

Odontogenic Orocutaneous Fistula: Diagnosis and Management-Review for Dentists

Shmakhi Sharifah Hussain A⁽¹⁾, Mahdi Zahran Mohammed A⁽¹⁾, Tahreer Mohammed Naser Hefzy⁽²⁾, Alhazmi Amnah Ahmed⁽¹⁾, Fadiyah Nasser Alharbi⁽³⁾, Layla Ahmad Awaji⁽⁴⁾, Fatimah Mohammed Nasir Alhazmi⁽⁵⁾, Afaf Murrajiha Almutairi⁽⁶⁾, Haya Soud Elenazi⁽⁶⁾, Reem Mohammed Kinani⁽⁷⁾, Salih Mohammed S Aljasem⁽⁸⁾, Mudaher Habeb Ali Alhamoud⁽⁸⁾

(1) Jazan Health Cluster, Ministry of Health, Saudi Arabia,

(2) Primary Care center in Aldabeah, Ministry of Health, Saudi Arabia,

(3) Ministry Of Health, Saudi Arabia,

(4) Jazan Specialized Dental Center, Ministry of Health, Saudi Arabia,

(5) Specialized Dental Center, Ministry of Health, Saudi Arabia,

(6) Riyadh Specialized Dental Center, Ministry of Health, Saudi Arabia,

(7) Jazan Dental Center, Ministry of Health, Saudi Arabia,

(8) Al-Ahsa Health Cluster, Ministry of Health, Saudi Arabia

Abstract

Background: Odontogenic orocutaneous fistula (OCF) is an uncommon pathological communication between the oral cavity and skin, often misdiagnosed due to its atypical presentation. Chronic dental infections are the predominant cause, though trauma, osteomyelitis, medication-related osteonecrosis, and neoplasia also contribute.

Aim: To review the etiology, diagnostic challenges, and management strategies for odontogenic OCF, emphasizing its clinical significance for dental practitioners.

Methods: A comprehensive literature review was conducted, analyzing epidemiology, pathophysiology, diagnostic modalities, and treatment approaches. Key studies and case reports were synthesized to highlight common pitfalls and best practices.

Results: Odontogenic sources account for most OCF cases, typically arising from untreated pulpal necrosis and periapical infection. Misdiagnosis is frequent, with lesions often mistaken for dermatologic conditions such as cysts or granulomas. Radiographic tracing with gutta-percha and pulp vitality testing are essential for accurate localization. Endodontic therapy or extraction of the causative tooth leads to spontaneous closure in most cases, while adjunctive measures like vacuum-assisted closure may be required for complex defects. Prognosis is excellent when timely dental intervention occurs, though residual scarring may persist.

Conclusion: Early recognition of odontogenic origin is critical to prevent unnecessary interventions and aesthetic complications. Interdisciplinary collaboration between dermatology, surgery, and dentistry enhances diagnostic accuracy and patient outcomes.

Keywords: Orocutaneous fistula, odontogenic infection, differential diagnosis, endodontic treatment, interdisciplinary care

Introduction

Oral cutaneous fistula (OCF) represents an uncommon extraoral route of infectious drainage that establishes an abnormal communication between the oral cavity and the overlying skin.^[1] Within medical and dental scholarship, the expressions “fistula” and “sinus tract” are frequently applied interchangeably to denote this same pathological entity, reflecting overlap in clinical usage and descriptive tradition. Although infrequent in daily practice, OCF constitutes an important diagnostic consideration because it may signify an underlying odontogenic or non-odontogenic disease process that has progressed beyond local confines to create a persistent cutaneous outlet. The aetiological spectrum of OCF is broad.

