

Interprofessional Management of Septic Shock: Roles of Pharmacy, Nursing, Dentistry, and Emergency Teams in Early Recognition and Patient Safety

Abdullah Shaya Hamad Al-Dossari ⁽¹⁾, Mohammed Murdi Abdullah Al-Qahtani ⁽²⁾, Mohammed Ali Mohammed Al-Sahl ⁽²⁾, Abdulrahman Saleh Alanazi ⁽³⁾, Ibrahim Essa Mohammed Essa ⁽⁴⁾, Fatimah Mohammed Nasir Alhazmi ⁽⁵⁾, Amnah Ahmed Alhazmi ⁽⁶⁾, Sharifah Hussain A. Shmakhi, Zahrah Mohammed A. Mahdi, Tahreer Mohammed Naser Hefzy ⁽⁷⁾

(1) Dental Clinic, South Riyadh, Ministry of Health, Saudi Arabia,

(2) Rawidat Al-Ared General Hospital, Ministry of Health, Saudi Arabia,

(3) Al Muzahmiyah General Hospital, Ministry of Health, Saudi Arabia,

(4) Emergency Management, Ministry of Health, Saudi Arabia,

(5) Specialized Dental Center, Ministry of Health, Saudi Arabia,

(6) Jazan Health Cluster, Ministry of Health, Saudi Arabia,

(7) Primary Care Center in Aldabeah, Ministry of Health, Saudi Arabia

Abstract

Background: Septic shock represents the most severe manifestation of sepsis, characterized by profound circulatory and metabolic dysfunction with high mortality rates. Despite advances in critical care, early recognition and timely intervention remain pivotal for improving outcomes.

Aim: This article aims to delineate the pathophysiology, epidemiology, diagnostic approach, and management strategies for septic shock, emphasizing interprofessional roles in patient safety and early recognition.

Methods: A comprehensive review of current evidence and clinical guidelines was conducted, integrating epidemiologic data, pathophysiologic mechanisms, and therapeutic protocols from the Surviving Sepsis Campaign.

Results: Sepsis incidence continues to rise globally, with mortality rates for septic shock approaching 40–50%. Early identification through vital sign monitoring, laboratory markers (e.g., lactate, WBC), and imaging is critical. Management hinges on rapid initiation of broad-spectrum antibiotics within one hour, aggressive fluid resuscitation, and vasoactive support to maintain mean arterial pressure ≥ 65 mmHg. Adjunctive therapies such as corticosteroids and vasopressin are reserved for refractory shock. Interprofessional collaboration—nurses for continuous monitoring, pharmacists for antimicrobial stewardship, and proceduralists for source control—significantly improves outcomes.

Conclusion: Septic shock remains a life-threatening emergency requiring immediate, coordinated care. Early recognition, timely antimicrobial therapy, and structured resuscitation protocols are essential to reduce mortality and prevent multiorgan failure. Interprofessional teamwork is indispensable for optimizing patient safety and achieving favorable outcomes.

Keywords: Sepsis, Septic Shock, Early Recognition, Interprofessional Care, Fluid Resuscitation, Vasoactive Support, Surviving Sepsis Campaign.

Introduction

Sepsis syndromes represent a dynamic and heterogeneous clinical spectrum in which outcomes range from full recovery to rapid deterioration and death. This variability reflects the complex interplay between pathogen characteristics, host factors, timeliness of recognition, and appropriateness of early interventions. At one end of the continuum, infection may provoke limited systemic disturbance; at the other, dysregulated host responses can culminate in septic shock, a profound and life-threatening complication that remains among the highest-mortality conditions encountered in acute and critical care settings. Septic shock is distinguished by severe circulatory and cellular/metabolic dysfunction, and it

is frequently accompanied by refractory hypotension, tissue hypoperfusion, and escalating organ failure. Because of its high lethality, septic shock serves as a critical focal point in sepsis research and clinical protocols, yet it also represents the end-stage expression of pathophysiologic processes that begin much earlier in the disease course. The development of sepsis is fundamentally driven by a host response to an inciting agent—most commonly bacterial but also viral, fungal, or parasitic pathogens—where innate and adaptive immune pathways are activated simultaneously. In response to microbial invasion, both pro-inflammatory and anti-inflammatory arms of the immune system are engaged, creating a biologic “tug-of-war” that determines whether inflammation

remains protective or becomes injurious. Monocytes, macrophages, and neutrophils are rapidly recruited and activated, and these cells interact closely with the vascular endothelium through pathogen recognition receptors. This interaction triggers the release of a broad array of mediators, including cytokines, proteases, kinins, reactive oxygen species, and nitric oxide.[1] While these mediators are essential for pathogen clearance, their excessive or poorly regulated production can amplify inflammation, disrupt microvascular integrity, and impair cellular metabolism.

The endothelium functions as the central stage upon which much of sepsis pathophysiology unfolds. As the primary interface between circulating immune cells and tissue perfusion, endothelial tissue not only sustains direct microvascular injury but also becomes an active participant in propagating systemic dysfunction. Endothelial activation triggers coagulation and complement cascades, intensifying vascular injury and promoting a prothrombotic state. This response contributes to microcirculatory derangements, regional hypoperfusion, and ultimately organ dysfunction. Simultaneously, inflammatory injury to endothelial junctions promotes capillary leak, resulting in intravascular volume depletion, tissue edema, and impaired oxygen diffusion. Collectively, these events generate the recognizable clinical manifestations of sepsis, such as fever or hypothermia, tachycardia, tachypnea, altered mental status, hypotension, and laboratory evidence of organ stress, while also driving the progression from sepsis to septic shock in vulnerable patients. A key determinant of morbidity and mortality in sepsis is the host's capacity to balance opposing immune signals: pro-inflammatory pathways that eradicate microorganisms must be sufficiently robust to control infection, yet anti-inflammatory and regulatory pathways must restrain the inflammatory cascade to prevent collateral tissue injury. Failure in either direction is consequential—insufficient pathogen clearance allows ongoing infection, whereas unchecked inflammation accelerates endothelial injury, coagulation abnormalities, and organ failure. Over the past two decades, clinical outcomes have improved through strategies such as timely and judicious antimicrobial administration, implementation of sepsis care bundles, and early goal-directed therapies that prioritize rapid stabilization of perfusion and oxygen delivery. These measures have contributed to meaningful reductions in sepsis-related mortality. Nevertheless, the most powerful intervention remains early identification. Because sepsis evolves rapidly and because the pathophysiologic cascade becomes progressively harder to reverse once shock and multi-organ dysfunction are established, recognizing sepsis at the earliest possible stage remains the most effective tool for improving survival and minimizing long-term complications [1].

