

Multidisciplinary Perioperative Care for Bariatric Surgery: Radiologic Assessment, Operating Room Practice, Nutritional Optimization, Nursing Care, Optometric Screening, and Social Work Support

Jamilah Matuq Aljuaidan ⁽¹⁾, Ghazi Nasser Alotibi ⁽²⁾, Abdullah Ibrahim Aldubaikhi ⁽³⁾, Adnan Abdullah Alhussain ⁽⁴⁾, Modhi Mfadhi Alanazi ⁽⁵⁾, Basmah Abdulaziz Nasser Alsulaiman ⁽⁶⁾, Alfadhel Yahya Alshafie ⁽⁷⁾, Mohammed Abdu Mohammed Hindi ⁽⁸⁾, Norah Abdu Ahmed Zailay ⁽⁹⁾, Hassan Abdu H Gaissi ⁽¹⁰⁾, Hussain Mohammed Hussain Khared ⁽¹¹⁾, Othman Mohammed Ahmed Mahzary ⁽¹²⁾, Mateb Hussain Muklif Alanazi ⁽¹³⁾, Riyadh Mohammed Hussain Khared ⁽¹⁴⁾, Aeshah Taleb Albaeji ⁽¹⁵⁾

(1) Alahsa Health Cluster - Aloyon PHC, Ministry of Health, Saudi Arabia,

(2) Masawi Health Center, Ministry of Health, Saudi Arabia,

(3) Ministry of Interior Riyadh Azm, Saudi Arabia,

(4) Inventory Control, Alahssa Health Cluster, Ministry of Health, Saudi Arabia,

(5) King Fahad Medical City / Riyadh, Ministry of Health, Saudi Arabia,

(6) Imam Abdulrahman Al-Faisal Hospital In Riyadh, Ministry of Health, Saudi Arabia,

(7) Damad General Hospital, Damad City, Ministry of Health, Saudi Arabia,

(8) Damad Hospital, Ministry of Health, Saudi Arabia,

(9) Irada Hospital for Mental Health (Jazan), Ministry of Health, Saudi Arabia,

(10) Abuarish Alshamali Primary Health Care, Ministry of Health, Saudi Arabia,

(11) King Fahd Center Hospital in Jazan Of Health Cluster, Ministry of Health, Saudi Arabia,

(12) Jazan Health Cluster, Ministry of Health, Saudi Arabia,

(13) Riyadh Region, Rumah Governorate, Ministry of Health, Saudi Arabia,

(14) Middle Sector Of Jazan Health Cluster , Primary Health Care Center, Ministry of Health, Saudi Arabia,

(15) Ministry of Health, Saudi Arabia

Abstract

Background: Morbid obesity is a chronic, multisystem disease associated with over 200 comorbidities, including diabetes, hypertension, and obstructive sleep apnea. Bariatric surgery remains the gold standard for sustained weight loss and metabolic improvement despite advances in pharmacotherapy.

Aim: To review multidisciplinary perioperative care for bariatric surgery, emphasizing radiologic assessment, operative practices, nutritional optimization, nursing care, optometric screening, and psychosocial support.

Methods: A comprehensive narrative synthesis of current evidence and clinical guidelines was conducted, focusing on surgical techniques, functional mechanisms, complication profiles, and team-based interventions.

Results: Bariatric procedures such as laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass achieve 30–40% weight loss and high rates of comorbidity resolution. However, complications—including hemorrhage (0.6–2.7%), leaks (0.3–3%), internal hernias, marginal ulcers, reflux, thromboembolism, and nutritional deficiencies—require vigilant monitoring. Multidisciplinary strategies integrating radiology, nursing surveillance, dietetics, mental health, and social work significantly reduce morbidity and improve long-term outcomes. Emerging pharmacologic agents (GLP-1/GIP agonists) complement surgical care but face cost and access barriers.

Conclusion: Bariatric surgery is a metabolic intervention requiring structured, longitudinal, and team-based care to optimize safety and durability. Effective outcomes depend on early complication recognition, nutritional management, psychosocial support, and coordinated follow-up.

Keywords: Bariatric surgery, obesity, multidisciplinary care, complications, nutritional deficiencies, psychosocial support.

Introduction

The uncus is a distinctive anatomical feature of the brain. Morbid obesity represents a chronic, relapsing, multisystem disease characterized by excess adiposity sufficient to impair health and shorten life expectancy. Its clinical importance derives not only

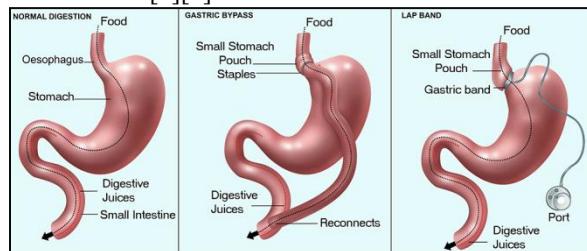
from increased body mass, but from the biological consequences of adipose tissue dysfunction—systemic inflammation, insulin resistance, endothelial injury, altered neurohormonal signaling, and progressive organ stress. As a result, morbid obesity is strongly associated with high-burden comorbidities

such as obstructive sleep apnea, hypertension, type 2 diabetes mellitus, and metabolic syndrome, many of which demonstrate substantial improvement or remission following effective weight-loss interventions. In numerous clinical series, resolution rates of major metabolic comorbidities may approach or exceed 80% when sustained weight loss is achieved, highlighting the therapeutic value of interventions that meaningfully reduce adiposity rather than focusing solely on symptomatic management. Beyond these metabolic and cardiopulmonary disorders, obesity is linked to an expanding spectrum of conditions, including hepatobiliary disease, musculoskeletal degeneration, infertility, psychiatric morbidity, and malignancy risk, with epidemiologic literature recognizing more than 200 obesity-associated comorbidities, including increased incidence of several cancers. The scope of this burden is amplified by the high prevalence of overweight and obesity in contemporary populations; in the United States, nearly 40% of adults and approximately one-third of children meet criteria for overweight or obesity, creating a sustained demand for scalable, evidence-based prevention and treatment models. The past decade has been marked by accelerated research into the endocrine, neural, and behavioral determinants of weight regulation, as well as pharmacologic strategies aimed at modifying appetite, satiety, gastric motility, and energy balance. Newer antiobesity medications, particularly glucagon-like peptide-1 (GLP-1) receptor agonists and combined incretin agonists such as GLP-1/gastric inhibitory peptide/glucose-dependent insulinotropic peptide (GLP-1/GIP) agents, have demonstrated clinically meaningful weight reduction in patients with morbid obesity, with many trials reporting total body weight loss exceeding 20% in select populations.^[1] These outcomes represent a major advancement compared with earlier pharmacotherapies and have expanded the therapeutic landscape for individuals who are not immediate surgical candidates or who prefer nonoperative approaches. However, practical implementation remains constrained by cost, variable insurance coverage, gastrointestinal and other adverse effects, and unresolved questions regarding long-term safety, durability of weight loss, and weight regain after discontinuation. As a consequence, pharmacotherapy—while increasingly central to obesity care—has not fully replaced surgical interventions in patients with severe disease, particularly those with established metabolic complications requiring rapid and durable improvement [1].

Despite innovation in medical therapy, bariatric surgery continues to be regarded as the gold standard intervention for morbid obesity when the goals include substantial, sustained weight loss and high rates of comorbidity resolution. Surgical procedures typically produce 30% to 40% total body

weight loss, often accompanied by profound improvements in glycemic control, blood pressure, dyslipidemia, and sleep-disordered breathing. Importantly, the mechanisms of benefit extend beyond simple restriction or malabsorption; bariatric surgery induces neurohormonal changes affecting gut peptides, bile acid signaling, microbiome composition, and central appetite regulation, thereby creating physiological conditions that support long-term metabolic improvement. While older antiobesity medications such as phentermine, topiramate, buprenorphine, and naltrexone remain clinically useful—often producing weight reductions in the range of 5% to 10%—they generally do not match the magnitude of weight loss and comorbidity resolution observed with surgical therapy. Newer agents help bridge the gap between modest pharmacologic outcomes and the more substantial effects of surgery, enabling individualized treatment selection across a wider continuum of disease severity. Among contemporary bariatric procedures, laparoscopic sleeve gastrectomy has emerged as the most frequently performed operation, reflecting its technical feasibility, favorable risk profile, and effectiveness as a primarily restrictive procedure that also influences gut hormone dynamics. In the United States, sleeve gastrectomy accounts for more than two-thirds of bariatric operations, with more than 160,000 procedures reported in 2022.^[2] Roux-en-Y gastric bypass remains the second most common procedure and retains particular value in patients with severe gastroesophageal reflux disease, poorly controlled diabetes, or those requiring a greater malabsorptive component. In contrast, gastric banding and duodenal switch procedures are performed far less frequently, often reserved for specific clinical indications and institutional expertise. Regardless of the chosen technique, bariatric surgery is best understood not as an isolated operative event but as a longitudinal intervention that requires comprehensive preoperative evaluation, precise intraoperative execution, and structured postoperative monitoring to sustain benefits and prevent harm [1][2].

Bariatric surgery can reverse or markedly improve multiple obesity-related disorders, including type 2 diabetes mellitus, obstructive sleep apnea, metabolic syndrome, and pseudotumor cerebri. Yet, even when performed by experienced surgeons within established programs, bariatric operations carry a spectrum of complications that may arise immediately, subacutely, or years after surgery. The clinical presentation of these complications may range from subtle and gradually progressive—such as micronutrient deficiency syndromes, anemia, or chronic reflux—to acute, high-risk emergencies requiring urgent recognition and intervention, including anastomotic leaks, strictures, gastrointestinal bleeding, or thromboembolic events. Frequently cited postoperative complications include


deep vein thrombosis, hemorrhage, hiatal hernia, nutritional deficiencies, anastomotic leak or stricture, gastric and marginal ulcers, and dumping syndrome.[3][4] These risks underscore the necessity of timely access to follow-up care, patient education, and a coordinated multidisciplinary pathway capable of addressing both physiologic and psychosocial determinants of outcome. Within this multidisciplinary framework, each specialty contributes to safety, early detection of complications, and long-term functional recovery. Radiology supports preoperative risk stratification and postoperative surveillance through imaging assessment of abdominal anatomy, leaks, strictures, internal hernias, gallstone disease, and thromboembolic complications. Operating room technicians play a critical role in procedural efficiency and patient safety through instrument readiness, sterile field integrity, and coordination of laparoscopic equipment and emergency resources. Nursing teams provide continuous perioperative monitoring, implement evidence-based protocols for venous thromboembolism prophylaxis, pain control, mobilization, and wound care, and serve as primary educators guiding patients through early postoperative milestones and warning signs. Nutritionists are essential in preoperative optimization, postoperative dietary progression, and long-term prevention and treatment of protein-calorie malnutrition and micronutrient deficiencies, which can present with systemic consequences affecting neurologic, hematologic, and ocular health. Optometry and eye-care services become relevant as rapid weight change and nutritional deficiencies can influence visual function, and conditions such as idiopathic intracranial hypertension—often improved after surgery—require monitoring of visual symptoms and optic nerve status. Social workers address barriers to follow-up, medication access, food insecurity, mental health comorbidity, and the behavioral and socioeconomic determinants that influence adherence to dietary, activity, and supplementation plans. In this sense, bariatric surgery is not merely a surgical procedure; it is a coordinated, multidisciplinary care pathway in which durable success depends on integrated clinical surveillance, patient-centered support systems, and long-term continuity of care.[3][4]