Chronic dental infections remain among the most prevalent precipitants, while maxillofacial trauma, complications related to dental implants, disorders of the salivary glands, and neoplastic conditions are also well-recognized contributors. The condition’s clinical trajectory often leads patients to present initially to dermatologists or surgical services rather than dental practitioners, largely because the primary complaint is commonly an extraoral lesion rather than intraoral pain. This pattern of presentation can delay appropriate assessment of the oral and dental origins, thereby prolonging morbidity and increasing the likelihood of ineffective interventions directed solely at the skin manifestation. Diagnosing OCF can be challenging because its signs are frequently subtle,

limited, and nonspecific. The cutaneous opening may mimic more common dermatologic lesions, and the absence of prominent oral symptoms may further obscure the underlying source. Consequently, accurate identification typically depends upon a heightened index of suspicion and a comprehensive evaluation that considers dental pathology in the differential diagnosis. When the fistulous tract is odontogenic in origin, outcomes are generally favorable provided that definitive management is instituted without delay. In contrast, OCF associated with malignant disease may herald advanced pathology, predispose to significant complications, and in severe circumstances carry life-threatening implications [1].

Etiology

Odontogenic cutaneous fistulas account for the majority of oral cutaneous fistula cases described in the published literature.[2] In most instances, they develop as late consequences of microbial invasion of the dental pulp, a process typically initiated by dental caries, traumatic injury, or other insults that compromise pulpal integrity.[3] When definitive dental treatment is delayed or absent, pulpal inflammation progresses to irreversible damage, culminating in pulp necrosis and the establishment of a persistent intraradicular infection. From this necrotic focus, microorganisms and inflammatory mediators extend beyond the apical foramen into the periradicular tissues, producing apical periodontitis and, in many cases, a localized abscess within the periapical region.[3] While the majority of odontogenic fistulous tracts ultimately drain intraorally, chronic infections can evolve more insidiously, expanding within the alveolar bone and presenting as a slowly progressive abscess.[4] As the inflammatory burden persists, pressure necrosis and enzymatic degradation contribute to resorption of cortical bone and the periosteum, permitting the suppurative process to breach osseous confines.[4] Once the cortical barrier is compromised, the infection follows the anatomical planes of least resistance, dissecting through adjacent soft tissues until an external point of drainage is established on the skin surface. The eventual location of the cutaneous opening is influenced by maxillofacial anatomy and muscular attachments that guide the direction of spread. In mandibular infections, dissemination tends to occur below the attachments of the mylohyoid, mentalis, and buccinator muscles, whereas in the maxilla the spread typically proceeds above the attachment of the buccinator muscle.[5] These relationships are clinically significant because they help explain why lesions may manifest at a distance from the offending tooth and why extraoral drainage sites can vary across submental, submandibular, buccal, or perinasal regions.

Although considerably less frequent, cutaneous fistulas and sinus tracts arising in the maxillofacial region secondary to osteomyelitis are

also recognized, albeit rarely encountered in routine clinical settings.[6] Their occurrence is disproportionately observed among individuals with systemic or local conditions that compromise host defenses or vascular supply. Patients with poorly controlled diabetes mellitus are particularly susceptible due to impaired leukocyte function, microvascular disease, and delayed wound healing. Similarly, individuals with osteoradionecrosis following irradiation of the jaws face a heightened risk because radiation-induced endarteritis and tissue hypoxia reduce the capacity for bone remodeling and infection control. Metabolic bone disorders, including osteitis deformans (Paget disease) and osteopetrosis, have likewise been implicated as predisposing factors. In these settings, altered bone architecture and turnover can facilitate persistent infection and sequestration, thereby increasing the likelihood of chronic drainage and fistulous communication to the skin. Another clinically important etiology is medication-related osteonecrosis of the jaw (MRONJ), which has been documented as a cause of oral cutaneous fistula.[7] Antiresorptive agents, particularly bisphosphonates, and other medications that reduce bone turnover, as well as intravenous antiangiogenic therapies that impair neovascularization, have been reported to precipitate osteonecrosis affecting the maxilla or mandible.[7] These pharmacologic agents are widely used in the management of skeletal complications associated with malignancy, including lytic bone metastases, malignant hypercalcemia, and multiple myeloma, and are also prescribed for osteoporosis.[7] In susceptible patients, suppression of bone remodeling combined with local trauma or infection may result in areas of exposed, nonviable bone. Subsequent bacterial colonization and chronic inflammation can create a persistent pathway of drainage, and in advanced cases this process may evolve into an extraoral fistulous tract, particularly when necrosis is extensive or secondary infection is longstanding [7].