Etiology

The etiologic landscape of sepsis is shaped by the interaction of microbial virulence, host susceptibility, and healthcare exposure, resulting in marked heterogeneity across settings and patient populations. Large epidemiologic investigations have nevertheless provided a useful framework for understanding the dominant pathogens and infection sources that precipitate sepsis syndromes in critically ill patients. In the 2009 European Prevalence of Infection in Intensive Care (EPIC II) study, gram-negative bacterial infections were identified as the most frequent contributors to sepsis syndromes, exceeding other etiologies with a reported frequency of 62%, while gram-positive infections accounted for 47%. [2] The apparent increase in gram-positive prevalence observed in contemporary practice has been linked to the expansion of invasive procedures, broader use of intravascular devices, and the growing burden of nosocomial infection in high-acuity environments. [2] These observations underscore that sepsis etiology is not static; rather, it evolves with changes in clinical practice, antimicrobial pressure, and infection prevention effectiveness. Microbiologic patterns reported in critically ill cohorts further illustrate the dominance of a relatively limited group of organisms despite broad etiologic possibilities. Among isolates commonly recovered from patients with sepsis syndromes, *Staphylococcus aureus* and *Pseudomonas* species have each been reported at approximately 20%, while *Escherichia coli* accounts for roughly 16%. [3] The clinical significance of these organisms lies not only in their prevalence but also in their distinct virulence factors, resistance potential, and propensity to seed particular anatomical sites. For example, *Pseudomonas* is frequently associated with healthcare-associated pneumonia and device-related infections, whereas *E. coli* remains a classic pathogen in genitourinary and intraabdominal infections that can progress rapidly to bacteremia in vulnerable hosts. Notably, the etiologic assessment of sepsis must be interpreted alongside the reality that microbiologic confirmation is often incomplete. A substantial proportion of patients—reported as more than one-third in some cohorts—never develop positive cultures despite clear clinical syndromes consistent with sepsis. [4] Culture negativity may reflect prior antimicrobial exposure, fastidious organisms, inadequate sampling, localized infection without sustained bacteremia, or limitations in conventional culture techniques. Consequently, etiologic classification in sepsis frequently relies on a synthesis of clinical, radiologic, and laboratory evidence rather than definitive microbiologic proof, reinforcing the importance of empiric therapy guided by local epidemiology and patient-specific risk factors.

The site of infection is another fundamental determinant of sepsis etiology, influencing both the likely pathogens and the clinical trajectory. In EPIC II, the respiratory tract was the most common source,

accounting for 42% of infections, followed by bloodstream infections at 21% and genitourinary infections at 10%.^[2] These distributions are clinically intuitive, given that pneumonia remains the leading infectious diagnosis in intensive care settings and that vascular access devices, critical illness, and frequent manipulation of catheters increase the risk of bloodstream infection. Genitourinary sources, while less frequent overall, remain particularly important in older adults and in patients with obstructive uropathy or chronic catheterization, in whom urosepsis may present abruptly with hemodynamic instability. From a pathophysiologic perspective, the infection site can shape the intensity of systemic inflammation and the probability of rapid dissemination into the bloodstream, which helps explain why some sources are disproportionately represented among severe sepsis and septic shock presentations. Mortality risk in sepsis is not uniform across pathogens or infection sites, and the prognostic implications of etiology have been highlighted in large-scale analyses. A major meta-analysis demonstrated that gram-negative infections, in aggregate, were associated with higher mortality than other categories.^[5] However, the same study also revealed important pathogen- and syndrome-specific nuances: gram-positive bacteremia involving *Acinetobacter* or pneumonia caused by *Staphylococcus* was associated with mortality around 40%, whereas *Pseudomonas* pneumonia carried the highest mortality, reaching approximately 70%.^[5] These findings emphasize that broad microbial groupings are informative but insufficient, as outcomes may be driven by organism-specific virulence, resistance patterns, the timeliness of effective antimicrobial therapy, and host factors such as baseline pulmonary function, immune status, and severity of organ dysfunction at presentation. A particularly concerning contemporary trend is the increasing contribution of multidrug-resistant organisms to sepsis syndromes. Sepsis caused by resistant bacterial strains—including methicillin-resistant *Staphylococcus* (MRSA) and vancomycin-resistant enterococci (VRE)—has been reported to be rising, with an incidence that may reach up to 25% in certain settings.^[6] This evolution reflects the cumulative effects of antimicrobial selection pressure, healthcare-associated transmission, and increasing numbers of medically complex patients requiring prolonged hospitalization and device support. In contrast, viruses and parasites account for far fewer cases of sepsis syndromes in ICU-centric epidemiologic reports, with identification rates in the range of 2% to 4%.^[6] Even so, viral and parasitic etiologies retain clinical importance in specific contexts, such as immunocompromised patients, outbreaks, or endemic regions, where conventional bacterial assumptions may delay appropriate diagnosis and targeted treatment [6].

Host susceptibility profoundly influences the risk of sepsis, often determining whether an infection remains localized or progresses to systemic dysregulation and organ dysfunction. Numerous risk factors increase vulnerability, including diabetes, malignancy, chronic kidney disease, and chronic liver disease, all of which impair immune competence and physiologic reserve. Iatrogenic factors are equally relevant: the use of corticosteroids and other immunosuppressive therapies can blunt protective immune responses, while burns, major surgery, and trauma disrupt physical barriers and provoke inflammatory states that can amplify infection severity. The presence of indwelling catheters and other invasive devices increases exposure to biofilm-forming organisms and provides direct access to the bloodstream, and prolonged hospitalization further heightens the probability of acquiring nosocomial pathogens, including multidrug-resistant strains. Hemodialysis adds risk through repeated vascular access and frequent healthcare contact. Finally, extremes of age—both the very young and the elderly—are associated with higher sepsis risk due to immune immaturity or immunosenescence and reduced physiologic compensation, which can accelerate progression to septic shock when infection occurs. Together, these etiologic patterns and risk modifiers highlight sepsis as a syndrome driven by both microbial factors and the host–environment context, necessitating empiric strategies that are simultaneously evidence-informed and individualized [4][5][6].

Epidemiology

Sepsis remains a major global and national health burden, notable not only for its high mortality but also for its expanding incidence and profound impact on healthcare systems. Epidemiologic trends indicate that the annual rate of sepsis is increasing by nearly 9%, reflecting a combination of demographic shifts, improved recognition and coding, increased survival of medically complex populations, and greater exposure to invasive procedures and healthcare-associated infections.^[7] Over the past decades, this rise has been particularly apparent in hospitalization data. The incidence of sepsis and severe sepsis increased substantially from approximately 600,000 to more than 1,000,000 hospitalizations per year in the United States during the period from 2000 through 2008.^[8] This escalation underscores that sepsis is not a static clinical problem; it is an expanding syndrome shaped by aging populations, higher prevalence of chronic comorbidities, immunosuppressive therapies, and more frequent utilization of complex interventions such as indwelling devices, dialysis, and major surgery. The growing clinical burden has been paralleled by a significant economic impact. As sepsis-related admissions increased, healthcare expenditures rose accordingly, culminating in sepsis

being identified as the most expensive healthcare condition in 2009 and accounting for approximately 5% of total U.S. hospital costs.[9] This financial burden extends beyond acute hospitalization because sepsis survivors often experience prolonged rehabilitation needs, recurrent admissions, and long-term functional impairment. The economic implications are therefore multidimensional, affecting hospital systems, payers, and families through lost productivity and chronic health needs. As a result, sepsis is increasingly viewed not only as an acute emergency but also as a syndrome with long-term population health consequences [7][8][9].