Accordingly, an academic approach to bariatric surgery must emphasize not only the surgical techniques and expected weight loss outcomes, but also the broader clinical ecosystem that ensures safety, equity, and sustained metabolic benefit. As obesity prevalence remains high and treatment options diversify through pharmacologic innovation, bariatric surgery continues to occupy a pivotal role for patients with morbid obesity, provided that it is delivered within a structured program capable of preventing, recognizing, and

managing complications across the lifespan of postoperative care.[1][2][3][4]

Function

Bariatric surgery functions as a therapeutic intervention that modifies gastrointestinal anatomy and physiology to produce sustained weight reduction and meaningful metabolic improvement. Although often discussed in terms of “restrictive” versus “malabsorptive” procedures, the functional impact of bariatric surgery extends well beyond mechanical limitation of intake or decreased nutrient absorption. Contemporary understanding recognizes bariatric operations as metabolic procedures that reshape appetite signaling, gut–brain communication, enteroendocrine hormone secretion, bile acid pathways, microbiome composition, and systemic inflammatory tone, thereby addressing the pathophysiologic core of obesity and its related cardiometabolic complications. This is especially relevant in morbid obesity, where metabolic syndrome—encompassing dysregulated glucose homeostasis, hypertension, atherogenic dyslipidemia, and pro-inflammatory states—accelerates end-organ damage and increases morbidity and mortality through cardiovascular disease, chronic kidney disease, nonalcoholic fatty liver disease, and other systemic sequelae. Within this spectrum, procedures incorporating a malabsorptive component exert particularly strong effects on glucose metabolism, insulin sensitivity, and insulin clearance, reinforcing the concept that bariatric surgery is not merely weight-loss surgery but a form of metabolic disease modification.[5][6]

Fig. 1: Bariatric Surgery.

The functional classification of bariatric procedures is traditionally organized into restrictive, combined restrictive–malabsorptive, and primarily malabsorptive operations. Purely restrictive techniques, such as adjustable gastric banding, limit caloric intake through reduction of functional gastric capacity and the creation of early satiety signals. Combined restrictive–malabsorptive procedures, such as Roux-en-Y gastric bypass (RYGB) and laparoscopic sleeve gastrectomy (LSG), achieve restriction but also generate metabolic changes that approximate malabsorption through altered nutrient delivery to distal gut segments and changes in enteroendocrine signaling. By contrast, operations such as biliopancreatic diversion and duodenal switch introduce a pronounced malabsorptive physiology by substantially shortening the length of small intestine

exposed to a normal mixture of nutrients and digestive enzymes. These distinctions help explain why bariatric surgery frequently yields outcomes superior to caloric restriction alone, including greater and more durable weight loss and more profound improvements in metabolic parameters, particularly in patients with insulin resistance and type 2 diabetes mellitus.[7] From a metabolic perspective, bariatric surgery improves insulin resistance through multiple convergent pathways. Reduction in adipose tissue mass lowers inflammatory cytokine production and improves peripheral insulin signaling, but metabolic benefits often begin well before major weight loss occurs, implying weight-independent mechanisms. These include changes in nutrient sensing and absorption, rapid alterations in gut hormone release, and shifts in hepatic and peripheral glucose handling. Evidence indicates that gastric banding improves hepatic insulin sensitivity and lipolysis, reflecting reduced hepatic glucose output and improved fat metabolism. In contrast, combined restrictive-malabsorptive operations tend to produce stronger improvements in adipose tissue insulin sensitivity and reduce plasma insulin concentrations, suggesting decreased hyperinsulinemia and enhanced insulin effectiveness at the tissue level.[7] These effects are clinically meaningful because hyperinsulinemia contributes to dyslipidemia, endothelial dysfunction, and progression of metabolic syndrome. When insulin sensitivity improves and circulating insulin levels decrease, downstream benefits often include reductions in triglycerides, improvements in HDL cholesterol, and better blood pressure control, collectively lowering cardiovascular risk [7].

Laparoscopic sleeve gastrectomy exemplifies how a procedure categorized as “restrictive” can nonetheless act as a powerful metabolic intervention. Functionally, LSG is performed by resecting approximately 60% to 70% of the stomach along the greater curvature, leaving a narrow, tubular “sleeve” with markedly reduced capacity—often described as roughly 4 ounces—thereby limiting meal size and promoting early satiety.[8][9] This anatomic change is paired with physiologic effects, including acceleration of gastric emptying, which alters the timing and distribution of nutrients delivered to the small intestine. Importantly, removal of the greater curvature includes resection of ghrelin-producing gastric tissue, which reduces circulating ghrelin levels and tends to diminish hunger and appetite in many patients.[10] In practical clinical terms, appetite suppression is a critical function because sustained weight loss requires not only reduced intake but also improved tolerability of dietary restriction. By lowering hunger signals and enhancing satiety, LSG supports adherence to postoperative nutritional plans and reduces the behavioral burden of chronic caloric restriction. Roux-en-Y gastric bypass operates through a distinct functional model that combines restriction, nutrient

rerouting, and altered enzyme mixing. The procedure creates a small gastric pouch that limits intake and then bypasses a portion of the stomach and proximal small intestine. This reconfiguration changes where nutrients encounter biliary and pancreatic secretions, thereby altering digestion and absorption dynamics and producing marked changes in postprandial hormone release. The bypassed duodenum and proximal jejunum are regions with high nutrient sensing and absorption capacity; rerouting nutrients away from these segments and toward more distal intestinal regions can amplify enteroendocrine signaling in a way that improves glucose regulation. Within RYGB, the configuration of limb lengths has functional implications. Studies indicate that a longer biliopancreatic limb may yield greater weight loss and improved glucose handling compared with a longer Roux limb, likely because a longer biliopancreatic limb increases the length of intestine over which nutrients and digestive enzymes remain separated, intensifying hormonal and metabolic effects.[11] This highlights that surgical technique details are not merely anatomical preferences but functional determinants that shape long-term metabolic outcomes [8][9][10][11].

A key unifying concept is that bariatric surgery improves insulin resistance and glycemic control by modifying nutrient absorption and gut hormone release in ways that influence pancreatic beta-cell function and systemic glucose handling. Nutrient delivery to distal intestinal segments stimulates peptide secretion that enhances insulin secretion patterns, satiety, and glucose disposal. While both LSG and RYGB modify nutrient dynamics, they do so differently, producing distinct endocrine signatures and differences in peptide production.[12] These differences can translate into variable effects on diabetes remission, dumping symptoms, reflux risk, and nutritional deficiency profiles, reinforcing the need for individualized procedure selection based on patient comorbidity patterns, anatomy, and long-term follow-up capacity. Despite its clinical benefits, bariatric surgery also produces durable physiologic changes that may generate chronic management needs. Reduced gastric capacity, altered gastric emptying, and rerouted intestinal exposure can predispose patients to gastroesophageal reflux, marginal ulcers, and micronutrient deficiencies, particularly iron, vitamin B12, folate, calcium, and fat-soluble vitamins in procedures with greater malabsorptive components. Consequently, the functional success of bariatric surgery depends on comprehensive preoperative education and postoperative adherence to dietary progression, supplementation protocols, and surveillance testing. During preoperative screening, patients are counseled regarding lifestyle practices essential to function and safety after surgery, including dietary modifications, smoking cessation, and strategies to prevent reflux and ulcer disease.

These measures are not ancillary; they are part of the functional mechanism by which bariatric surgery achieves benefits while minimizing harm, since postoperative physiology is highly sensitive to behavioral exposures such as nicotine, NSAID use, and nonadherence to protein and micronutrient recommendations. In sum, bariatric surgery functions through an integrated set of restrictive, absorptive, endocrine, and neurobehavioral mechanisms that collectively generate sustained weight reduction and improvement in metabolic syndrome. Procedures with malabsorptive components exert particularly strong effects on glucose metabolism and insulin physiology,[5][6] while operations such as LSG and RYGB demonstrate that changes in gut anatomy can reshape appetite signaling and hormone secretion in ways that exceed the effects of caloric restriction alone.[7][8][9][10][11][12] These functional benefits, however, require structured education, longitudinal monitoring, and ongoing nutritional management to ensure that the physiological advantages of surgery are preserved while chronic complications are prevented or detected early.

Complications

Bariatric surgery has matured into a highly standardized and generally safe field, yet it remains intrinsically associated with a spectrum of early and late complications that can be clinically subtle, rapidly catastrophic, or chronically disabling. The modern bariatric patient is often medically complex at baseline, with comorbidities such as diabetes, obstructive sleep apnea, hypertension, chronic kidney disease, and cardiovascular disease that not only increase operative risk but also modulate the presentation, trajectory, and consequences of postoperative adverse events. Importantly, some study results suggest that postoperative complications correlate more strongly with patient comorbidity burden than with specific operative approaches or equipment choices, underscoring that outcomes are frequently driven by physiologic reserve, inflammatory state, microvascular integrity, and adherence to postoperative care rather than by procedural “branding” alone.[13] From a systems perspective, effective complication management therefore depends on vigilant clinical surveillance, early radiologic assessment when indicated, coordinated perioperative nursing and operating room support, and sustained nutritional and psychosocial follow-up that continues long after the immediate surgical episode. Among the immediate postoperative complications, hemorrhage remains the most commonly encountered event and a major cause of early readmission, reintervention, and transfusion. Bleeding rates vary by procedure and institutional reporting standards, but clinically significant postoperative bleeding has been reported at approximately 2.7% following Roux-en-Y gastric bypass (RYGB) and between 0.6% and 2.3%

following laparoscopic sleeve gastrectomy (LSG).[4][14] Bleeding may occur intraluminally (manifesting as hematemesis, melena, hematochezia, or unexplained anemia) or extraluminally within the abdominal cavity (manifesting as tachycardia, hypotension, escalating abdominal pain, abdominal distension, or falling hemoglobin without overt gastrointestinal loss). Intraluminal bleeding often originates from staple lines, anastomoses, or marginal ulceration in bypass patients, whereas intraabdominal bleeding may arise from staple-line oozing, mesenteric vessel injury, trocar-site bleeding, or splenic capsular trauma. The decision to pursue endoscopic therapy versus operative exploration depends heavily on bleeding location, hemodynamic stability, and the presence of peritonitis or ongoing transfusion requirement. Because bariatric patients may have baseline tachycardia, altered pain responses, and variable clinical signs due to body habitus, early nursing recognition of trends in heart rate, blood pressure, urine output, and serial laboratory changes can be decisive in preventing delayed deterioration [13][14].