Traumatic etiologies should also be considered, particularly in patients with a history of facial injury or surgical intervention. Orocuteaneous fistulas may develop following penetrating trauma, fracture management, or reconstructive procedures, where tissue disruption and contamination can establish a chronic communication between the oral cavity and the skin. The risk is amplified when wound healing is impaired by adjuvant oncologic therapies. In the study by Dawson et al., which evaluated factors associated with orocutaneous fistula formation after head and neck reconstructive surgery, exposure to chemoradiotherapy was associated with a significantly higher likelihood of fistula development compared with patients who had not received such treatment ($p = 0.008$).[8] This association is biologically plausible given that combined chemotherapy and radiotherapy can compromise local vascularity, reduce tissue resilience, and impair

the reparative processes required for stable closure of mucosal and cutaneous planes. Complications arising from dental implants represent an additional, though relatively uncommon, pathway to fistula formation. Implant-related failures frequently reflect a complex interaction between microbial contamination, peri-implant tissue inflammation, and host immune response, including circumstances in which the inflammatory response is either excessive or insufficient. Infection around an implant fixture can propagate along the implant–bone interface, leading to peri-implantitis, bone loss, and the development of a chronic suppurative focus. The literature includes a report describing an oral cutaneous fistula associated with an osseointegrated dentoalveolar implant that emerged three months after placement.[9] Such cases underscore that even when osseointegration initially appears satisfactory, subsequent infection or biomechanical factors may precipitate delayed complications capable of producing extraoral drainage [8][9].

Non-odontogenic developmental and salivary etiologies, although rare, further broaden the differential diagnosis. There are reports of fistulas clinically resembling a branchial cyst, later attributed to an ectopic salivary gland. In one such case, a 24-year-old man presented with intermittent clear drainage on both sides of the mid-neck; the lesion was treated surgically, and histopathological evaluation demonstrated heterotopic salivary gland tissue.[10] This example illustrates that not all draining lesions of the head and neck region are infectious in origin, and that clear, intermittent discharge, in particular, may suggest an atypical glandular or congenital source rather than a purely suppurative dental process. Infectious etiologies beyond routine odontogenic flora also warrant recognition, especially in cases characterized by chronicity, induration, or poor response to standard management. Periapical actinomycosis is considered among the rarest manifestations of actinomycosis in the maxillofacial region, yet it is capable of producing an orocutaneous fistula.[11] Actinomycosis is often associated with persistent, slowly progressive infection and may generate multiple sinus tracts; its diagnosis can be challenging because clinical features may mimic other chronic inflammatory conditions. Accordingly, its consideration is particularly relevant in recurrent fistulas or in lesions that persist despite appropriate endodontic or surgical measures [9][10][11].

Most infrequently, OCF may arise as a consequence of neoplastic disease. Within the oral cavity, squamous cell carcinoma is the most prevalent malignancy, and fistula formation in this context generally signals aggressive local tissue destruction and advanced disease. When a fistulous tract develops secondary to malignancy, the prognostic implications are unfavorable, in part because by the

time the lesion is recognized, lymphatic dissemination may already have occurred. Consequently, the identification of an orocutaneous fistula without an obvious odontogenic or inflammatory explanation should prompt careful evaluation for neoplastic causes, as timely diagnosis is critical to determining disease extent and guiding definitive oncologic management [7][8][9][10][11].