Despite rising incidence and cost, epidemiologic data indicate that case fatality rates have declined over time, suggesting improvements in early recognition and standardized management. The Surviving Sepsis Campaign, through dissemination of evidence-based guidelines and structured care bundles, has been widely credited with contributing to better outcomes in many settings. In support of this trend, data from the United States Nationwide Inpatient Sample (NIS) covering 2009 through 2012 demonstrated a decline in mortality from 16.5% to 13.8%. [10] This reduction is clinically meaningful and indicates that systematic improvements in antimicrobial timing, fluid resuscitation, hemodynamic optimization, and critical care coordination can translate into measurable survival gains at the population level. Nevertheless, the epidemiologic reality remains sobering: severe sepsis continues to rank among the most common causes of death in hospitalized patients, highlighting that improvements, while important, have not eliminated the syndrome's lethality.[11] Severity stratification reveals why sepsis continues to be so consequential. Among patients with severe sepsis, mortality may reach up to 25%, and among those with septic shock, mortality may rise to approximately 50%. [2] When considering the broader spectrum of sepsis syndromes, overall mortality has been reported to vary widely—from 30% to 50%—depending on patient demographics and clinical context.[12] This variation is not random; it reflects differences in age, race, sex, preexisting comorbidities, timeliness of care, resource availability, and, most importantly, the presence and extent of organ dysfunction.[13] Indeed, inpatient mortality has been shown to correlate most strongly with the number and severity of organ injuries. In analyses of hospitalized cohorts, the most powerful predictors of death were failures of the respiratory, cardiovascular, hepatic, and neurologic systems.[10] This association aligns with the pathobiology of sepsis, in which microvascular dysfunction, impaired oxygen delivery, and dysregulated inflammation contribute to multi-organ failure, and it emphasizes that preventing progression from early sepsis to organ dysfunction remains a critical epidemiologic and clinical objective. Taken together, sepsis epidemiology reflects a paradox: although mortality

rates have improved in many settings due to better recognition and standardized management, the absolute burden of disease continues to increase because incidence is rising and the population at risk is expanding. This dual trend reinforces the importance of prevention strategies, early detection systems, and sustained quality-improvement programs across emergency, inpatient, and critical care environments [10][11][12][13].

Pathophysiology

Sepsis is best understood not as a single fixed diagnosis but as a dynamic clinical syndrome that progresses along a continuum of pathophysiologic states. Classically, this continuum begins with a systemic inflammatory response syndrome (SIRS) and may advance through severe sepsis, septic shock, and ultimately multiorgan dysfunction syndrome (MODS) before death. Although modern definitions of sepsis emphasize infection-induced organ dysfunction rather than SIRS criteria alone, the SIRS-to-MODS framework remains useful for conceptualizing the escalating physiologic derangements that occur when an initially protective inflammatory response becomes dysregulated and destructive. In early stages, inflammatory signaling is meant to contain and eradicate invading microorganisms; however, in susceptible patients, this response becomes amplified, widespread, and self-propagating, resulting in microvascular injury, impaired oxygen delivery, and progressive organ failure.

The earliest manifestations of systemic inflammation often present through readily measurable vital-sign and laboratory abnormalities. Clinically, inflammation is typically heralded by fever, defined as a temperature higher than 38 °C, or by hypothermia, defined as a temperature lower than 36 °C. Additional early indicators include tachycardia, commonly identified as a heart rate above 90 beats per minute; tachypnea, reflected by a respiratory rate above 20 breaths per minute; and abnormal leukocyte responses, including leukocytosis (white blood cell count greater than 12,000/cu mm) or leukopenia (less than 4,000/cu mm), with or without bandemia exceeding 10%. The presence of at least two of these four clinical signs historically supports the diagnosis of systemic inflammatory response syndrome. When SIRS occurs in the setting of an infectious source, it satisfies the traditional clinical definition for sepsis.[14] While these criteria are intentionally broad and can occur in noninfectious conditions, they highlight a key principle: early sepsis is often clinically subtle and physiologically nonspecific, which makes vigilance and context-based interpretation essential for timely recognition [14]. As sepsis evolves, hemodynamic dysfunction becomes increasingly prominent. With the development of hypotension, the ability of the circulatory system to meet tissue oxygen and metabolic demands becomes compromised. In the framework described, this transition marks the

progression to severe sepsis.[14] The defining problem is not simply low blood pressure; rather, it is inadequate tissue perfusion and oxygen delivery, resulting in cellular and metabolic derangements. A hallmark shift occurs at the cellular level: when oxygen supply becomes insufficient, tissues move from aerobic respiration to anaerobic metabolism, leading to accumulation of lactate and the development of lactic acidosis. This metabolic shift reflects global or regional hypoperfusion and is clinically useful because lactate can serve as an indirect biomarker of illness severity and resuscitation response. Tissue hypoperfusion may also manifest through early evidence of end-organ injury, such as prerenal azotemia from reduced renal perfusion or transaminitis from hepatic ischemia or inflammatory injury. During resuscitation, clinicians may evaluate the balance between oxygen delivery and consumption by trending mixed venous oxygen saturation obtained from a central venous catheter in the superior vena cava when available.[1] Such measurements provide insight into whether oxygen extraction is increasing because supply is inadequate, or whether microcirculatory dysfunction is limiting oxygen utilization despite apparently acceptable macrocirculatory parameters. When sepsis-induced hypotension remains refractory to initial fluid resuscitation, the syndrome advances to septic shock.[14] Septic shock is a distributive form of shock distinguished by profound vasodilation and abnormal distribution of blood flow. The underlying physiology reflects the effect of inflammatory mediators generated in response to bacterial endotoxins and other pathogen-associated signals. Mediators such as histamine, serotonin, super-radicals, and lysosomal enzymes contribute to endothelial disruption, marked increases in capillary permeability, and a reduction in systemic vascular resistance.[1] The consequences are twofold. First, the fall in vascular tone decreases afterload, undermining effective perfusion pressure. Second, increased permeability causes fluid to leak into the interstitial space—commonly described as “third spacing”—which reduces intravascular volume and venous return, thereby diminishing preload. Together, reduced preload and altered afterload contribute to a decline in stroke volume. Initially, the body compensates by increasing heart rate and contractility, producing the hyperdynamic circulation often associated with early septic shock. This phase is sometimes described as compensated septic shock, where cardiac output may be high but tissue perfusion remains inefficient due to maldistributed flow and microvascular dysfunction.[1]

These physiologic changes explain the characteristic clinical patterns seen during shock progression. In early or “warm” shock, many patients exhibit a dynamic precordium, tachycardia, and bounding peripheral pulses. They may feel warm to the touch and display rapid capillary refill—sometimes

described as “flash” capillary refill—reflecting vasodilation and high-flow states. Over time, however, shock physiology may shift. As systemic stress increases and catecholamine release intensifies, peripheral vascular resistance may rise as the body attempts to preserve perfusion to vital organs such as the brain and heart. This compensatory vasoconstriction diverts blood away from less immediately vital tissues, including the gastrointestinal tract, kidneys, skeletal muscle, and skin. Clinically, this transition is described as “cold” shock, where extremities may become cool, pulses may weaken, and capillary refill may slow as vasoconstriction dominates. Recognizing this continuum is clinically important because “warm” and “cold” presentations do not represent different diseases but rather different points along the same evolving pathophysiologic trajectory, and they have implications for selecting resuscitative priorities and vasoactive strategies.[1] Functionally, septic shock is defined by persistent hypotension despite adequate fluid resuscitation, often described as 60 mL/kg to 80 mL/kg of crystalloid or colloid solutions.[1] When hypotension persists after sufficient volume expansion, the initiation of vasoactive medications becomes critical. Agents with alpha-adrenergic effects can restore vascular tone and improve perfusion pressure, while beta-adrenergic effects may support cardiac output in patients with impaired contractility. These interventions aim to reestablish effective macrocirculation, but septic shock is not solely a disorder of blood pressure. Even after systemic hemodynamics improve, microcirculatory abnormalities and mitochondrial dysfunction can prevent cells from using delivered oxygen efficiently, contributing to ongoing organ injury. When organ dysfunction progresses despite aggressive support, including high-dose vasoactive therapy, the patient may enter multiorgan dysfunction syndrome. MODS reflects failure across multiple systems—often respiratory, cardiovascular, renal, hepatic, and neurologic—and can carry mortality as high as 75%.[15]