Complication	Chronicity	Diagnosis	Management
Hemorrhage	Acute	Physical Findings	Transfusion with/without Laparoscopy
Leak	Acute	Physical Findings	Infrared Laparoscopy
Abcess	Acute	CT Scan/ Ultra Sound	Drainage/ Antibiotics
Strictures	Chronic	Physical Findings	Endoscopy
GERD/ Hiatal Hernia	Chronic	History, Endoscopy	Treated with Proton Pump Inhibitor
Nutritional Deficiencies	Chronic	Physical Findings	Nutritional Supplements
Addiction Transfer	Chronic	Physical Findings	Nutritional Changes

Fig. 2: Bariatric Surgery complications.

Risk stratification for bleeding is particularly important because certain patient factors significantly increase the probability of hemorrhagic events. Postoperative bleeding is associated with diabetes, chronic kidney failure, cardiovascular disease, and antiplatelet therapy.[4][15] These conditions converge on impaired platelet function, endothelial dysfunction, microvascular fragility, and reduced physiologic capacity to compensate for acute blood loss. In practice, multidisciplinary planning includes meticulous medication reconciliation, individualized antiplatelet and anticoagulant management, and clear postoperative pathways for monitoring hematologic indices. The operating room team and operating room technicians contribute to risk mitigation by ensuring standardized availability of hemostatic adjuncts, appropriate stapling devices and reinforcements when used, calibrated energy platforms, and immediate access to suction, irrigation, and laparoscopic or open conversion

instrumentation. Although such logistical excellence cannot eliminate bleeding risk, it can shorten time to control when hemorrhage occurs and reduce the escalation of minor oozing into clinically significant hemorrhage. Anastomotic and staple-line leaks are among the most feared bariatric complications because they can progress from localized inflammation to diffuse peritonitis, septic shock, and multi-organ failure, sometimes with deceptively mild early symptoms. Leak incidence varies by procedure and definition but reports commonly cite LSG leak rates of approximately 1.5% to 3% and RYGB leak rates ranging from 0.3% to 2%.^{[16][17]} The clinical and mechanistic nature of leaks differs between sleeve and bypass operations. In sleeve gastrectomy, late or delayed leaks frequently localize near the gastroesophageal junction, an area vulnerable to ischemia and thermal injury during dissection, as well as to high intraluminal pressure. When the proximal sleeve is narrowed or torted, pressure gradients increase, predisposing to “blowout” at points of relative weakness. In gastric bypass, leaks may occur at the gastrojejunostomy, or staple lines, driven by mechanical failure of stapled or hand-sewn suture lines, thermal injury, ischemia, or distal obstruction. Obstruction in bypass patients may be related to narrowing at the entero-entero anastomosis, internal hernia formation, adhesions, or kinking, all of which can elevate upstream pressure and compromise suture integrity.^{[15][16][17]}

The ability to predict and prevent leaks has been an area of intense clinical interest. In a meta-analysis of RYGB patients, a history of pulmonary embolus and partially dependent functional status emerged as significant predictors of postoperative leaks, while higher albumin levels appeared protective.^[18] This pattern is consistent with a broader surgical principle: patients with compromised cardiopulmonary reserve or limited mobility often have impaired tissue oxygenation, elevated inflammatory burden, and reduced capacity to withstand physiologic stress, while albumin serves as a proxy for nutritional status and wound-healing capacity. Leak prevention thus begins preoperatively with optimization of nutritional parameters, glucose control, smoking cessation, and careful operative planning. It continues intraoperatively with disciplined tissue handling, avoidance of undue thermal spread, tension-free staple and suture line construction, and careful attention to sleeve geometry in LSG. Postoperatively, prevention becomes an exercise in early detection: subtle tachycardia, fever, unexplained pain, rising inflammatory markers, ileus, or respiratory distress can be sentinel signs requiring immediate escalation. Diagnosis of suspected leaks typically integrates clinical suspicion with imaging and endoscopic evaluation. Endoscopy—often with contrast instillation—may be used to assess defects, and many centers incorporate routine or selective

postoperative contrast imaging to detect early extravasation.^[19] The diagnostic pathway must be tailored to patient stability. A stable patient with mild symptoms may undergo contrast-enhanced computed tomography to evaluate for free extravasation, perisleeve collections, abscess formation, or adjacent inflammatory changes, while an unstable patient with signs of sepsis may require expedited operative exploration without delay for definitive imaging. Radiology therefore functions not merely as a confirmatory tool but as a triage mechanism that can define the extent of contamination, identify drainable collections, and determine whether nonoperative management is feasible. The clinical phenotype of leaks is heterogeneous and strongly influenced by timing. Leaks that present later may manifest relatively mild symptoms such as vague abdominal discomfort, low-grade fever, and tachycardia, sometimes misattributed to atelectasis or routine postoperative pain. In these cases, management is often nonoperative and includes bowel rest, broad-spectrum antimicrobial therapy, image-guided percutaneous drainage of collections, and placement of an indwelling drain for ongoing source control. Nutritional support becomes a central component of leak care because prolonged fasting or inadequate intake can rapidly precipitate protein-calorie malnutrition and micronutrient depletion, undermining wound healing and immunologic competence. Parenteral nutrition or enteral tube feeding distal to the leak may therefore be required depending on the size and persistence of the defect. In contrast, larger leaks can present with severe abdominal pain, marked tachycardia, fever, leukocytosis, and free contrast extravasation on imaging, indicating a high risk of generalized peritonitis and septic physiology. In such cases, endoscopic stenting may provide a minimally invasive bridge to closure, whereas surgical intervention is often required when contamination is extensive, the defect is unstable, or the patient is clinically deteriorating.^{[17][18][19]}

Recurrent or refractory leaks after sleeve gastrectomy pose a distinct challenge because repeated attempts at repair may compound tissue inflammation and scarring. In select cases, conversion to RYGB is considered as an alternative to repeated sleeve revision, particularly when persistent high intraluminal pressure and unfavorable sleeve geometry contribute to ongoing leakage. Additionally, surgical technique evolution has meaningfully reduced leak frequency, with buttressed staple lines and suture reinforcements associated with significantly lower staple-line complication rates and fewer sleeve leaks.^[20] Importantly, patients who successfully recover from sleeve leaks can achieve weight loss and comorbidity resolution comparable to patients without leak complications, suggesting that—when managed effectively—leaks do not necessarily negate the long-term metabolic benefits

of surgery.[21] This reinforces the value of robust multidisciplinary follow-up: outcomes depend less on the mere occurrence of a complication and more on the speed and quality of detection, source control, nutritional rescue, and long-term rehabilitation. Compared with sleeve gastrectomy, RYGB is often associated with a broader profile of anatomic and internal mechanical complications, some of which present months to years after surgery and may be difficult to diagnose without high clinical suspicion. Internal hernia formation is a particularly important late complication and can occur through mesenteric defects created during bypass reconstruction. These include spaces between bypass limbs, defects at the transverse mesocolon in retrocolic configurations, gaps posterior to the Roux limb mesentery, trocar-site hernias, or any location where mesenteric windows remain incompletely closed.[22] Internal hernias are clinically dangerous because they can intermittently obstruct, reduce mesenteric perfusion, and culminate in bowel strangulation with rapid progression to ischemia, perforation, and sepsis. Their presentation may be episodic and nonspecific, with crampy abdominal pain, nausea, vomiting, or postprandial discomfort that fluctuates and can be misinterpreted as functional or dietary intolerance. Mechanical obstruction after RYGB may also occur via intussusception at the jejunolejunostomy. Prevention strategies have included fixation of bowel ends with a nonresorbable suture during construction, a technique sometimes referred to as the “Brolin stitch,” intended to stabilize the anastomosis. However, if improperly performed, this same stitch can paradoxically become a focal point for kinking, narrowing, or tethering that contributes to obstruction. Moreover, profound weight loss alters the spatial relationships of intraabdominal structures, reduces mesenteric fat padding, and can increase the potential for bowel to slide into previously minor defects. Consequently, the risk of internal hernia can increase over time rather than diminish, making long-term surveillance and patient education crucial [20][21][22].

Diagnosis of internal hernia typically relies on contrast-enhanced computed tomography or diagnostic laparoscopy, particularly when imaging findings are equivocal but symptoms are concerning.[23] Radiology is central here because subtle signs such as mesenteric swirl, clustered bowel loops, displaced anastomoses, or localized transition points may guide urgent surgical decision-making. Yet imaging can be falsely negative in intermittent herniation, meaning that persistent or recurrent symptoms should prompt escalation even when scans appear reassuring. The threshold for operative evaluation is therefore lower in bypass patients than in the general population, reflecting the catastrophic consequences of missed strangulation. In this domain, nursing assessment and continuity of care contribute significantly: repeated presentations for

“abdominal pain” should not be normalized in post-RYGB patients, and triage systems should be designed to recognize bariatric anatomy as a unique risk state requiring expedited evaluation. Marginal ulceration represents another consequential late complication, occurring at the gastrojejunal anastomosis with reported incidence around 4.6% in some series.[24][25] Multiple mechanisms have been proposed, including the exposure of jejunal mucosa—normally not adapted to high acid burden—to gastric acid secretion. The presence of a gastro-gastric fistula can further exacerbate acid exposure by allowing additional acid to reach the anastomosis. Factors that impair perfusion and mucosal defense, such as smoking, nonsteroidal anti-inflammatory drug exposure, or Helicobacter pylori infection, are repeatedly implicated as modifiable contributors. Anatomical considerations also matter: a larger gastric pouch may contain more acid-producing parietal cells and thus be more prone to ulcer development, illustrating how technical decisions can translate into long-term mucosal vulnerability. Clinically, marginal ulcers can be silent or present with epigastric pain, nausea, food intolerance, occult blood loss, or overt bleeding. They can also precipitate strictures, chronic inflammation, perforation, or even contribute to leaks. The time interval for presentation is broad, ranging from as early as one month to as late as six years after surgery, making this complication a quintessential example of why bariatric care must be longitudinal rather than episodic.[24][25] Treatment ranges from pharmacologic therapy with proton pump inhibitors and sucralfate to endoscopic management of bleeding lesions through coagulation or clipping, and to endoscopic or surgical approaches for strictures or refractory disease. When ulcers fail to heal, surgical correction may include anastomotic revision with or without vagotomy, gastrectomy, or even conversion to an alternative bariatric configuration. Perforations may require patch repair or revision, and strictures may be treated with dilation, stenting, or surgical reconstruction. Even after successful therapy, recurrence has been reported around 5%, reinforcing the importance of addressing underlying risk factors such as smoking and NSAID exposure, as well as ensuring adherence to protective pharmacotherapy when indicated.[24][25]

Gastroesophageal reflux disease (GERD) is especially relevant in sleeve gastrectomy patients and can be newly induced or exacerbated by the altered gastric geometry and pressure dynamics of the sleeve. Because sleeve gastrectomy reduces gastric volume and may increase intraluminal pressure, reflux can worsen even in patients without severe preoperative symptoms. Disruption of the lower esophageal sphincter’s functional barrier altered angle of His, and changes in gastric compliance can increase esophageal acid exposure. Persistent reflux is

clinically significant because chronic mucosal injury can progress to Barrett esophagus and esophageal adenocarcinoma, transforming a symptomatic quality-of-life issue into a long-term malignant risk. As a preventive and surveillance strategy, many programs perform preoperative endoscopy and prescribe proton pump inhibitor therapy for at least one year postoperatively, with endoscopic evaluation for patients who develop reflux symptoms after surgery.[8][9] When reflux is severe, refractory, or associated with endoscopic evidence of acid-mediated injury, conversion from LSG to RYGB may improve symptoms and reduce exposure, particularly in those with “silent” reflux detected through mucosal changes rather than by symptom reporting alone.[8][9] Gallstone disease is a well-recognized delayed complication of substantial weight loss and is particularly common after procedures that produce rapid and large reductions in adiposity, including RYGB and LSG. The pathophysiologic basis is multifactorial. Rapid weight loss increases cholesterol mobilization and alters bile composition, promoting supersaturation and stone formation. Caloric restriction and reduced dietary fat intake may decrease gallbladder contraction, causing bile stasis and further increasing stone risk. Additionally, changes in enterohepatic circulation and hormone profiles may influence biliary motility. The incidence of gallstones after bariatric surgery varies widely across studies and populations, with commonly cited ranges of approximately 10% to 25% or higher in those who lose weight rapidly. Clinical presentation can range from mild epigastric discomfort or nausea to biliary colic, acute cholecystitis, choledocholithiasis, or pancreatitis. Because biliary complications can mimic or overlap with postoperative gastrointestinal complaints, careful diagnostic evaluation—often requiring ultrasound, laboratory testing, and occasionally advanced imaging—is essential. Some programs consider prophylactic cholecystectomy at the time of bariatric surgery in selected patients, while others prefer surveillance and treatment only when symptomatic disease emerges, often through laparoscopic cholecystectomy.