Epidemiology

The epidemiology of odontogenic cutaneous fistulas has been most comprehensively characterized in the study by Guevara-Gutiérrez et al., who analyzed 75 cases collected over an eleven-year period. In that cohort, the mean patient age was 45 years, indicating that this entity is encountered primarily in mid-adulthood rather than being confined to pediatric or geriatric populations. Notably, the greatest proportion of affected individuals belonged to the oldest stratum reported, with patients aged 51 years and above constituting 28% of cases, a finding that may reflect cumulative exposure to dental disease and delayed access to definitive care in later life. With respect to sex distribution, the study identified a slight female predominance, with a female-to-male ratio of 1.14:1.[3] Although this difference is modest, it underscores that odontogenic cutaneous fistulas are not strongly sex-linked and should be considered in all patients presenting with compatible clinical features. Multiple contributory factors were postulated to promote the development of dental infections and to facilitate the subsequent establishment of draining sinus tracts. These included inadequate oral hygiene practices, xerostomia—which may predispose to caries and periodontal disease by reducing salivary protective mechanisms—and suboptimal surgical procedures that may introduce infection or fail to eradicate an existing nidus. Such observations emphasize the multifactorial nature of fistula formation, wherein host susceptibility, local oral environmental conditions, and iatrogenic influences may converge to permit chronic infection to evolve into an extraoral drainage pathway [3]. Anatomical distribution patterns further support the predominance of odontogenic sources in the mandible. In the cohort reported by Guevara-Gutiérrez et al., mandibular teeth were implicated as the origin of fistulous tracts in 87% of patients.[3] This mandibular predominance is clinically meaningful, as it aligns with known pathways of infection spread influenced by cortical thickness, gravity, and muscular attachments that direct suppuration toward cutaneous surfaces. Complementary findings are reported by Lee et al., who observed that, among 33 patients, actinomycosis accounted for two cases of fistulas, highlighting that less common infectious agents may occasionally be responsible.[4] In the same series, one patient's fistula was attributed to osteoradionecrosis following

radiotherapy for mandibular cancer, illustrating that non-odontogenic, treatment-related etiologies, though uncommon, constitute an important subset within the broader epidemiologic landscape.[4]

Histopathology

Histopathological assessment may be warranted in selected cases of oral cutaneous fistula, particularly when the clinical presentation, disease course, or associated findings raise concern for an underlying neoplastic process. In such contexts, routine clinical evaluation and imaging may be insufficient to establish the primary etiology with confidence, and tissue diagnosis becomes essential to exclude malignancy or other pathologies that can mimic chronic inflammatory drainage lesions. Accordingly, biopsy of the fistulous tract, its epithelialized margins, or any adjacent indurated or proliferative tissue can provide definitive information regarding cellular atypia, invasive growth, and the nature of the inflammatory infiltrate, thereby guiding appropriate management and prognostication. Beyond the evaluation of possible neoplasia, histopathology has a specific diagnostic role in identifying uncommon infectious causes, most notably actinomycosis. Although actinomycotic infection may be suspected clinically in persistent, recurrent, or treatment-refractory fistulas, confirmation frequently requires microscopic examination of tissue or exudate. Biopsy is especially valuable because actinomycosis exhibits distinctive morphological features that support a definitive diagnosis. Characteristically, the organism forms colonies that may appear as basophilic central aggregates on routine staining, surrounded by radiating eosinophilic structures. These peripheral projections are often described as clublike extensions emanating outward from a central basophilic core, creating the appearance of pseudohyphae and producing the classic histologic configuration associated with actinomycotic colonies.[11] This pattern, when identified in the appropriate clinical setting, strongly supports the diagnosis and assists in differentiating actinomycosis from other chronic suppurative infections and granulomatous conditions. Importantly, histopathologic findings must be interpreted in conjunction with the overall clinical and radiographic context, as oral cutaneous fistulas often represent the endpoint of a prolonged inflammatory process. Chronic lesions may demonstrate granulation tissue, fibrosis, and variable degrees of epithelialization along the tract, features that can obscure the initiating cause if sampling is limited or taken from nonrepresentative areas. Therefore, when malignancy is a consideration, adequate sampling and careful selection of biopsy sites are crucial. Similarly, when actinomycosis is suspected, obtaining tissue that includes the active inflammatory zone and potential microbial colonies enhances diagnostic yield. In this manner, histopathology serves as a pivotal adjunct for

clarifying etiology, confirming uncommon infections, and ensuring that serious underlying disease is not overlooked.[11]

