10.1007/978-1-4939-7196-1_2.

40. Adcock Funk DM, Lippi G, Favaloro EJ. Quality standards for sample processing, transportation, and storage in hemostasis testing. Seminars in thrombosis and hemostasis. 2012 Sep;38(6):576-85. doi: 10.1055/s-0032-1319768.

41. Haripersadh R, Pillay D, Rapiti N. Impact of rapid centrifugation on routine coagulation assays in South Africa. African journal of laboratory medicine. 2022;11(1):1901. doi: 10.4102/ajlm.v11i1.1901.

42. Gosselin RC, Honeychurch K, Kang HJ, Dwyre DM. Effect of Multiple Freeze-Thaw Cycles on Coagulation Testing. Seminars in thrombosis and hemostasis. 2020 Jun;46(4):515-520. doi: 10.1055/s-0040-1709474.

43. Hellenbart EL, Faulkenberg KD, Finks SW. Evaluation of bleeding in patients receiving direct oral anticoagulants. Vascular health and risk management. 2017;13():325-342. doi: 10.2147/VHRM.S121661.

44. Kim JA, Kim JE, Song SH, Kim HK. Influence of blood lipids on global coagulation test results. Annals of laboratory medicine. 2015 Jan;35(1):15-21. doi: 10.3343/alm.2015.35.1.15..