Venous thromboembolism (VTE) remains a low-frequency but high-impact complication, contributing disproportionately to postoperative mortality in bariatric populations. Reported thromboembolism rates after bariatric surgery range from approximately 0.3% to 2.4%, reflecting variability in patient risk profiles, prophylaxis protocols, and event ascertainment.[26][27] Obesity itself predisposes to venous stasis, chronic inflammation, and hypercoagulability. Comorbid obstructive sleep apnea, hypertension, and reduced mobility further elevate risk, while smoking and baseline functional status influence both venous flow and endothelial health. Procedure-related factors, including operative duration, complexity of surgery

type, and the presence of postoperative complications, can magnify thrombotic risk by increasing inflammatory activation, immobilization, and central venous access requirements. Effective risk reduction is therefore multifaceted and typically includes standardized risk assessment, early ambulation, pulmonary toilet, minimization of opioid-induced hypoventilation, pharmacologic prophylaxis with low molecular weight heparin, and mechanical prophylaxis with compression devices or stockings. In select patients with multiple risk factors, consideration may be given to vena cava filters, though this decision remains individualized and should weigh filter-related complications. Some protocols extend chemoprophylaxis after discharge, particularly in patients with extreme obesity or additional thrombotic predispositions, and coordination with hematology may be required for patients with known prothrombotic conditions or prior thromboembolic events.[26][27] Dumping syndrome is another common functional complication following bariatric surgery, especially after procedures that alter gastric emptying and nutrient delivery to the small intestine.[28] It reflects a mismatch between the rapid transit of hyperosmolar food boluses and the absorptive capacity of the proximal intestine, producing a constellation of autonomic and gastrointestinal symptoms. Early dumping, typically within 30 minutes of eating, is driven by rapid fluid shifts into the intestinal lumen and neurohumoral responses, manifesting as nausea, abdominal cramping, diarrhea, tachycardia, dizziness, flushing, and diaphoresis. Late dumping, typically one to three hours after a meal, is more closely linked to exaggerated insulin release following rapid glucose exposure, resulting in reactive hypoglycemia with weakness, tremor, confusion, and diaphoresis. The clinical burden is often substantial because dumping can reinforce maladaptive dietary restriction and lead to fear of eating, which in turn can worsen nutritional status. Management is anchored in nutrition therapy—smaller, more frequent meals, avoidance of simple sugars, attention to protein and fiber, separation of solids and liquids, and careful macronutrient composition. In severe or refractory cases, pharmacologic therapy such as octreotide may be used to slow transit and blunt hormone responses.[28] Here, dietitians are central to sustained improvement, and nursing education reinforces adherence by translating dietary recommendations into feasible daily routines [26][27][28].

Nutritional deficiencies constitute one of the most clinically consequential long-term complications because they can affect virtually every organ system and often present with nonspecific symptoms that may be missed without structured surveillance. Bariatric surgery alters nutrient intake, digestion, and absorption through reduced gastric volume, altered acid secretion, bypassed absorptive surfaces, and changes in intrinsic factor availability.

The greater curvature of the stomach contains a significant concentration of parietal cells that secrete hydrochloric acid and intrinsic factor, both essential to the absorption of key micronutrients. Intrinsic factor is required for vitamin B12 absorption, and deficiency can lead to megaloblastic anemia and broader hematologic dysfunction affecting multiple marrow cell lines. Neurologically, B12 deficiency can cause glossitis, cognitive changes, and demyelination predominantly involving the posterior and lateral columns of the spinal cord, along with peripheral neuropathy, producing gait disturbance, sensory loss, and functional decline. Gastric acid facilitates absorption of iron and calcium; iron requires reduction to the ferrous form in an acidic environment and is primarily absorbed in the duodenum, a segment bypassed in RYGB and indirectly affected by reduced acid secretion after LSG. Consequently, decreased acid production and altered anatomy predispose patients to iron-deficiency anemia and impaired calcium absorption, increasing risk for osteopenia and fracture. Thiamine (vitamin B1) deficiency is particularly dangerous because it can present acutely as Wernicke encephalopathy, Korsakoff psychosis, or Beriberi, especially in patients with prolonged vomiting, rapid weight loss, or poor intake.[29] The clinical seriousness of micronutrient deficiency lies in its delayed and often disguised presentations. Patients may attribute fatigue, hair loss, paresthesias, mood changes, or cognitive slowing to “normal” postoperative adjustment, while laboratory indices gradually worsen in the background. Therefore, structured postoperative laboratory monitoring is not optional but foundational to safe bariatric care. Nutritional complications also intersect with other specialties in clinically meaningful ways. For example, deficiencies in B12, iron, and folate may be detected first through routine laboratory surveillance by identifying anemia patterns, while optometric evaluation may become crucial when deficiencies or postoperative metabolic changes affect visual function. Although bariatric surgery is beneficial for conditions like pseudotumor cerebri, nutritional deficiency states can create new ocular risks, including optic neuropathy in severe B12 deficiency, ocular surface changes in malnutrition, or night vision disturbances in states of fat-soluble vitamin deficiency. Thus, interdisciplinary care is required not only for detection but also for targeted rehabilitation once complications arise [29].

There is increasing recognition that trace element deficiencies are more prevalent than previously appreciated and may contribute to unexplained systemic symptoms after bariatric surgery. Selenium levels have been reported to reach a nadir approximately one year after bariatric surgery, and selenium deficiency can present with muscle weakness, cardiomyopathy, skin eruptions, and pedal

edema.[30] Supplementation with 100 micrograms daily has been described as protective.[30] Copper deficiency has also been reported and may cause microcytic anemia that is unresponsive to iron therapy, potentially leading clinicians to escalate iron supplementation without addressing the true etiology.[31] These examples illustrate a central bariatric principle: when deficiency syndromes are not recognized in their full biochemical complexity, treatment may be ineffective or even harmful. The importance of comprehensive multivitamin and mineral supplementation is therefore repeatedly emphasized, often including calcium and iron, with monitoring tailored to procedure type, baseline nutritional status, and clinical symptoms. Without supplementation, deficiency symptoms can manifest as early as three months postoperatively, particularly in patients with preexisting subclinical deficiencies prior to surgery.[32][33] This reality elevates the preoperative nutritional assessment from a procedural formality to a key preventive intervention, as undiagnosed baseline deficits can amplify postoperative vulnerability and shorten the time to clinically significant complications. The psychosocial and behavioral dimensions of postoperative complications are equally essential to understand, because many adverse outcomes arise not from surgical anatomy alone but from the intersection of anatomy with adherence, access to care, mental health, and socioeconomic conditions. Bariatric surgery requires sustained engagement with follow-up visits, laboratory surveillance, medication regimens such as proton pump inhibitors when indicated, structured dietary progression, and lifelong supplementation. Patients who lack stable transportation, health literacy support, or financial access to supplements are disproportionately at risk for late nutritional complications, ulcer recurrence, dehydration, and unmanaged reflux. Social workers play a crucial role in identifying these barriers, facilitating resources, and supporting long-term adherence, particularly when complications increase the complexity of care. Similarly, postoperative pain, vomiting, or food intolerance can precipitate anxiety and disordered eating patterns, which then worsen nutritional intake and can compound complications such as thiamine depletion. The clinical implication is that complication prevention must include a behavioral and social risk assessment that continues after surgery rather than ending at discharge [30][31][32][33].

From an operational standpoint, the early recognition and management of complications depend on standardized pathways that empower frontline clinicians. Nursing surveillance is critical because many early warning signs—tachycardia, subtle fever, reduced oral intake, increasing pain, changes in mental status, decreased urine output—are detected first through routine bedside monitoring

rather than through imaging or laboratory tests. When a nurse recognizes a concerning pattern early, escalation can occur before shock physiology develops, improving the chance that nonoperative management will succeed. Operating room technicians and perioperative staff contribute by ensuring readiness for urgent reintervention, including the availability of endoscopic equipment for hemostasis or leak assessment, laparoscopic instruments for exploratory evaluation, and standardized emergency supplies. Radiology integrates into this workflow as an extension of clinical evaluation, providing rapid assessment for bleeding sources, abscess formation, leak extravasation, bowel obstruction, internal hernia, and thromboembolic events when the clinical picture suggests these diagnoses. Over the long term, complications often cluster rather than occur in isolation. Reflux can contribute to poor intake and avoidance of protein, exacerbating malnutrition. Marginal ulcers can cause chronic occult blood loss, worsening anemia already predisposed by reduced iron absorption. Vomiting and dehydration can trigger thiamine deficiency, while restrictive eating patterns can amplify trace element deficiencies. Internal hernia symptoms may overlap with dietary intolerance, leading to repeated outpatient reassurance unless clinicians maintain a high index of suspicion. In this way, bariatric complications must be conceptualized as dynamic syndromes within a reconstructed anatomy rather than as discrete, unrelated events. The most effective bariatric programs anticipate this complexity and maintain structured follow-up schedules, rapid-access clinics for new symptoms, and integrated communication between surgery, radiology, nutrition, nursing, and supportive services [33].

In conclusion, bariatric surgery complications span immediate hemorrhagic and leak-related emergencies, intermediate mechanical and ulcerative disorders, and long-term metabolic and nutritional syndromes that can affect hematologic, neurologic, gastrointestinal, and potentially visual health. The epidemiology of complications is shaped by patient comorbidity burden and physiologic resilience,[13] while the most common early adverse event remains bleeding with procedure-specific frequencies and risk associations.[4][14][15] Leak rates vary by operation and timing,[16][17] with risk modified by baseline status and nutritional reserve.[18] Diagnostic strategies often incorporate endoscopy and contrast-based evaluation,[19] and technique refinements such as staple-line reinforcement have reduced leak frequency.[20] Major late complications include internal hernias and obstruction,[22][23] marginal ulceration with nontrivial recurrence,[24][25] reflux dynamics after sleeve gastrectomy with implications for surveillance and conversion,[8][9] thromboembolic events requiring structured prophylaxis pathways and

individualized extension of therapy,[26][27] dumping syndrome requiring nutritional interventions and occasional pharmacologic escalation,[28] and micronutrient and trace element deficiencies with serious systemic consequences.[29][30][31][32][33] Because many of these complications evolve over years and can present with subtle, nonspecific symptoms, the safety and durability of bariatric surgery depend fundamentally on coordinated, multidisciplinary, and longitudinal care rather than on the operative act alone.