Although predicting which patients will deteriorate remains challenging, immunologic dysregulation is widely considered central to poor prognosis. Two seemingly opposing immunologic states have been proposed to influence outcome: immunologic dissonance, characterized by an exaggerated pro-inflammatory response that drives endothelial injury, coagulopathy, and tissue destruction; and immunologic paralysis, characterized by an excessive anti-inflammatory response that impairs pathogen clearance and predisposes to secondary infection.[15] In reality, these states may coexist or evolve sequentially, with early hyperinflammation transitioning into later immune suppression. This duality helps explain why sepsis can remain lethal even when infection control appears adequate: the host

response itself becomes a driver of pathology. Understanding sepsis as a continuum—from systemic inflammation to distributive shock and ultimately MODS—remains essential for initiating timely treatment measures, anticipating clinical deterioration, and targeting interventions to both the infection and the dysregulated host response.[1]

History and Physical

The clinical recognition of sepsis relies heavily on a careful history and a focused, physiology-driven physical examination, because early features are often nonspecific and can resemble a wide range of infectious and noninfectious conditions. In traditional clinical framing, sepsis is defined as systemic inflammatory response syndrome in the presence of an infectious source. Accordingly, the earliest presentation frequently reflects systemic inflammation rather than overt organ failure, and the initial clues are most commonly found in vital sign abnormalities and subtle changes in perfusion or mental status. Early recognition is critical because timely antimicrobial therapy and structured resuscitation can interrupt progression toward shock and multiorgan dysfunction.

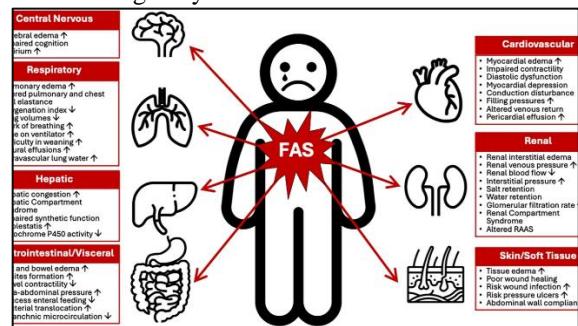


Fig. 1: Symptoms of septic shock.

Early Signs and Symptoms

In the early stage of sepsis, patients typically demonstrate abnormal temperature regulation, respiratory drive, and cardiovascular compensation. Fever is a common presenting feature, classically defined as a temperature greater than 38 °C, though hypothermia—temperature less than 36 °C—may also occur and is particularly concerning because it often reflects impaired host response, advanced physiologic stress, or severe infection. Alongside temperature changes, tachycardia is frequently present. In adults, this is commonly defined as a heart rate above 90 beats per minute, whereas in pediatric patients, tachycardia is interpreted relative to age-adjusted norms, typically exceeding two standard deviations above the expected rate for age. Tachypnea is another early and sensitive marker, defined in adults as a respiratory rate above 20 breaths per minute, and in pediatric patients as a rate exceeding two standard deviations above age-based norms. This early increase in respiratory rate may represent a direct response to infection-related inflammation, compensation for metabolic acidosis, or the early development of respiratory compromise from pneumonia or evolving acute lung injury. Importantly,

these vital sign abnormalities can precede obvious hypotension and may be the only early evidence of physiologic deterioration, which is why serial observation and trend recognition are often more informative than a single measurement [14][15]. In history-taking, clinicians should actively seek the likely infectious source and the timeline of symptoms. Common early complaints may include malaise, chills, shortness of breath, cough, dysuria, abdominal pain, or skin and soft tissue tenderness, depending on the infection site. Clinicians should also identify risk factors that predispose to severe disease, such as immunosuppression, recent surgery, indwelling devices, chronic kidney or liver disease, diabetes, extremes of age, or recent hospitalization. These factors increase the likelihood that relatively subtle vital sign abnormalities represent evolving sepsis rather than a self-limited infection.

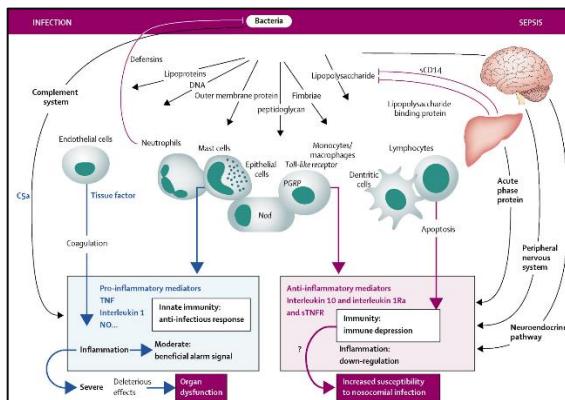
Signs and Symptoms of Severe Sepsis and Progression to Septic Shock

Severe sepsis is conceptually defined as sepsis accompanied by end-organ dysfunction. At this stage, the history and physical examination often reveal evidence that tissue oxygen delivery and cellular metabolism are failing to meet physiologic demands. One of the most clinically important signs is altered mental status, which can range from mild confusion and inattentiveness to agitation, lethargy, or obtundation. Neurologic change may be an early indicator of hypoperfusion and is particularly useful because it can be detected quickly at the bedside. Renal dysfunction may present as oliguria or anuria, often recognized through decreased urine output, rising creatinine in laboratory evaluation, or reports from caregivers that the patient has not been urinating normally. Respiratory involvement may manifest as hypoxia, increased work of breathing, or cyanosis, reflecting impaired gas exchange. Gastrointestinal manifestations such as ileus may appear, with abdominal distension, reduced bowel sounds, nausea, or feeding intolerance, indicating splanchnic hypoperfusion and autonomic dysregulation. Patients who progress to septic shock demonstrate the features of severe sepsis plus hypotension, but it is crucial to appreciate that shock can exist before overt hypotension becomes apparent. In an early “compensated” phase of distributive shock, blood pressure may be maintained through increased cardiac output and sympathetic activation, while other signs of shock are already present. Clinically, this compensated stage may be characterized by warm extremities, bounding pulses, and very brisk capillary refill—sometimes less than one second—reflecting peripheral vasodilation and a hyperdynamic circulation. This “warm shock” phase is particularly important because it is often reversible when identified promptly and treated aggressively with fluid resuscitation and appropriate vasoactive support. Failure to recognize compensated shock can lead to missed opportunities for early intervention. As septic

shock progresses into an uncompensated phase, hypotension becomes evident, reflecting the inability of compensatory mechanisms to sustain perfusion pressure. Peripheral vasoconstriction may increase as endogenous catecholamines surge, and patients may develop cool extremities, delayed capillary refill—often greater than three seconds—and thready pulses, a pattern commonly referred to as “cold shock.” Without effective correction of the underlying infection and restoration of adequate perfusion, ongoing tissue hypoperfusion can become self-reinforcing, leading to irreversible cellular injury, escalating organ dysfunction, and rapid progression to multiorgan dysfunction syndrome and death. For this reason, the history and physical examination in suspected sepsis must be repeated and reassessed over time, with particular attention to evolving mental status, perfusion markers, urine output, respiratory effort, and trends in vital signs, because sepsis is a dynamic syndrome in which deterioration can occur swiftly [15].

Evaluation

The evaluation of suspected sepsis is a time-sensitive process that integrates bedside assessment, laboratory investigation, microbiologic sampling, and imaging to confirm infection, identify organ dysfunction, stratify severity, and guide early treatment. Because sepsis exists along a continuum—from early systemic inflammation to septic shock and multiorgan failure—evaluation must be both comprehensive and iterative. A single set of “normal” results early in the course does not exclude evolving sepsis, and repeated reassessment is essential when clinical deterioration is possible. From the initial encounter, patients with suspected sepsis should be placed on continuous cardiopulmonary monitoring to enable close observation of vital signs, oxygenation, and rhythm changes, particularly as tachycardia, hypotension, and dysrhythmias may emerge during resuscitation. In parallel, clinicians should conduct a structured assessment of end-organ function and peripheral perfusion to determine where the patient falls on the pathophysiologic spectrum and to guide urgency and intensity of intervention.