History and Physical

Dental infection is widely recognized as the predominant etiology of cutaneous fistulas involving the facial region.[2] A central challenge in clinical recognition arises from the fact that chronic odontogenic infections often diverge substantially from the dramatic symptom profile of acute dental abscesses. Whereas acute infections frequently trigger severe, localized pain and prompt patients to seek urgent dental care, chronic periapical disease may progress with minimal discomfort or may remain entirely asymptomatic. Consequently, an odontogenic cutaneous fistula represents a well-established clinical entity that cannot be reliably excluded on the basis of pain history alone, and its diagnosis may be elusive when clinicians focus primarily on dermatologic or surgical differentials.[5] Patients commonly describe a protracted course characterized by fluctuating activity, including intermittent periods during which the cutaneous lesion appears to improve or temporarily resolve.[12] This waxing-and-waning behavior, together with the absence of marked oral symptoms, often leads to repeated consultations with multiple providers and to interventions directed at the skin rather than the underlying dental source.[5] In the study conducted by Lee and colleagues, misdiagnosis at initial presentation was strikingly frequent: 27 of 33 patients (81.8%) were first assigned an incorrect diagnosis, a circumstance that contributed to one or more recurrences before appropriate management was instituted.[4]

Anatomical distribution patterns can assist clinicians in refining suspicion during history taking and physical examination. In the series reported by Guevara-Gutiérrez et al., odontogenic cutaneous fistulas most commonly manifested at the mandibular angle (36%), followed by the chin (28%) and the cheeks (24%).[3] These predilections reflect the typical pathways by which chronic mandibular infections track through fascial planes toward extraoral drainage sites. Importantly, the authors observed that the cutaneous opening was adjacent to the causative tooth in 99% of patients, reinforcing the principle that careful correlation between lesion location and potential odontogenic sources is often informative.[3] Nevertheless, clinicians should remain attentive to less typical presentations that may obscure the underlying origin. Uncommon fistula sites have been documented and merit consideration when evaluating persistent lesions of the face and neck, including the internal canthus of the eye related to infection of a second upper molar, the wing of the nose arising from an upper canine infection, and even the neck associated with a lower molar infection.[3] These atypical anatomic expressions underscore that fistulous drainage may present at unexpected sites

and that a thorough dental assessment may be warranted even when lesions appear remote from the oral cavity. On inspection, the cutaneous morphology of odontogenic fistulas is variable, although a nodular presentation is reported most frequently.[3] Samir et al. described the archetypal lesion as an erythematous, smooth, symmetric nodule measuring up to 2 cm in diameter, which may exhibit active drainage or appear dry, and may be accompanied by skin retraction attributable to repeated healing and scarring.[13] However, the clinical spectrum extends well beyond this classic description. Reported manifestations include dimpling, fluctuant abscesses, gummatous-appearing lesions, visible sinus tracts, cyst-like swellings, nodulocystic lesions with suppuration, residual scars, and ulcerations.[3][14] Such heterogeneity can mimic a wide range of dermatologic and infectious conditions, thereby increasing the likelihood of misclassification unless an odontogenic source is actively considered. This diversity further emphasizes the importance of integrating an oral and dental evaluation into the assessment of any persistent or recurrent cutaneous lesion in the cervicofacial region.[3]

Table 1: Signs and symptoms.

Category	Details
Cutaneous Signs	<ul style="list-style-type: none"> - Erythematous nodule (smooth, symmetric, up to 2 cm) - Dimpling or skin retraction due to repeated healing - Fluctuant abscess or visible sinus tract - Ulceration or residual scar - Nodulocystic lesion with suppuration
Drainage	<ul style="list-style-type: none"> - Intermittent purulent discharge - Occasionally clear discharge (rare, suggests salivary origin)
Oral Findings	<ul style="list-style-type: none"> - Intraoral sinus tract (raised lesion or ulceration) - Purulent material expressed on palpation - Yellow granules in actinomycosis cases
Symptoms	<ul style="list-style-type: none"> - Often painless or minimal discomfort - Chronic course with waxing and waning activity - Cosmetic concern due to facial lesion
Associated Clues	- Lesion location often adjacent to causative tooth (chin, mandibular angle, cheek)

Evaluation

The diagnostic evaluation of an odontogenic cutaneous fistula requires a systematic approach that integrates meticulous clinical assessment with appropriate adjunctive investigations. Because the cutaneous manifestation may be remote from the underlying dental source and may mimic a variety of dermatologic entities, a focused dental examination is indispensable for localizing the causative tooth and confirming the odontogenic origin. In suspected cases, pulp sensitivity testing, together with