Increased Risks Associated with Bariatric Surgery

Bariatric surgery occupies a unique position among elective operations because it is performed on patients with a high baseline burden of systemic disease and because it intentionally restructures gastrointestinal anatomy in ways that create distinctive perioperative vulnerabilities. Although contemporary bariatric procedures are generally safe in experienced centers, the overall risk profile is shaped by three intersecting factors: the intrinsic complexity of operating within an obese abdomen, the physiologic and metabolic consequences of obesity and its comorbidities, and the creation of gastrointestinal staple lines or anastomoses that can fail, bleed, or narrow. Consequently, "increased risk" in bariatric surgery is best understood not as a single hazard but as a cluster of predictable threats that require proactive mitigation through preoperative optimization, intraoperative discipline, and long-term postoperative surveillance. Infectious risk is among the most clinically significant concerns, and it arises from both patient-related and procedure-related mechanisms. Obesity itself predisposes patients to infection through impaired microcirculation, reduced tissue oxygenation, and chronic low-grade inflammation that can dysregulate immune function. Excess adipose tissue also creates larger dead spaces, increases the thickness of surgical planes, and reduces wound edge perfusion, all of which prolong healing time and increase susceptibility to bacterial proliferation. These issues are amplified in individuals with diabetes and metabolic syndrome, where hyperglycemia impairs leukocyte chemotaxis and phagocytosis, compromises collagen deposition, and increases the likelihood of surgical site breakdown. Bariatric operations additionally involve major manipulation of intraabdominal tissues, and many procedures create gastrointestinal staple lines or anastomoses that, if compromised, can seed intraabdominal infection. For this reason, surgical site infections, pneumonia, and urinary tract infections are among the more commonly encountered postoperative infectious events. Clinically, the problem is not simply that infection occurs more frequently, but that infection may present atypically in bariatric patients and can evolve rapidly into systemic compromise if early warning signs are missed. Vigilant monitoring of vital sign trends, respiratory status, urine output, and wound

appearance is therefore essential, and prophylactic strategies—such as perioperative antibiotic timing, glycemic control protocols, pulmonary hygiene, early mobilization, and catheter minimization—are often integrated into standardized pathways to reduce infectious morbidity [33].

Thromboembolic risk represents another major category of increased danger after bariatric surgery, driven by the interaction of obesity-related hypercoagulability, venous stasis, and postoperative immobility. Obesity promotes venous stasis through increased intraabdominal pressure, reduced venous return, and relative physical inactivity, while inflammatory cytokines and endothelial dysfunction contribute to a prothrombotic milieu. Bariatric patients frequently carry additional risk modifiers, including obstructive sleep apnea, chronic hypoventilation, smoking exposure, and limited mobility, all of which can worsen postoperative venous stasis and increase pulmonary complication rates. The perioperative period adds transient but potent triggers for thrombosis: surgical trauma activates coagulation cascades, postoperative pain discourages ambulation, and dehydration may increase blood viscosity. Clinically important venous thromboembolism may manifest as deep vein thrombosis, pulmonary embolism, or less commonly mesenteric thrombosis, and these events can produce sudden deterioration even when the early postoperative course appears uneventful. Thus, bariatric programs typically emphasize risk-stratified chemoprophylaxis, mechanical compression devices, early ambulation, pulmonary toilet, and careful limitation of sedating medications that worsen hypoventilation. In higher-risk patients—such as those with extreme obesity, prior thromboembolism, or known thrombophilia—extended prophylaxis after discharge may be required, and coordination with hematology may be appropriate when anticoagulation decisions are complex. Respiratory risk is elevated both because of obesity-related pulmonary physiology and because bariatric surgery is performed under general anesthesia with pneumoperitoneum in many cases. Obese individuals often have reduced functional residual capacity, increased airway resistance, and ventilation-perfusion mismatch, which predispose to atelectasis and hypoxemia after anesthesia. Obstructive sleep apnea and obesity hypoventilation syndrome further increase the likelihood of postoperative respiratory compromise, particularly when opioids are used for analgesia. Reduced mobility and pain-related splinting also impair cough effectiveness and secretion clearance, raising the risk of postoperative pneumonia. From a perioperative management standpoint, this means that airway and ventilatory strategies must be individualized, with careful extubation planning, incentive spirometry, early mobilization, and sometimes noninvasive ventilation

support for high-risk individuals. Respiratory deterioration is also clinically important because it can be an early manifestation of other complications, including leaks and sepsis, meaning that new tachypnea or increasing oxygen requirements should prompt broader evaluation rather than being attributed solely to atelectasis [29][30][31][32][33][34].

Cardiovascular risk is likewise heightened because obesity increases baseline cardiac workload and is frequently accompanied by hypertension, coronary artery disease, heart failure, pulmonary hypertension, and dyslipidemia. Even when overt cardiac disease is not diagnosed, many bariatric candidates have reduced cardiopulmonary reserve. Anesthesia induction, pneumoperitoneum, fluid shifts, and postoperative pain can all increase sympathetic tone and myocardial oxygen demand. In this context, bariatric surgery can unmask underlying ischemia or precipitate arrhythmias, particularly in patients with electrolyte disturbances or unrecognized cardiomyopathy. Furthermore, perioperative management is more complex because accurate hemodynamic monitoring can be challenging in large body habitus, and appropriate dosing of vasoactive medications, sedatives, and analgesics must account for altered pharmacokinetics. Therefore, “cardiovascular stress” in bariatric surgery is not a theoretical concern but a predictable physiologic challenge requiring preoperative risk assessment, careful intraoperative monitoring, and postoperative vigilance for chest pain equivalents, arrhythmias, hypotension, and signs of volume overload. Technical difficulty constitutes a distinct and often underappreciated component of increased risk. Laparoscopic bariatric surgery is performed in an environment with thicker abdominal walls, increased visceral fat, and altered anatomy that can obscure landmarks and reduce working space. These factors can increase operative time, complicate exposure, and raise the probability of inadvertent organ injury or bleeding during dissection. Visceral adiposity may make vascular structures less visible and tissues more friable, while a larger liver can impair access to the proximal stomach and gastroesophageal junction. Even in expert hands, these anatomic realities elevate the baseline technical demands of surgery. Longer procedures, in turn, can increase risk for hypothermia, blood loss, thromboembolism, and postoperative pulmonary complications, creating a cascade where technical difficulty and physiologic vulnerability reinforce each other. This is why bariatric centers emphasize team experience, standardized positioning and retraction protocols, availability of appropriate stapling devices and reinforcement options, and readiness to convert approaches when safe exposure cannot be maintained [32][33].

Reoperation risk is increased after bariatric surgery because these procedures create new anatomic junctions and staple lines that can fail, narrow, or become sites of chronic pathology. Early reoperation may be required for uncontrolled bleeding, anastomotic or staple-line leaks, obstruction, or severe infection. Late reoperation may be required for internal hernias, strictures, marginal ulcer complications, gallstone disease, or anatomical problems such as fistula formation. Procedures like RYGB and LSG generally carry higher reintervention potential than purely restrictive operations because they involve longer staple lines, anastomoses, and more profound anatomical rearrangement. Malabsorptive components and mesenteric defects introduce additional “points of failure,” including the possibility of internal hernia development as weight loss alters intraabdominal fat distribution and enlarges potential spaces. Marginal ulcers may drive reoperation when they cause bleeding, perforation, or refractory symptoms despite maximal medical therapy. Strictures can lead to persistent vomiting, dehydration, and malnutrition, requiring endoscopic dilation, stenting, or surgical revision. In addition, when weight regain occurs or when complications persist—such as recurrent leak behavior in a sleeve—conversion to another operation may be considered, which itself carries incremental risk because revision surgery typically involves scar tissue, altered blood supply, and more complex dissection. Importantly, the increased risk profile of bariatric surgery is not static; it evolves over time. Immediate risks cluster around bleeding, infection, respiratory compromise, and thromboembolism, whereas intermediate and late risks more often involve mechanical complications, ulcer disease, nutritional deficiencies, and the need for revisional procedures. This temporal structure has practical implications: safety cannot be achieved solely through a technically successful operation and an uncomplicated discharge. Rather, it requires an integrated continuum that includes preoperative optimization of diabetes and cardiopulmonary status, rigorous perioperative protocols for infection and thromboembolism prevention, and reliable long-term follow-up for symptom surveillance, endoscopic assessment when indicated, and nutritional monitoring. When that continuum is robust, many of the “increased risks” become manageable and preventable, and the long-term metabolic benefits of bariatric surgery can be realized with substantially lower morbidity [33].

Psychosocial Concerns with Bariatric Surgery

Bariatric surgery produces rapid and highly visible changes in body mass, eating capacity, and daily functioning, and these biologic shifts frequently interact with psychological adaptation and social role transitions. While many patients report improved health, mobility, and quality of life, the postoperative period can also expose vulnerabilities in mood regulation, self-concept, coping strategies, and

interpersonal relationships. Accordingly, psychosocial concerns should be considered intrinsic to bariatric care rather than secondary issues, because mental health trajectories strongly influence adherence, follow-up engagement, nutritional behaviors, and ultimately long-term weight and comorbidity outcomes. Body image and identity adjustment represent early and persistent challenges for a subset of patients. The speed of weight loss may outpace the individual’s ability to integrate a new physical appearance into a stable self-concept. Some patients experience improved self-esteem, but others develop new dissatisfaction related to residual adiposity, loose skin, or perceived asymmetry. These concerns can be clinically meaningful, particularly when they drive avoidance of physical activity, social withdrawal, or compulsive monitoring of weight and appearance. In addition, rapid changes in appearance can provoke internal conflict about personal identity, including a sense of grief for the “old self” or discomfort with attention received from others. When patients have a preexisting history of depression, anxiety, trauma exposure, or disordered eating, postoperative adaptation may be more complex and can manifest as mood instability, heightened anxiety, or reemergence of maladaptive coping patterns. Because food often functions as a long-standing emotion-regulation strategy, the sudden restriction in portion size and altered reward response to eating can leave patients without familiar coping tools, increasing the risk of depressive symptoms, irritability, or compulsive behaviors. For this reason, ongoing counseling, structured support groups, and early identification of psychological distress are not optional adjuncts; they are protective interventions that sustain behavioral consistency and reduce relapse risk [33].