Laboratory Findings

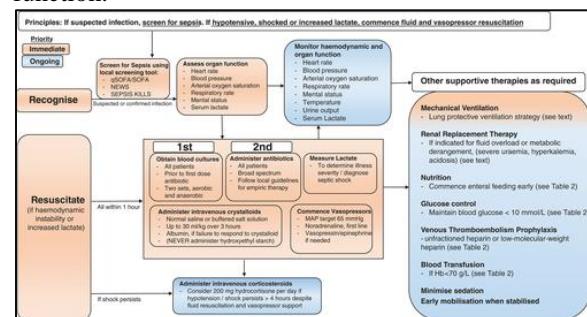
Laboratory abnormalities commonly observed across sepsis, severe sepsis, and septic shock reflect both the host inflammatory response and evolving organ dysfunction. Typical findings include hyperglycemia, often defined as glucose levels exceeding 120 mg/dL, which can occur even in non-diabetic patients as part of the stress response.[16] White blood cell changes are frequent and may manifest as leukocytosis (WBC $>12,000/\text{mm}^3$) or leukopenia (WBC $<4,000/\text{mm}^3$), and the presence of bandemia exceeding 10% suggests increased marrow mobilization and acute infection physiology.[16] Inflammatory biomarkers may also support the clinical impression: C-reactive protein or

procalcitonin levels more than two standard deviations above normal can indicate significant systemic inflammation and may assist in differentiating bacterial from viral processes, with bacterial infections often producing more pronounced elevations.[16] Markers of tissue hypoperfusion and oxygen imbalance are particularly important in risk stratification; lactic acidosis—commonly defined as lactate $>2 \text{ mmol/L}$ —signals impaired oxygen utilization or delivery and correlates with severity and prognosis.[16] When central access is available, mixed venous oxygen saturation can be trended, with values around or above 70% sometimes referenced in resuscitation contexts; however, interpretation requires clinical context because abnormal microcirculatory extraction may produce deceptively “normal” or elevated saturations despite ongoing tissue dysfunction.[16] Evidence of organ injury often appears in renal, respiratory, hepatic, and coagulation profiles. Respiratory compromise may be suggested by a $\text{PaO}_2:\text{FiO}_2$ ratio less than 300, which may indicate acute lung injury or evolving acute respiratory distress syndrome.[16] Renal hypoperfusion can present as pre-renal azotemia, while hepatic involvement may be reflected by hyperbilirubinemia, particularly total bilirubin levels greater than 4 mg/dL.[16] Sepsis-associated coagulopathy is common and may range from mild abnormalities to overt disseminated intravascular coagulation. Laboratory clues include an INR greater than 1.5 or a PTT exceeding 60 seconds, often accompanied by thrombocytopenia, classically platelets below 100,000/mL.[16] These findings matter because they influence procedural safety, bleeding risk, and overall prognosis.

Because sepsis is fundamentally an infection-driven syndrome, microbiologic sampling is a core component of evaluation, ideally performed before antibiotics when feasible. All patients should have a complete blood count with differential (CBC-d), urinalysis, and source-directed cultures based on the suspected infection focus. Standard practice includes blood cultures, urine cultures, wound cultures when relevant, and tracheal cultures in intubated patients. At least two sets of blood cultures are recommended prior to antimicrobial administration when this does not meaningfully delay treatment. However, clinicians must interpret results knowing that less than 40% of blood cultures ultimately yield positive growth. Culture negativity does not exclude sepsis and may reflect prior antibiotic exposure, low-level bacteremia, localized infection, or limitations of conventional detection techniques. When central venous access is present or being placed, serum lactate and mixed venous saturation trending can contribute to resuscitation monitoring, while urine output measurement provides a real-time window into renal perfusion and evolving organ dysfunction. A Glasgow Coma Scale assessment or formal mental status evaluation should be performed early and repeated, as

changes in cognition may be among the earliest indicators of inadequate perfusion. Additional laboratory studies help define severity and direct supportive care. A complete chemistry panel with liver function tests provides critical information about metabolic status and hepatic injury. A DIC panel can clarify the extent of coagulation disruption, which may influence decisions about anticoagulation, transfusion, and invasive procedures. Arterial blood gas testing assists in evaluating oxygenation, ventilation, and acid–base status, especially in patients with respiratory distress, altered mentation, or hemodynamic instability. In specific scenarios, further testing may be warranted. Lumbar puncture may be indicated when meningitis or encephalitis is suspected, or in selected febrile infants under six weeks of age, where invasive bacterial infection must be excluded. In these cases, timing is important: clinicians must weigh diagnostic benefit against hemodynamic stability and coagulopathy risks [16].

Fig. 2: Mechanism of septic shock.


Imaging

Imaging is often indispensable for identifying the infection source and detecting complications that require procedural or surgical intervention. A chest radiograph may reveal pneumonia or patterns consistent with acute respiratory distress syndrome. Plain radiographs of extremities can demonstrate gas in soft tissues in suspected necrotizing fasciitis, supporting urgent surgical consultation. Ultrasound is commonly used to evaluate biliary pathology, such as cholecystitis, and is particularly valuable because it can be performed at the bedside. Computed tomography is frequently employed to assess for intraabdominal abscess, bowel perforation, or ischemia, conditions that may necessitate urgent source control rather than medical therapy alone. In practice, imaging selection should be guided by clinical suspicion, hemodynamic stability, and the likelihood that results will change management, recognizing that rapid source identification and control are central determinants of outcome in sepsis. Overall, sepsis evaluation is a coordinated process: continuous monitoring and repeated bedside assessment establish physiologic severity; targeted

laboratory studies quantify inflammation, perfusion, and organ dysfunction; cultures attempt microbial identification; and imaging identifies treatable sources. The effectiveness of evaluation is measured not only by diagnostic completeness but by how rapidly it enables definitive therapy, particularly timely antimicrobials, resuscitation, and source control [16].

Treatment / Management

The contemporary management of sepsis and septic shock is anchored in rapid recognition, immediate initiation of time-sensitive therapies, and continuous reassessment of physiologic response. The Surviving Sepsis Campaign guidelines emphasize that outcomes are strongly influenced by the timeliness of antimicrobial therapy, the effectiveness of source control, and early hemodynamic stabilization.[17][18] Because sepsis progresses along a continuum and can deteriorate rapidly into shock and multiorgan dysfunction, treatment must proceed in parallel rather than sequentially: clinicians initiate resuscitation, obtain cultures, start antimicrobials, and evaluate for source control simultaneously, adjusting care based on dynamic changes in perfusion, oxygenation, and organ function.

Fig. 3: Septic shock management.

Source Control

Source control is a cornerstone of sepsis management because antibiotics alone may be insufficient when an infectious nidus continues to seed the bloodstream or propagate inflammatory injury. The guidelines prioritize administration of broad-spectrum antibiotics within one hour of diagnosis for all patients, reflecting the strong association between delays in effective antimicrobial therapy and increased mortality.[17][18] Empiric regimens should be selected to cover all likely pathogens based on the suspected source of infection, prior microbiology, local resistance patterns, and patient-specific risk factors such as immunosuppression or healthcare exposure. Equally important is ensuring that chosen agents achieve adequate penetration into the presumed source tissue, because subtherapeutic tissue levels can mimic “antibiotic failure” even when serum concentrations are adequate. Source control often requires procedural or surgical intervention. When septic shock is driven by infected or necrotic tissue—such as in cellulitis with necrosis, abscess formation, infected indwelling devices, or purulent wounds—

timely removal or drainage is essential. This may include debridement of necrotic tissue, incision and drainage of abscesses, removal of infected vascular catheters or prosthetic material, and drainage of empyema or intraabdominal collections. The effectiveness of source control is measured by reduction of microbial burden and termination of ongoing toxin or pathogen dissemination, which in turn reduces inflammatory drive and improves the likelihood of hemodynamic recovery [17][18].