Although odontogenic disease accounts for most cases, a careful history and targeted physical examination are essential because the origin of an oral cutaneous fistula may occasionally be non-odontogenic. For example, chronic osteomyelitis with external drainage may not be accompanied by pain and thus may resemble indolent odontogenic disease in symptom burden. Intraorally, a sinus tract may be evident as a raised lesion or as a red-to-yellow ulceration that bleeds readily and expresses purulent material. In actinomycosis, clinical examination may reveal yellow granules, a finding that, while not invariably present, can provide an important diagnostic clue. Additional etiologies should be considered when the history suggests salivary gland involvement; in such cases, features such as regional swelling, pain, and trismus—particularly when the parotid gland is implicated—may point toward salivary infection rather than a purely dental source. Careful synthesis of lesion morphology, symptom chronology, prior treatment history, and intraoral findings is therefore pivotal to establishing the correct diagnosis and preventing recurrence.[2][4][5]

percussion and palpation, constitutes a practical and informative initial assessment.[5] Pulp vitality testing assists in determining whether the implicated tooth demonstrates loss of sensibility consistent with pulpal necrosis or irreversible pulp pathology, while percussion and palpation can identify localized tenderness suggestive of periapical inflammation. These chairside maneuvers are particularly valuable given that chronic dental infections may be minimally symptomatic or entirely painless, and therefore clinical suspicion must not rely solely on subjective pain reports.[5]

Table 2: Evaluation Techniques.

Technique	Purpose / Details
Clinical Examination	<ul style="list-style-type: none"> - Inspect cutaneous lesion and intraoral cavity for sinus tract or raised ulceration. - Assess lesion location relative to suspected tooth.
Pulp Vitality Testing	<ul style="list-style-type: none"> - Determines loss of sensibility indicating pulpal necrosis or irreversible pathology. - Includes thermal and electric tests.
Percussion & Palpation	<ul style="list-style-type: none"> - Detects tenderness over suspected tooth and periapical region.
Radiographic Imaging	<ul style="list-style-type: none"> - Periapical radiographs: reveal periapical radiolucency and bone loss. - Panoramic radiography: broader view for multiple teeth or complex cases. - Cone Beam CT (CBCT): 3D visualization of osseous defects and tract anatomy.
Gutta-Percha Tracing	<ul style="list-style-type: none"> - Insert radiopaque gutta-percha point into cutaneous opening before imaging. - Traces fistulous tract to its odontogenic source.

Radiographic evaluation is equally fundamental and is often decisive in establishing the diagnosis.[3] Imaging enables visualization of the periapical and alveolar changes that accompany chronic endodontic infection, thereby correlating the extraoral tract with intraosseous pathology. Several modalities are appropriate depending on clinical context and resource availability, including periapical radiographs, panoramic imaging, and cone beam computed tomography (CBCT).[3] A periapical radiograph may demonstrate radiolucency reflecting periapical bone loss, which can direct the clinician to the responsible tooth and provide objective evidence of a chronic periradicular lesion.[15] Panoramic radiography can offer a broader overview of maxillofacial structures and may be useful when the suspected source is uncertain, when multiple teeth are involved, or when additional pathology must be excluded. CBCT, where indicated, affords superior three-dimensional characterization of osseous defects and can clarify the relationship between the lesion and adjacent anatomical structures, particularly in complex or recurrent presentations.[3] A widely employed technique for delineating the course and origin of the fistulous tract involves the placement of a gutta-percha point into the cutaneous opening prior to radiographic acquisition.[5] When appropriately inserted, the radiopaque marker outlines the tract's trajectory, effectively "tracing" the pathway to its source and thereby strengthening diagnostic certainty. This method is especially helpful in cases where multiple potential odontogenic sources exist or when the drainage site is anatomically distant from the expected location of the causative tooth. Collectively, the combination of targeted clinical testing and radiographic confirmation supports accurate diagnosis, facilitates timely definitive treatment, and reduces the risk of unnecessary cutaneous procedures or recurrent disease.[3][5][15]