Eating behavior after surgery may also shift in ways that create psychosocial strain. Although surgery mechanically limits intake, it does not automatically extinguish emotional eating, binge-spectrum tendencies, or rigid dietary control patterns. Some individuals develop intense fear of weight regain and respond with overly restrictive practices that heighten anxiety and may evolve into clinically significant disordered eating. Others may “graze” throughout the day, especially when stress management skills are limited, which undermines satiety cues and contributes to weight relapse. The psychological burden of continual self-monitoring—counting calories, managing protein goals, and avoiding trigger foods—can become exhausting, particularly when social environments do not support the new regimen. This cognitive load, when combined with work and family responsibilities, may lead to frustration and the perception that the postoperative lifestyle is socially isolating, thereby increasing vulnerability to nonadherence. Social dynamics frequently change after substantial weight loss, sometimes in beneficial but also in destabilizing

ways. Patients may experience different treatment from colleagues, friends, or family members, which can create both validation and discomfort. Relationship shifts may occur when established roles—such as being “the one who needs help,” “the funny one,” or “the caregiver who avoids attention”—are disrupted by a new body image and increased autonomy. Some partners or family members may respond with support, while others may experience insecurity or fear of abandonment, which can generate conflict. Social gatherings often center on food, and patients may feel pressure to “eat normally,” to justify their choices, or to explain dietary restrictions repeatedly. Over time, these repeated interactions can contribute to avoidance of gatherings, reduced spontaneity, and the emergence of loneliness, even in patients whose physical health is improving. Social work involvement can be particularly valuable here, not only to address psychosocial stressors and family dynamics, but also to assist with practical barriers such as transportation for follow-up, financial constraints affecting diet quality, or access to mental health services [32][33][34].

Weight regain and recidivism are among the most psychologically distressing postoperative experiences because many patients interpret regain as personal failure rather than a multifactorial clinical reality. Although early postoperative weight loss is often dramatic, long-term maintenance requires sustained behavioral engagement, realistic expectations, and a supportive environment. Psychological factors—including stress, untreated mood disorders, low self-efficacy, and return to maladaptive eating patterns—commonly contribute to regain, as does reduced physical activity when musculoskeletal pain, fatigue, or time constraints limit exercise. At the same time, anatomical factors may influence recidivism. Sleeve dilation over time can reduce restrictive effect, and weight regain after laparoscopic sleeve gastrectomy can also occur through high-calorie liquid or sugar intake even without substantial pouch enlargement. In selected cases, revisional procedures such as conversion to Roux-en-Y gastric bypass may be considered and can yield additional weight loss.[34] Similarly, gastrojejunostomy complications after RYGB have psychosocial implications: early strictures can produce anxiety and fear of eating due to dysphagia or vomiting, while later dilation of the anastomosis can contribute to reduced satiety and distress about regain; both scenarios may be addressed with endoscopic interventions.[35] Importantly, the need for additional interventions can itself generate psychological burden, including disappointment, renewed fears about complications, and financial stress. For these reasons, bariatric programs increasingly emphasize longitudinal psychosocial care as a core component of postoperative

management. Effective models integrate mental health screening, counseling access, peer support, and coordinated follow-up that normalizes setbacks while reinforcing achievable routines. When psychosocial risks are addressed proactively—rather than only after complications or weight regain—patients are more likely to sustain dietary adherence, maintain physical activity, engage in follow-up care, and preserve the health benefits that bariatric surgery can provide [33][34][35].

Clinical Significance

Although the overall incidence of major bariatric surgery complications is relatively low in high-volume centers, the clinical significance of these adverse events is disproportionate to their frequency because they can progress rapidly, present with subtle or atypical symptoms, and generate cascading physiologic consequences across multiple organ systems. Bariatric procedures intentionally alter gastrointestinal anatomy and physiology to achieve durable weight loss and metabolic improvement; however, the same anatomic rearrangements that produce therapeutic benefit also create new sites of vulnerability, including staple lines, anastomoses, mesenteric defects, and altered absorptive pathways. As a result, complications such as anastomotic or staple-line leaks, hemorrhage, internal hernias, strictures, and nutritional deficiencies must be interpreted not as isolated postoperative mishaps, but as time-sensitive clinical syndromes that demand coordinated surveillance, early recognition, and individualized intervention. From an acute care perspective, anastomotic leaks and internal hernias are among the most consequential complications because they can evolve into peritonitis, sepsis, and multi-organ dysfunction when diagnosis is delayed. Clinically, leaks may manifest with nonspecific findings such as tachycardia, fever, unexplained abdominal pain, respiratory distress, or an ill-defined sense of malaise, rather than dramatic peritoneal signs. Internal hernias, particularly after Roux-en-Y gastric bypass, can similarly present with intermittent, colicky pain or nausea that may wax and wane, creating false reassurance until strangulation or ischemia occurs. These entities illustrate why bariatric postoperative assessment requires a high index of suspicion and a low threshold for escalation, including urgent imaging, laboratory evaluation, and early surgical consultation. The clinical priority is not merely treating the complication but preventing the physiologic spiral that results when gastrointestinal contamination, tissue ischemia, or ongoing bleeding triggers systemic inflammatory response, shock, renal injury, and respiratory failure. Even when these complications are successfully managed, they can prolong hospitalization, increase intensive care utilization, and elevate the likelihood of subsequent morbidity such as adhesions, recurrent obstruction, or chronic abdominal pain [34][35].

Hemorrhage, while often more readily detected than leaks, carries its own spectrum of significance. Early postoperative bleeding may be intraluminal or intraabdominal, and the clinical presentation may be subtle in patients whose baseline physiologic reserve is limited by obesity-related comorbidities such as obstructive sleep apnea, cardiometabolic disease, or chronic kidney dysfunction. Significant blood loss can precipitate myocardial ischemia, worsen renal perfusion, and impair wound healing. Moreover, anticoagulation and antiplatelet strategies—commonly necessary to mitigate postoperative thromboembolism risk—must be balanced carefully against bleeding risk, often requiring nuanced, multidisciplinary decision-making that incorporates surgical assessment, internal medicine judgment, and anesthesia or critical care expertise. The chronic clinical significance of bariatric complications is equally important because long-term outcomes depend on durable nutritional adequacy, metabolic stability, and sustained engagement with follow-up care. Malnutrition and micronutrient deficiencies represent a distinctive category of bariatric morbidity: they may develop insidiously, remain clinically silent for prolonged periods, and then manifest as anemia, neuropathy, cognitive changes, cardiomyopathy, osteopenia or osteoporosis, and impaired immune function. Deficiencies in vitamin B12, iron, folate, calcium, vitamin D, and thiamine can undermine the very improvements in quality of life that surgery is intended to achieve. These complications are clinically significant not only because they cause direct harm, but also because they can be preventable through structured supplementation protocols, routine laboratory monitoring, and timely dietetic intervention. When follow-up is fragmented or adherence is inconsistent—often due to socioeconomic barriers, limited health literacy, or psychosocial stressors—nutritional complications become more likely and more severe, reinforcing the central importance of longitudinal, multidisciplinary care models [35].

Gastrointestinal functional complications such as reflux, dumping syndrome, marginal ulcers, and strictures add another layer of significance because they can compromise hydration, oral intake, and medication tolerance, thereby precipitating dehydration, electrolyte disturbances, and recurrent emergency presentations. Persistent vomiting, for example, is not only a symptom but also a pathway to thiamine deficiency and neurologic injury if not addressed promptly. Similarly, chronic ulcer disease can lead to bleeding, perforation, and recurrent pain that disrupts activity, sleep, and nutritional routines. Effective management therefore requires more than episodic symptom treatment; it demands ongoing assessment of dietary triggers, medication risks (such as NSAID exposure), smoking status, and potential anatomical contributors that may require endoscopic

or surgical revision. Psychological and behavioral health considerations intensify the clinical significance of bariatric complications because they influence adherence, symptom reporting, and the ability to sustain the lifestyle modifications required for long-term success. Depression, anxiety, disordered eating patterns, and maladaptive coping can emerge or worsen during the postoperative adjustment period, particularly as patients navigate rapid body changes and shifting social dynamics. Psychological distress may reduce clinic attendance, impair nutritional consistency, and increase the likelihood of weight regain, thereby reintroducing cardiometabolic risk. In this context, mental health support is not ancillary; it is an essential component of complication prevention and recovery optimization, particularly for patients with preexisting psychiatric histories or limited social support. For these reasons, the clinical significance of bariatric surgery complications ultimately points to a single unifying principle: outcomes are maximized when bariatric care is delivered as a coordinated continuum rather than a discrete operative event. Surgeons provide procedural expertise and early complication management, but dietitians, psychologists, endocrinologists, internists, nurses, and physical therapists each address distinct domains that directly determine postoperative safety and long-term benefit. A multidisciplinary team can harmonize surveillance strategies, interpret evolving symptoms through multiple clinical lenses, and deliver integrated interventions that prevent minor issues from escalating into life-threatening events. In practice, this team-based approach improves timely diagnosis, supports nutritional sufficiency, strengthens behavioral adherence, and sustains the metabolic improvements that define bariatric surgery's therapeutic value [34].

Other Issues

Contemporary obesity care is undergoing rapid transformation as pharmacologic innovation, evolving surgical eligibility criteria, and a growing emphasis on early-life intervention reshape clinical pathways. Advances in targeted therapy have expanded treatment options beyond traditional lifestyle modification and bariatric surgery, and the policy environment has also shifted: insurance authorization for bariatric procedures is generally less restrictive than in earlier eras, reflecting broader recognition that untreated obesity is a chronic, progressive disease with durable downstream consequences. Nevertheless, improved theoretical availability does not automatically translate into equitable access. In many settings, the most effective anti-obesity medications remain financially inaccessible, and coverage variability creates uneven care patterns in which therapeutic decisions are driven as much by payer policy as by clinical indication. A central challenge is the cost and real-world availability of newer agents—particularly

glucagon-like peptide-1 (GLP-1) agonists and dual incretin therapies that incorporate glucose-dependent insulinotropic polypeptide (GIP) activity. While these medications can produce clinically meaningful weight loss and improve cardiometabolic risk factors, they are often cost-prohibitive without robust insurance support, and prior authorization processes can be burdensome and inconsistent. This access gap is clinically significant because it can delay effective treatment, prolong exposure to obesity-related comorbidities, and increase the likelihood that patients progress to more advanced disease stages requiring complex medical management or surgical intervention. Moreover, intermittent coverage can lead to medication discontinuation and subsequent weight regain, which is not only physiologically discouraging but also psychologically destabilizing, undermining trust in the healthcare system and decreasing long-term engagement with care. The expanding obesity burden in children and adolescents introduces additional complexity, as obesity in early life is strongly associated with lifelong morbidity, reduced quality of life, and premature mortality. The obesity epidemic affects a substantial proportion of the American population, including pediatric cohorts, and clinical guidelines increasingly recognize that delaying treatment until adulthood may represent a missed opportunity for preventing irreversible metabolic and vascular injury. In 2023, the American Academy of Pediatrics introduced updated guidance that supports metabolic and bariatric surgery for adolescents using body mass index thresholds aligned with adult criteria.^[36] This position reflects accumulating evidence that severe adolescent obesity is not a benign phase but a life-shortening condition; morbid obesity in adolescents has been associated with a reduction in life expectancy on the order of a decade or more, and earlier intervention appears to yield greater reversal of comorbidities compared with treatment initiated later in life.^[36] Importantly, this shift also reframes bariatric surgery as a potential disease-modifying therapy rather than a last-resort procedure, especially for adolescents with severe obesity complicated by type 2 diabetes, obstructive sleep apnea, hypertension, and fatty liver disease.^[36]