Management of Shock

Shock management is most effective when early goals are achieved within the first six hours of diagnosis, a timeframe emphasized because prolonged hypoperfusion accelerates cellular injury, worsens lactate accumulation, and increases the likelihood of irreversible organ dysfunction.[19] The traditional physiologic objectives of early resuscitation have included restoring central venous pressure (CVP) to 8–12 mmHg, maintaining mean arterial pressure (MAP) above 65 mmHg, and achieving superior vena cava oxygen saturation around 70% or mixed venous saturation near 65%. [19] These targets aim to ensure adequate preload, perfusion pressure, and global oxygen delivery. Clinically, these goals are pursued through aggressive fluid resuscitation and vasoactive support, alongside measures that reduce metabolic demand and support failing organs. Fluid resuscitation typically begins with crystalloids such as normal saline, with albumin and colloid strategies or blood products considered in specific contexts, and total volumes may reach up to 80 mL/kg depending on the patient's response and intravascular status. Mechanical ventilation may be required, not only to correct hypoxemia but also to reduce the work of breathing and thereby lower metabolic demand, which can be substantial in septic patients. When hypotension persists despite appropriate fluid loading—fluid-refractory shock—vasoactive agents are initiated to restore perfusion pressure and redistribute blood flow to vital organs. In the framework described, epinephrine may be favored in cold shock physiology and norepinephrine in warm shock physiology, reflecting the differing needs for vasoconstriction versus inotropic support in distinct shock phenotypes. Dopamine has fallen out of favor as a first-line vasopressor due to concerns about arrhythmogenicity and its inhibitory effects on the hypothalamic–pituitary axis, including prolactin and growth hormone signaling, which may contribute to immunologic dysfunction.[20] The overarching priority is achieving and maintaining adequate MAP, because tissue perfusion is more closely linked to sustained perfusion pressure than to any single preload metric [19][20].

Enhancing Host Response and Adjunctive Therapies

In patients with vasoactive-refractory shock, adjunctive therapies may be considered to support

vascular responsiveness and mitigate the inflammatory cascade. Corticosteroids are indicated in vasoactive-refractory shock and may also be considered in patients with low basal cortisol levels (unstimulated) below 150 µg/L, reflecting potential adrenal insufficiency or impaired stress response.[21][22] Vasopressin may be added in refractory shock as an adjunct to catecholamine vasopressors, leveraging a different receptor pathway to improve vascular tone when adrenergic agents alone are insufficient.[17][18] These interventions should be individualized, integrated with ongoing resuscitation, and accompanied by close monitoring for complications such as hyperglycemia, secondary infection risk, and peripheral ischemia in profound vasoconstriction states. Central venous access is not mandatory for initial resuscitation, but it can provide more accurate hemodynamic monitoring when advanced targets such as CVP and mixed venous oxygen saturation are used. Importantly, CVP and mixed venous oxygen readings are most accurate when measured from a central catheter positioned in or near the right atrium; lower extremity central lines may provide less reliable data for these indices. Regarding vasopressor delivery, while central access is traditionally preferred, emerging evidence suggests that high-dose vasoactive agents—including dopamine, norepinephrine, and phenylephrine—can be administered safely via peripheral venous access in selected patients with careful site selection and close monitoring for extravasation.[23] This has practical implications in emergency settings, where delays to central line placement can prolong hypotension and worsen outcomes.

Early Goal-Directed Therapy and Contemporary Interpretation

Early goal-directed therapy (EGDT) historically shaped sepsis management by promoting structured protocols and aggressive early resuscitation. However, more recent studies have not demonstrated a consistent survival benefit of protocolized EGDT compared with contemporary standard practice.[24] Trials comparing EGDT to usual care often showed higher early volumes of crystalloid and increased use of packed red blood cells, as well as more frequent central line placement in EGDT arms, without clear mortality advantage. In these analyses, survival appeared to be driven most by the effective maintenance of blood pressure and timely resuscitation rather than strict adherence to CVP or mixed venous oxygen saturation targets.[25] Even so, the Surviving Sepsis Campaign continues to support an EGDT-style emphasis on early, structured resuscitation as a standard approach for severe sepsis and septic shock, particularly because protocolization can reduce delays, improve team coordination, and ensure that high-value interventions occur reliably in the early window when they are most impactful.[17][18]

Monitoring, Invasive Lines, and Supportive Care

In cases of vasoactive-refractory shock, placement of an arterial line becomes important for continuous, accurate blood pressure monitoring and for frequent arterial blood gas assessment. Serial blood gases support evaluation of oxygenation and acid-base balance, with particular attention to lactate levels as a marker of ongoing hypoperfusion and resuscitation adequacy. Monitoring is not a passive activity but a decision-making tool: repeated lactate measurements and clinical perfusion assessments guide whether fluid responsiveness persists, whether vasopressor doses can be reduced, and whether occult sources or complications—such as uncontrolled infection or myocardial dysfunction—are preventing recovery. Finally, metabolic and nutritional support should not be overlooked. Sepsis is associated with a hypermetabolic, catabolic state, and prolonged starvation may worsen immune dysfunction, impair wound healing, and promote gut barrier compromise. Early nutrition is therefore encouraged when feasible, as it can help preserve gut mucosal integrity and reduce the risk of bacterial translocation from the gastrointestinal tract into systemic circulation. In combination with timely antibiotics, source control, hemodynamic resuscitation, and vigilant monitoring, early nutritional strategies contribute to a comprehensive management plan designed to stabilize physiology, prevent progression to MODS, and improve survival in patients with sepsis and septic shock [18].

Differential Diagnosis

Sepsis and septic shock are syndromic diagnoses defined by systemic dysregulation in response to infection, yet their clinical presentation often overlaps with other high-acuity conditions that produce hypotension, hypoxemia, coagulopathy, altered mental status, and multiorgan dysfunction. A rigorous differential diagnosis is therefore essential, not to delay sepsis treatment, but to ensure that concurrent or alternative pathologies are recognized promptly, since management strategies may diverge significantly. Acute respiratory distress syndrome (ARDS) may mimic or complicate sepsis because both can present with tachypnea, hypoxemia, diffuse pulmonary infiltrates, and escalating oxygen requirements. However, ARDS is fundamentally a syndrome of noncardiogenic pulmonary edema caused by alveolar-capillary barrier injury. While sepsis is one of the most common triggers, ARDS can also arise from aspiration, pancreatitis, trauma, transfusion reactions, and inhalational injury; distinguishing ARDS due to sepsis from cardiogenic pulmonary edema or isolated pulmonary pathology requires integration of imaging, hemodynamics, and clinical context. Disseminated intravascular coagulation (DIC) can occur as a complication of severe sepsis, but it can also reflect other etiologies such as trauma, malignancy, obstetric emergencies, or massive transfusion. The presence of coagulopathy,

thrombocytopenia, elevated D-dimer, and fibrinogen consumption raises suspicion; however, management differs when DIC is driven by sepsis versus alternative drivers. Similarly, distributive shock is not synonymous with septic shock. Other distributive etiologies include anaphylaxis, neurogenic shock, and adrenal crisis, each of which may present with hypotension and warm extremities. Adrenal crisis, in particular, can closely resemble sepsis with refractory hypotension, altered mental status, hyponatremia, hyperkalemia, and hypoglycemia; it is especially important in patients with chronic steroid exposure or known adrenal insufficiency, where stress-dose steroids can be lifesaving [22][24].