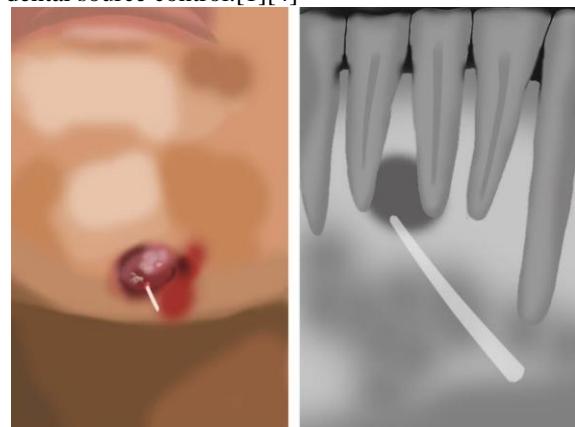
Treatment / Management

Definitive management of an oral cutaneous fistula is contingent upon eradication of the

underlying source, and in odontogenic cases this is achieved by addressing the causative tooth. Complete resolution of the fistulous tract is typically observed following appropriate dental therapy, most commonly through endodontic treatment when the tooth is restorable, or by extraction when prognosis is poor or the tooth is non-salvageable.[16] By eliminating the nidus of infection and halting ongoing periapical inflammation, these interventions remove the driving force for persistent drainage and permit the tract to collapse and heal. In most patients, the cutaneous opening closes spontaneously and the surrounding tissues recover without the need for additional local measures. Healing generally occurs by secondary intention, and clinical closure of the tract is often evident within approximately two weeks after definitive dental treatment.[16] (B3) This predictable response underscores that attempts to treat the skin lesion alone—such as excision, incision and drainage, or repeated courses of antibiotics—are frequently ineffective if the odontogenic origin is not simultaneously managed. Although fistula closure is usually prompt, residual cutaneous changes may persist after resolution of infection. Patients may exhibit residual scarring manifested as dimpling, textural irregularity, or post-inflammatory hyperpigmentation. These sequelae often improve gradually over time as remodeling progresses; however, in some individuals the cosmetic deformity may remain noticeable for several months or longer.[12][4] When the residual defect is cosmetically significant or distressing to the patient, surgical scar revision or other dermatologic interventions may be considered to optimize aesthetic outcomes.[16] (B3) Importantly, any scar-directed procedure should generally be deferred until the underlying infection has been definitively eliminated and the tract has fully involuted, in order to minimize recurrence and ensure stable tissue conditions for reconstruction.

Adjunctive approaches have also been described in specific clinical contexts, particularly when wound healing is compromised or when closure

is delayed. Andrews et al. reported the beneficial application of negative-pressure vacuum-assisted closure (VAC) therapy to support the closure of oral cutaneous fistulas.[17] By promoting granulation tissue formation, reducing edema, and assisting in controlled wound contraction, negative-pressure therapy may provide added value in complex cases, such as those with larger defects, persistent drainage, **Table 3:** Treatment and Management Lines.


Approach	Details / Indications
Definitive Dental Therapy	<ul style="list-style-type: none"> Endodontic Treatment: Preferred when tooth is restorable; eradicates infection source. Extraction: Indicated for non-salvageable teeth or poor prognosis.
Spontaneous Closure	- Fistulous tract typically heals within ~2 weeks after source control.
Adjunctive Measures	- Vacuum-Assisted Closure (VAC): Used for complex cases with large defects or impaired healing; promotes granulation and wound contraction.
Scar Management	- Residual scarring may persist; surgical revision or dermatologic interventions considered after complete infection resolution.
Antibiotics	- Supportive role only; not curative without dental source control.
Preventive Strategies	- Oral hygiene education, routine dental check-ups to prevent caries and pulpal infection.