Parallel to these clinical and policy developments is the increasing feasibility of precision medicine approaches for selected patients. Genetic screening for monogenic obesity is now available, and for individuals diagnosed with specific pathogenic variants, targeted therapies can address underlying biologic drivers rather than focusing solely on appetite suppression or caloric restriction.^[37] Treatments that modulate the melanocortin pathway, as well as therapies directed toward leptin signaling and related neuroendocrine defects—such as deficiencies involving leptin, proopiomelanocortin (POMC), and proprotein

subtilisin/kexin type 1 (PCSK1)—illustrate how obesity management is expanding toward mechanism-based intervention in carefully defined subpopulations.^[37] Although monogenic obesity accounts for a minority of cases, its recognition has broader implications: it underscores the heterogeneity of obesity, challenges stigma-driven narratives that frame obesity as purely behavioral, and supports a more individualized approach to evaluation and treatment selection. Taken together, these “other issues” highlight that modern obesity care must balance innovation with practicality. Breakthrough medications and evolving surgical guidelines have improved the therapeutic landscape, but real progress will depend on integrating these tools into accessible, equitable systems of care. This includes addressing medication affordability, streamlining insurance processes, strengthening pediatric and adolescent obesity pathways, and expanding multidisciplinary services that can sustain long-term outcomes across medical, nutritional, psychological, and social domains.^[37]

Enhancing Healthcare Team Outcomes

Optimizing outcomes after bariatric surgery—particularly when complications arise—depends on disciplined interprofessional collaboration that integrates surgical decision-making with longitudinal medical, nutritional, and psychosocial care. Bariatric complications may evolve quickly, present with nonspecific symptoms, and generate multisystem consequences; therefore, no single clinician can reliably provide comprehensive management in isolation. High-performing teams establish clear pathways for escalation, shared clinical language for warning signs, and structured handoffs that reduce delays in diagnosis and treatment. Within this framework, bariatric surgeons play a central leadership role in evaluating and managing surgical complications such as staple-line bleeding, anastomotic leaks, strictures, and internal hernias. Their decisions often determine whether a patient requires urgent reoperation, endoscopic management, image-guided drainage, or conservative therapy with close observation. However, the surgeon’s effectiveness is magnified when advanced clinicians—nurse practitioners and physician assistants—perform frequent postoperative assessments, synthesize evolving data, and coordinate consultations, imaging, and follow-up plans across services. Nursing is a cornerstone of bariatric safety because nurses function as continuous bedside observers and early detectors of clinical deterioration. Subtle trends such as persistent tachycardia, increasing oxygen requirements, new abdominal tenderness, reduced urine output, or altered mentation may represent early leak physiology, occult bleeding, or evolving sepsis. Nurses also carry responsibility for pain assessment, mobility promotion, pulmonary hygiene reinforcement, and patient education

regarding hydration goals, dietary progression, and warning signs requiring urgent evaluation. Pharmacists strengthen outcomes through medication optimization and safety surveillance, including antimicrobial stewardship, anticoagulation support, opioid-sparing pain regimens, and management of drug-nutrient interactions. Because bariatric surgery changes absorption dynamics, pharmacists are essential in adjusting formulations and ensuring adherence to lifelong supplementation strategies that prevent anemia, neuropathy, and bone disease. Ultimately, team outcomes improve when communication is proactive rather than reactive—using daily interdisciplinary rounds, standardized postoperative checklists, and rapid-response pathways that align clinicians around the same risk priorities and minimize fragmented decision-making [37].

Nursing, Allied Health, and Interprofessional Team Interventions

Interventions that improve bariatric outcomes begin before the operation and continue throughout the postoperative continuum, emphasizing behavioral preparation, metabolic optimization, and structured education. Preoperatively, interprofessional teams can reduce complication risk by addressing glycemic control, smoking cessation, sleep apnea management, and baseline nutritional deficiencies. Counseling that targets eating behaviors, portion awareness, and readiness for postoperative dietary restrictions is not merely supportive; it is a clinical intervention that influences postoperative tolerance, hydration adequacy, and adherence to supplementation. Multidisciplinary bariatric programs often achieve better results because they standardize education and create multiple opportunities to identify barriers early, including low health literacy, unstable housing, food insecurity, transportation limitations, or untreated mood disorders. After surgery, dietitian-led protocols are particularly impactful because nutritional behaviors determine both physiologic recovery and long-term weight trajectory. Structured dietary advancement reduces vomiting, dehydration, and micronutrient depletion, while individualized nutrition counseling helps patients avoid maladaptive patterns such as grazing or reliance on calorie-dense liquids. Nutrition-focused support groups can further strengthen adherence by normalizing challenges, reinforcing practical strategies, and improving long-term weight maintenance, with evidence suggesting that expert-led, team-based programs improve outcomes and reduce recidivism in a disease associated with substantial morbidity and mortality.[38][39] Physical therapy and rehabilitation-oriented interventions promote early mobilization, reduce thromboembolic risk, and help patients regain functional capacity, especially in those with deconditioning or musculoskeletal limitations. Mental health interventions—whether delivered by

psychologists, psychiatrists, or trained counselors—are similarly essential, particularly for individuals with binge-spectrum behaviors, anxiety, depression, or trauma histories. By integrating these interventions into routine follow-up rather than treating them as optional add-ons, bariatric teams improve complication recognition, reinforce self-management skills, and ensure that clinical care remains patient-centered and sustainable [38][39].

Nursing, Allied Health, and Interprofessional Team Monitoring

Long-term monitoring after bariatric surgery is a structured clinical requirement because many complications—particularly nutritional deficiencies and anatomic changes—develop gradually and may be clinically silent until advanced. Nursing and allied health professionals play a critical role in creating reliable follow-up systems that ensure patients complete laboratory surveillance, attend scheduled visits, and understand the rationale for lifelong monitoring. Nutritional parameters should be assessed at regular intervals, including B vitamins, iron indices, and trace elements, because deficiencies can present with fatigue, anemia, neuropathy, cognitive changes, cardiomyopathy, or impaired wound healing. In addition to micronutrients, annual general laboratory evaluation typically includes liver function tests, complete blood count, a basic metabolic panel, and a lipid panel to track metabolic status and detect complications early.[40] Consistent monitoring supports timely supplementation adjustments, reduces emergency presentations due to dehydration or electrolyte abnormalities, and provides objective reinforcement for dietary counseling. Monitoring also includes vigilance for late surgical complications, such as marginal ulcers, strictures, internal hernias, or reflux-related disease, which may require imaging, endoscopy, or surgical reassessment. Radiologists contribute substantially in this phase by interpreting time-sensitive studies—such as contrast-enhanced CT for suspected internal hernia, bleeding, obstruction, or leak—thereby enabling rapid triage and guiding procedural planning. Optometry and ophthalmology can add value when patients develop visual symptoms linked to nutritional deficiencies (for example, severe micronutrient depletion affecting ocular surface health or neuro-ophthalmic function) or when comorbidity improvement (such as diabetes control) changes ocular risk profiles, making eye surveillance an important component of comprehensive chronic care. Social workers strengthen monitoring systems by addressing barriers that commonly disrupt follow-up, including financial constraints, transportation, unstable social support, or difficulty navigating insurance coverage for supplements, imaging, or revisional procedures. Nutritionists remain central across the monitoring continuum by tracking intake adequacy, reinforcing protein and hydration targets, interpreting deficiency patterns in collaboration with

laboratory data, and tailoring supplementation plans to individual tolerability and cultural dietary practices. When these roles function cohesively—linking physiologic surveillance with practical support—teams improve early detection, reduce preventable complications, and enhance long-term patient safety and quality of life [40].

Conclusion:

Bariatric surgery offers transformative benefits for patients with morbid obesity, including substantial weight reduction and remission of metabolic comorbidities. However, these advantages coexist with a complex risk profile encompassing immediate, intermediate, and long-term complications. Hemorrhage, leaks, internal hernias, marginal ulcers, reflux, thromboembolism, and micronutrient deficiencies illustrate the need for proactive surveillance and rapid intervention. Importantly, the success of bariatric surgery extends beyond technical execution; it depends on an integrated continuum of care that begins preoperatively and persists throughout the patient's life. Multidisciplinary collaboration—encompassing surgeons, radiologists, nurses, dietitians, mental health professionals, and social workers—ensures comprehensive management of physiologic, nutritional, and psychosocial dimensions. Structured education, routine laboratory monitoring, and behavioral support are essential to prevent malnutrition, sustain adherence, and mitigate psychosocial distress. As obesity care evolves with pharmacologic innovations and expanded eligibility criteria, bariatric surgery remains a cornerstone therapy, provided it is delivered within robust systems that prioritize safety, equity, and long-term engagement. Ultimately, the clinical significance of bariatric surgery lies not only in its capacity to induce weight loss but in its ability to modify disease trajectories when supported by coordinated, patient-centered care.

References:

- Moll H, Frey E, Gerber P, Geidl B, Kaufmann M, Braun J, Beuschlein F, Puhan MA, Yebo HG. GLP-1 receptor agonists for weight reduction in people living with obesity but without diabetes: a living benefit-harm modelling study. *EClinicalMedicine*. 2024 Jul;73():102661. doi: 10.1016/j.eclim.2024.102661.
- Norain A, Arafat M, Burjonrappa S. Trending Weight Loss Patterns in Obese and Super Obese Adolescents: Does Laparoscopic Sleeve Gastrectomy Provide Equivalent Outcomes in both Groups? *Obesity surgery*. 2019 Aug;29(8):2511-2516. doi: 10.1007/s11695-019-03867-8.
- Hsu JL, Ismail S, Hodges MM, Agala CB, Farrell TM. Bariatric surgery: trends in utilization, complications, conversions and revisions. *Surgical endoscopy*. 2024 Aug;38(8):4613-4623. doi: 10.1007/s00464-024-10985-7.
- Kollmann L, Gruber M, Lock JF, Germer CT, Seyfried F. Clinical Management of Major Postoperative Bleeding After Bariatric Surgery. *Obesity surgery*. 2024 Mar;34(3):751-759. doi: 10.1007/s11695-023-07040-0.
- Douros JD, Tong J, D'Alessio DA. The Effects of Bariatric Surgery on Islet Function, Insulin Secretion, and Glucose Control. *Endocrine reviews*. 2019 Oct 1:40(5):1394-1423. doi: 10.1210/er.2018-00183.
- Nguyen NT, Varela JE. Bariatric surgery for obesity and metabolic disorders: state of the art. *Nature reviews. Gastroenterology & hepatology*. 2017 Mar;14(3):160-169. doi: 10.1038/nrgastro.2016.170.
- Gastaldelli A, Iaconelli A, Gaggini M, Magnone MC, Veneziani A, Rubino F, Mingrone G. Short-term Effects of Laparoscopic Adjustable Gastric Banding Versus Roux-en-Y Gastric Bypass. *Diabetes care*. 2016 Nov;39(11):1925-1931.
- Guzman-Prunedo FA, Brethauer SA. Gastroesophageal Reflux After Sleeve Gastrectomy. *Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract*. 2021 Feb;25(2):542-550. doi: 10.1007/s11605-020-04786-1.
- Tomasicchio G, D'abramo FS, Dibra R, Trigiante G, Picciariello A, Dezi A, Rotelli MT, Ranaldo N, Di Leo A, Martines G. Gastroesophageal reflux after sleeve gastrectomy. Fact or fiction? *Surgery*. 2022 Sep;172(3):807-812. doi: 10.1016/j.surg.2022.04.040.
- Anderson B, Switzer NJ, Almamar A, Shi X, Birch DW, Karmali S. The impact of laparoscopic sleeve gastrectomy on plasma ghrelin levels: a systematic review. *Obesity surgery*. 2013 Sep;23(9):1476-80. doi: 10.1007/s11695-013-0999-7.
- Kwon Y, Lee S, Kim D, ALRomi A, Park SH, Lee CM, Kim JH, Park S. Biliopancreatic Limb Length as a Potential Key Factor in Superior Glycemic Outcomes After Roux-en-Y Gastric Bypass in Patients With Type 2 Diabetes: A Meta-Analysis. *Diabetes care*. 2022 Dec 1:45(12):3091-3100. doi: 10.2337/dc22-0835.
- Buser A, Joray C, Schiavon M, Kosinski C, Minder B, Nakas CT, Man CD, Muka T, Herzig D, Bally L. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on β -Cell Function at 1 Year After Surgery: A Systematic Review. *The Journal of clinical endocrinology and metabolism*. 2022 Nov 23;107(11):3182-3197. doi: 10.1210/clinem/dgac446.
- Ali AB, Morris LM, Hodges J, Amirkhosravi F, Yasrebi S, Khoo A, Graviss EA, Nguyen DT, Reardon PR. Postoperative bleeding and leaks in