Hemorrhagic shock must be considered whenever hypotension and tachycardia occur, especially in trauma, gastrointestinal bleeding, ruptured aneurysm, postpartum hemorrhage, or anticoagulant use. Unlike septic shock, hemorrhagic shock often features a narrowed pulse pressure, cool clammy skin, and declining hemoglobin over time, though early labs may lag behind blood loss. Cardiogenic shock is another critical alternative, often presenting with hypotension, signs of poor perfusion, pulmonary edema, elevated jugular venous pressure, and ischemic ECG changes or elevated cardiac biomarkers. Because fluid resuscitation strategies differ—aggressive fluids may worsen pulmonary edema in cardiogenic shock—early bedside echocardiography, BNP interpretation, and assessment of volume status are valuable. Toxic shock syndrome, classically associated with toxin-producing strains of *Staphylococcus aureus* or *Streptococcus pyogenes*, can appear as fulminant sepsis with fever, hypotension, rash, multiorgan involvement, and rapid clinical decline; recognition is important because toxin suppression strategies and source control are priorities. Finally, drug toxicity and other toxicodromes can mimic sepsis through hyperthermia, tachycardia, altered mental status, hypotension, metabolic acidosis, and end-organ injury. Examples include salicylate toxicity, sympathomimetic overdose, serotonin syndrome, neuroleptic malignant syndrome, or severe withdrawal syndromes. A careful medication history, exposure assessment, pupillary and neuromuscular findings, and targeted toxicology testing help differentiate these syndromes from infection-driven sepsis while allowing empiric sepsis therapy to proceed when uncertainty remains [24].

Prognosis

The prognosis of septic shock remains guarded despite major advances in resuscitation science, antimicrobials, critical care monitoring, and standardized protocols. Mortality in septic shock is consistently high and can exceed 40%, reflecting the profound circulatory and cellular dysfunction that characterizes this syndrome. Outcomes are not uniform; rather, they are shaped by a constellation of pathogen-related, treatment-related, and host-related factors. The causative organism and its antibiotic

susceptibility pattern influence prognosis because delays in effective therapy or infection with multidrug-resistant pathogens increase the likelihood of persistent bacteremia, uncontrolled inflammation, and progressive organ failure. The burden of organ dysfunction is one of the strongest determinants of mortality: as more organ systems fail and the severity of their impairment increases, the likelihood of survival declines sharply. Age is also a powerful modifier, as older patients have reduced physiologic reserve, higher comorbidity burdens, and greater vulnerability to complications such as delirium, renal failure, and prolonged mechanical ventilation. Clinical severity markers can provide prognostic insight early in the course. The more criteria consistent with systemic inflammatory response and physiologic stress that a patient demonstrates, the higher the mortality risk tends to be, reflecting greater inflammatory dysregulation and metabolic demand. Among bedside predictors, tachypnea and altered mental status are particularly informative, as they may indicate early respiratory compromise, metabolic acidosis, cerebral hypoperfusion, or neuroinflammatory injury. Persistent hypotension requiring escalating vasoactive support is another adverse sign. Prolonged dependence on inotropes and vasopressors suggests refractory distributive shock or emerging myocardial dysfunction and is associated with poorer outcomes, partly because it reflects ongoing microcirculatory failure and the inability to restore adequate perfusion despite aggressive therapy. Importantly, prognosis in sepsis is not limited to survival to discharge. Many survivors experience significant long-term morbidity, including persistent weakness, reduced exercise tolerance, malnutrition, and impaired functional independence. Cognitive outcomes can also be affected; survivors may develop long-lasting deficits in memory, attention, and executive function, often linked to ICU delirium, hypoxemia, inflammatory neurotoxicity, and critical illness-associated brain dysfunction. Post-sepsis syndromes may include depression, anxiety, and reduced quality of life, and these sequelae are more common in patients who required prolonged mechanical ventilation, experienced severe delirium, or suffered multiorgan failure. Consequently, a comprehensive view of prognosis includes not only short-term mortality risk but also the likelihood of prolonged rehabilitation needs and durable neurocognitive impairment [24][25].

Complications

Sepsis and septic shock predispose patients to a wide spectrum of complications that arise from microvascular injury, dysregulated coagulation, inflammatory organ dysfunction, and the iatrogenic risks of intensive care. ARDS is one of the most feared complications, characterized by diffuse alveolar-capillary leakage leading to noncardiogenic pulmonary edema, reduced lung compliance, and

severe hypoxemia. ARDS substantially increases the need for mechanical ventilation and is associated with prolonged ICU stays and higher mortality. Renal injury is similarly common and may be acute or evolve into chronic kidney disease. Acute kidney injury results from hypoperfusion, inflammatory tubular injury, nephrotoxic exposures, and microthrombi, and it may necessitate renal replacement therapy; renal failure also complicates dosing of antimicrobials and other critical medications. Coagulopathy and DIC may develop as systemic inflammation activates coagulation pathways while impairing fibrinolysis, resulting in microvascular thrombosis and consumption of clotting factors. Clinically, this can produce both bleeding risk and ischemic organ injury. Mesenteric ischemia represents a catastrophic complication, often driven by hypoperfusion, vasopressor-associated splanchnic vasoconstriction, or thrombotic phenomena; it may present with abdominal pain, ileus, rising lactate, and rapid deterioration, and it often requires urgent surgical evaluation. Hepatic dysfunction can range from transaminitis to acute liver failure, reflecting hypoxic hepatitis, inflammatory cholestasis, and impaired hepatic perfusion, and it contributes to metabolic instability and coagulopathy. Myocardial dysfunction is increasingly recognized in septic shock, where inflammatory mediators, nitric oxide pathways, and mitochondrial dysfunction can impair contractility and lead to reduced ejection fraction or diastolic dysfunction. This cardiac depression may coexist with distributive physiology, complicating hemodynamic management and increasing the risk of refractory shock. Ultimately, the gravest complication is multiple organ failure, in which progressive dysfunction of respiratory, cardiovascular, renal, hepatic, hematologic, and neurologic systems becomes self-reinforcing, carries extremely high mortality, and often necessitates complex decisions about escalation of care, goals of treatment, and long-term prognosis [18][19][20][21][25].

Enhancing Healthcare Team Outcomes

Improving outcomes in septic shock requires an interprofessional model of care because the syndrome evolves rapidly, demands parallel interventions, and is associated with complications that require continuous surveillance. The most consequential determinant of survival is early diagnosis followed by immediate resuscitation to maintain end-organ perfusion. While debates continue regarding the optimal type of resuscitation fluid, a consistent principle is that outcomes are driven less by the specific fluid choice and more by achieving adequate perfusion pressure and restoring effective circulation. ICU nurses are central to this process: they perform continuous hemodynamic monitoring, detect early deterioration, titrate fluids and vasoactive agents according to protocols, recognize changes in mental status and urine output, and initiate rapid escalation