sleeve gastrectomy are independent of both staple height and staple line oversewing. *Surgical endoscopy*. 2022 Sep;36(9):6924-6930. doi: 10.1007/s00464-022-09031-1.

14. Odovic M, Clerc D, Demartines N, Suter M. Early Bleeding After Laparoscopic Roux-en-Y Gastric Bypass: Incidence, Risk Factors, and Management - a 21-Year Experience. *Obesity surgery*. 2022 Oct;32(10):3232-3238. doi: 10.1007/s11695-022-06173-y.

15. Straatman J, Verhaak T, Demirkiran A, Harlaar NJ, Cense HA, Jonker FHW, Dutch Audit for Treatment of Obesity (DATO) Research Group. Risk factors for postoperative bleeding in bariatric surgery. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. 2022 Aug;18(8):1057-1065. doi: 10.1016/j.soard.2022.05.010.

16. Bashah M, Khidir N, El-Matbouly M. Management of leak after sleeve gastrectomy: outcomes of 73 cases, treatment algorithm and predictors of resolution. *Obesity surgery*. 2020 Feb;30(2):515-520. doi: 10.1007/s11695-019-04203-w.

17. Vidarsson B, Sundbom M, Edholm D. Incidence and treatment of small bowel leak after Roux-en-Y gastric bypass: a cohort study from the Scandinavian Obesity Surgery Registry. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. 2020 Aug;16(8):1005-1010. doi: 10.1016/j.soard.2020.04.013.

18. Mocanu V, Dang J, Ladak F, Switzer N, Birch DW, Karmali S. Predictors and outcomes of leak after Roux-en-Y gastric bypass: an analysis of the MBSAQIP data registry. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. 2019 Mar;15(3):396-403. doi: 10.1016/j.soard.2019.01.012.

19. Dayma K, David A, Omer A, Abdel-Dayam H, Tawil A, Socci N, Ahmed L, Gilet A, Haddad D. Routine Upper Gastrointestinal Series Post-bariatric Surgery: Predictors, Usage, and Utility. *Obesity surgery*. 2024 May;34(5):1552-1560. doi: 10.1007/s11695-024-07125-4.

20. Coşkun M, Uprak TK, Günel Ö, Aliyeva A, Cingi A. Reinforcement in Laparoscopic Sleeve Gastrectomy: Is It Effective? Surgical laparoscopy, endoscopy & percutaneous techniques. 2024 Jun 1;34(3):290-294. doi: 10.1097/SLE.0000000000001283.

21. Abu-Abeid A, Litmanovich A, Abu-Abeid S, Eldar SM, Lahat G, Yuval JB. Long-Term Outcomes of Patients with Staple Line Leaks Following Sleeve Gastrectomy. *Obesity surgery*. 2024 Jul;34(7):2523-2529. doi: 10.1007/s11695-024-07307-0.

22. Garza E Jr, Kuhn J, Arnold D, Nicholson W, Reddy S, McCarty T. Internal hernias after laparoscopic Roux-en-Y gastric bypass. *American journal of surgery*. 2004 Dec;188(6):796-800.

23. El Nogoomi I, Nouh AK, Jaber AA, Toubah AM, Alkaram SS, Petersen's Hernia After Roux-en-Y Gastric Bypass: A Case Report. *Cureus*. 2023 Dec;15(12):e50757. doi: 10.7759/cureus.50757.

24. Martinino A, Bhandari M, Abouelazayem M, Abdellatif A, Koshy RM, Mahawar K. Perforated marginal ulcer after gastric bypass for obesity: a systematic review. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. 2022 Sep;18(9):1168-1175. doi: 10.1016/j.soard.2022.05.024.

25. Salame M, Jawhar N, Belluzzi A, Al-Kordi M, Storm AC, Abu Dayyeh BK, Ghanem OM. Marginal Ulcers after Roux-en-Y Gastric Bypass: Etiology, Diagnosis, and Management. *Journal of clinical medicine*. 2023 Jun 28;12(13):. doi: 10.3390/jcm12134336.

26. Goel R, Nasta AM, Goel M, Prasad A, Jammu G, Fobi M, Ismail M, Raj P, Palaniappan R, Aggarwal S, Bindal V, Katakwar A, Vennapusa A, Bhasker AG, Peters A, Goel D, Bedi D, Palep J, Kona L, Mehrotra M, Baijal M, Bhandari M, Dukkipati N, Wadhawan R, Baig S, Pattanshetti S, Ugale S. Complications after bariatric surgery: A multicentric study of 11,568 patients from Indian bariatric surgery outcomes reporting group. *Journal of minimal access surgery*. 2021 Apr-Jun;17(2):213-220. doi: 10.4103/jmas.JMAS_12_20.

27. Carvalho L, Almeida RF, Nora M, Guimarães M. Thromboembolic Complications After Bariatric Surgery: Is the High Risk Real? *Cureus*. 2023 Jan;15(1):e33444. doi: 10.7759/cureus.33444.

28. Samigullin A, Weihrauch J, Otto M, Rech A, Buchenberger S, Morcos M, Humpert PM. Postprandial Symptoms in a Mixed-Meal-Test after Bariatric Surgery: Clinical Experience and a Critical Review of Dumping Syndrome Definition and Management. *Obesity facts*. 2025;18(1):31-38. doi: 10.1159/000541780.

29. Langan RC, Zawistoski KJ. Update on vitamin B12 deficiency. *American family physician*. 2011 Jun 15;83(12):1425-30

30. Shahmiri SS, Eghbali F, Ismaeil A, Gholizadeh B, Khalooefard R, Valizadeh R, Rokhgireh S, Kermansaravi M. Selenium Deficiency After Bariatric Surgery, Incidence and Symptoms: a Systematic Review and Meta-Analysis. *Obesity surgery*. 2022 May;32(5):1719-1725. doi: 10.1007/s11695-022-05932-1.

31. Lewis CA, de Jersey S, Seymour M, Hopkins G, Hickman I, Osland E. Iron, Vitamin B(12), Folate and Copper Deficiency After Bariatric Surgery and the Impact on Anaemia: a

Systematic Review. *Obesity surgery*. 2020 Nov;30(11):4542-4591. doi: 10.1007/s11695-020-04872-y.

32. Enani G, Bilgic E, Lebedeva E, Delisle M, Vergis A, Hardy K. The incidence of iron deficiency anemia post-Roux-en-Y gastric bypass and sleeve gastrectomy: a systematic review. *Surgical endoscopy*. 2020 Jul;34(7):3002-3010. doi: 10.1007/s00464-019-07092-3.

33. Cohen Vig L, Straussberg R, Ziv N, Hirschfeld-Dicker L, Konen O, Aharoni S. Neurologic complications of thiamine (B1) deficiency following bariatric surgery in adolescents. *European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society*. 2024 May;50():74-80. doi: 10.1016/j.ejpn.2024.04.008.

34. Gerges WB, Omar ASM, Shoka AA, Hamed MA, Abdelrahim HS, Makram F. ReSleeve or revisional one anastomosis gastric bypass for failed primary sleeve gastrectomy with dilated gastric tube: a retrospective study. *Surgical endoscopy*. 2024 Feb;38(2):787-798. doi: 10.1007/s00464-023-10609-6.

35. Brunaldi VO, Jirapinyo P, de Moura DTH, Okazaki O, Bernardo WM, Galvão Neto M, Campos JM, Santo MA, de Moura EGH. Endoscopic Treatment of Weight Regain Following Roux-en-Y Gastric Bypass: a Systematic Review and Meta-analysis. *Obesity surgery*. 2018 Jan;28(1):266-276. doi: 10.1007/s11695-017-2986-x.

36. Michalsky MP, Inge TH, Jenkins TM, Xie C, Courcoulas A, Helmrath M, Brandt ML, Harmon CM, Chen M, Dixon JB, Urbina EM, Teen-LABS Consortium. Cardiovascular Risk Factors After Adolescent Bariatric Surgery. *Pediatrics*. 2018 Feb;141(2):. doi: 10.1542/peds.2017-2485.

37. Roth CL, Scimia C, Shoemaker AH, Gottschalk M, Miller J, Yuan G, Malhotra S, Abuzzahab MJ. Setmelanotide for the treatment of acquired hypothalamic obesity: a phase 2, open-label, multicentre trial. *The lancet. Diabetes & endocrinology*. 2024 Jun;12(6):380-389. doi: 10.1016/S2213-8587(24)00087-1.

38. Bullen NL, Parmar J, Gilbert J, Clarke M, Cota A, Finlay IG. How Effective Is the Multidisciplinary Team Approach in Bariatric Surgery? *Obesity surgery*. 2019 Oct;29(10):3232-3238. doi: 10.1007/s11695-019-03975-5.

39. Houlden RL, Yen JL, Moore S. Effectiveness of an Interprofessional Glycemic Optimization Clinic on Preoperative Glycated Hemoglobin Levels for Adult Patients With Type 2 Diabetes Undergoing Bariatric Surgery. *Canadian journal of diabetes*. 2018 Oct;42(5):514-519. doi: 10.1016/j.jcjd.2017.12.011.

40. Fox W, Borgert A, Rasmussen C, Kallies K, Klas P, Kothari S. Long-term micronutrient surveillance after gastric bypass surgery in an integrated healthcare system. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. 2019 Mar;15(3):389-395. doi: 10.1016/j.sobd.2018.12.029