when patients worsen. Because sepsis patients are prone to complications with high mortality, close monitoring is not a background task but a primary therapeutic intervention. Effective team care also requires active management of comorbidities and iatrogenic risk. Primary disorders such as diabetes, chronic renal failure, and liver disease should be optimized because they influence immune function, drug clearance, and physiologic reserve. Medications that suppress immune responses or worsen infection risk should be discontinued when feasible, balancing the risk of withdrawal or disease flare. Dietitians play an important role because early enteral nutrition has evidence supporting its benefits in maintaining gut integrity and reducing complications related to prolonged catabolism. Nursing responsibilities include implementing DVT prophylaxis and pressure injury prevention, both of which become critical during prolonged immobilization and vasopressor therapy. Nurses should also monitor all intravascular and urinary catheters for signs of infection and remove devices that are no longer necessary to reduce the risk of catheter-associated infections. Pharmacists are essential for antimicrobial stewardship and medication safety. They help ensure empiric antibiotics are appropriately broad, adjust dosing for renal dysfunction and renal replacement therapy, follow culture and susceptibility results, and narrow therapy when feasible to reduce resistance and toxicity. Pharmacists also monitor for drug interactions, vasopressor compatibility, and nephrotoxic burden, and they support timely delivery of critical medications. Clinicians and proceduralists must maintain strict aseptic technique during line placement, intubation, and wound care; consistent hand hygiene and infection prevention practices are foundational to reducing hospital-acquired infections in vulnerable septic patients. Finally, the entire team must communicate clearly and frequently—through structured handoffs, daily goals rounds, and escalation pathways—to ensure that blood pressure targets, lactate trends, ventilation strategies, source control plans, and antimicrobial adjustments are aligned. Outcomes ultimately depend on patient age, comorbidities, renal function, need for dialysis, requirement for mechanical ventilation, and responsiveness to treatment, but coordinated interprofessional care can meaningfully influence each of these variables by reducing delays, preventing complications, and optimizing supportive management throughout the sepsis trajectory [24][25].

Conclusion:

Septic shock continues to pose a formidable challenge in acute care, with mortality rates remaining high despite decades of research and protocol development. The complexity of its pathophysiology—marked by dysregulated immune responses, endothelial injury, and microcirculatory failure—underscores the need for rapid, evidence-based interventions. Early recognition is the

cornerstone of successful management; delays in diagnosis or treatment significantly increase the risk of irreversible organ dysfunction and death. Timely administration of broad-spectrum antibiotics, aggressive fluid resuscitation, and appropriate vasoactive support form the foundation of therapy, while adjunctive measures such as corticosteroids and vasopressin may be lifesaving in refractory cases. Beyond individual interventions, outcomes are strongly influenced by the quality of interprofessional collaboration. Nurses, pharmacists, physicians, and allied health professionals must work in concert to ensure continuous monitoring, antimicrobial optimization, and prompt source control. Structured communication, adherence to sepsis bundles, and vigilant reassessment are essential to prevent deterioration and complications such as ARDS, renal failure, and disseminated intravascular coagulation. Ultimately, improving survival in septic shock requires not only technical proficiency but also a systems-based approach that prioritizes early detection, coordinated care, and ongoing quality improvement.

References:

1. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, Huang DT, Osborn T, Stevens D, Talan DA, Emergency Department Sepsis Education Program and Strategies to Improve Survival (ED-SEPSIS) Working Group. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. *Annals of emergency medicine*. 2006 Jul;48(1):28-54.
2. Mayr FB, Yende S, Linde-Zwirble WT, Peck-Palmer OM, Barnato AE, Weissfeld LA, Angus DC. Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis. *JAMA*. 2010 Jun 23;303(24):2495-503. doi: 10.1001/jama.2010.851.
3. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. *JAMA*. 2009 Dec 2;302(21):2323-9. doi: 10.1001/jama.2009.1754.
4. Rangel-Frausto MS. The epidemiology of bacterial sepsis. *Infectious disease clinics of North America*. 1999 Jun;13(2):299-312, vii.
5. Cohen J, Cristofaro P, Carlet J, Opal S. New method of classifying infections in critically ill patients. *Critical care medicine*. 2004 Jul;32(7):1510-26.
6. Annane D, Aegerter P, Jars-Guincestre MC, Guidet B, CUB-Réa Network. Current epidemiology of septic shock: the CUB-Réa Network. *American journal of respiratory and critical care medicine*. 2003 Jul 15;168(2):165-72.
7. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from

1979 through 2000. *The New England journal of medicine*. 2003 Apr 17;348(16):1546-54

8. Elixhauser A, Friedman B, Stranges E. Septicemia in U.S. Hospitals, 2009. *Healthcare Cost and Utilization Project (HCUP) Statistical Briefs*. 2006 Feb
9. Torio CM, Andrews RM. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. *Healthcare Cost and Utilization Project (HCUP) Statistical Briefs*. 2006 Feb
10. Elfeky S, Golabi P, Otgonsuren M, Djurkovic S, Schmidt ME, Younossi ZM. The epidemiologic characteristics, temporal trends, predictors of death, and discharge disposition in patients with a diagnosis of sepsis: A cross-sectional retrospective cohort study. *Journal of critical care*. 2017 Jun;39():48-55. doi: 10.1016/j.jcrc.2017.01.006. Epub 2017 Jan 20
11. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. *Critical care medicine*. 2001 Jul;29(7):1303-10
12. Liu V, Escobar GJ, Greene JD, Soule J, Whippy A, Angus DC, Iwashyna TJ. Hospital deaths in patients with sepsis from 2 independent cohorts. *JAMA*. 2014 Jul 2;312(1):90
13. Annane D, Bellissant E, Cavaillon JM. Septic shock. *Lancet (London, England)*. 2005 Jan 1-7;365(9453):63-78
14. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. *Chest*. 1992 Jun;101(6):1644-55
15. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. *The New England journal of medicine*. 2003 Jan 9;348(2):138-50
16. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. *Critical care medicine*. 2003 Apr;31(4):1250-6
17. Jones AE, Puskarich MA. The Surviving Sepsis Campaign guidelines 2012: update for emergency physicians. *Annals of emergency medicine*. 2014 Jan;63(1):35-47. doi: 10.1016/j.annemergmed.2013.08.004.
18. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellingham GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. *Critical care medicine*. 2017 Mar;45(3):486-552. doi: 10.1097/CCM.0000000000002255.
19. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. *The New England journal of medicine*. 2001 Nov 8;345(19):1368-77
20. Ventura AM, Shieh HH, Bousso A, Góes PF, de Cássia F O Fernandes I, de Souza DC, Paulo RL, Chagas F, Gilio AE. Double-Blind Prospective Randomized Controlled Trial of Dopamine Versus Epinephrine as First-Line Vasoactive Drugs in Pediatric Septic Shock. *Critical care medicine*. 2015 Nov;43(11):2292-302. doi: 10.1097/CCM.0000000000001260.
21. Annane D. Corticosteroids for septic shock. *Critical care medicine*. 2001 Jul;29(7 Suppl):S117-20
22. Annane D, Renault A, Bellissant E. Glucocorticoids with or without Fludrocortisone in Septic Shock. *The New England journal of medicine*. 2018 Aug 30;379(9):895-6. doi: 10.1056/NEJM1804993.
23. Cardenas-Garcia J, Schaub KF, Belchikov YG, Narasimhan M, Koenig SJ, Mayo PH. Safety of peripheral intravenous administration of vasoactive medication. *Journal of hospital medicine*. 2015 Sep;10(9):581-5. doi: 10.1002/jhm.2394.
24. Angus DC, Barnato AE, Bell D, Bellomo R, Chong CR, Coats TJ, Davies A, Delaney A, Harrison DA, Holdgate A, Howe B, Huang DT, Iwashyna T, Kellum JA, Peake SL, Pike F, Reade MC, Rowan KM, Singer M, Webb SA, Weissfeld LA, Yealy DM, Young JD. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISE Investigators. *Intensive care medicine*. 2015 Sep;41(9):1549-60. doi: 10.1007/s00134-015-3822-1.
25. Osborn TM. Severe Sepsis and Septic Shock Trials (ProCESS, ARISE, ProMISE): What is Optimal Resuscitation? *Critical care clinics*. 2017 Apr;33(2):323-344. doi: 10.1016/j.ccc.2016.12.004..