Differential Diagnosis

Because orocutaneous fistulas (OCF) are relatively uncommon in routine practice, diagnostic error—particularly for lesions of odontogenic origin—is frequent and clinically consequential. Patients typically present with an extraoral draining lesion rather than overt dental pain, and the cutaneous morphology may resemble far more prevalent dermatologic conditions. As a result, clinicians may anchor skin-based diagnoses and pursue therapies directed at the surface manifestation, while the underlying dental nidus remains unrecognized. This pattern is illustrated by Lee et al., in which the majority of patients were initially misdiagnosed; in their series, OCFs were most often interpreted as an epidermal cyst (24.2%), furuncle (21.2%), subcutaneous mycosis (15.2%), squamous cell carcinoma (9.1%), basal cell carcinoma (6.1%), or a foreign body granuloma (6.1%).[4] The breadth of these preliminary impressions reflects the clinical overlap between OCF and a range of inflammatory, infectious, and neoplastic skin processes, particularly when the lesion is nodular, intermittently draining, or scarred from prior partial healing. A rigorous differential diagnosis should therefore be maintained for persistent, recurrent, or intermittently draining cervicofacial lesions, especially when prior interventions have failed to yield lasting resolution. In addition to the commonly mistaken entities highlighted above, the differential diagnosis encompasses tuberculosis infection, pyogenic granuloma, suppurative lymphadenitis, salivary gland fistula, and carcinoma.[1] Tuberculous infection may be considered in chronic draining lesions with

or impaired healing capacity. While standard odontogenic fistulas commonly resolve after dental source control alone, the availability of adjunctive modalities such as VAC highlights the importance of individualized management strategies tailored to fistula size, chronicity, tissue quality, and patient-specific risk factors.[17]

systemic risk factors or regional lymphadenopathy, while pyogenic granuloma can present as a friable vascular lesion prone to bleeding. Suppurative lymphadenitis may mimic a fluctuant inflammatory nodule, particularly along cervical nodal chains, and salivary gland fistula may be suspected when discharge is clear, meal-related, or associated with glandular swelling. Malignancy remains an essential consideration, particularly in indurated, ulcerated, or progressively enlarging lesions or in patients with relevant risk factors. In this context, the diagnostic priority is not merely to enumerate possibilities but to ensure that odontogenic infection is actively assessed through oral examination and dental imaging, given its frequency and the curative potential of definitive dental source control.[1][4]

Fig. 1: Example of an oral cutaneous fistula with associated x-ray.

Prognosis

Odontogenic cutaneous fistulas generally carry an excellent prognosis when the causative tooth

is definitively treated. Once the odontogenic source is eliminated through appropriate dental intervention, the inflammatory drive sustaining the tract resolves, and the fistulous pathway typically collapses and closes without the need for extensive adjunctive cutaneous therapy. This favorable natural history distinguishes odontogenic OCF from fistulas associated with other chronic infections or malignancy, where persistent disease or ongoing tissue destruction may compromise healing. In most cases, successful management is therefore less dependent on complex reconstructive measures and more contingent upon timely recognition of the dental origin and prompt institution of endodontic therapy or extraction, as clinically indicated.[16] Despite this high likelihood of resolution, the prognosis should also be framed in functional and aesthetic terms. Even after closure, residual cutaneous changes are common because the tract represents a chronic inflammatory channel that may have epithelialized partially and may heal with fibrotic remodeling. Patients may be left with a visible scar, dimpling, contour depression, or pigmentary alteration at the site of prior drainage. Such sequelae can carry disproportionate psychosocial impact, particularly when lesions are located on cosmetically sensitive facial regions. While some improvement may occur over time with natural remodeling, scars may persist and, in selected cases, require surgical correction to optimize appearance.[16] Thus, although the biological prognosis for disease resolution is typically very good, counseling should include discussion of potential residual scarring and the possibility of later aesthetic management. Importantly, earlier diagnosis may reduce the duration of inflammation and repeated cutaneous manipulation, factors that can worsen scar formation and prolong recovery.[16]

Complications

Complications of odontogenic cutaneous fistulas arise less from intrinsic treatment resistance and more from delayed recognition and misdirected care. A substantial proportion of patients are initially misdiagnosed; approximately half of individuals with odontogenic cutaneous fistulas of the face and neck are reported to receive an incorrect initial diagnosis.[3] This diagnostic delay can precipitate a cascade of unnecessary investigations and interventions that expose patients to avoidable morbidity, cost, and psychological burden. Many patients undergo repeated biopsies, local skin surgeries, and prolonged or recurrent courses of antibiotics before the true odontogenic origin is identified.[3] In some circumstances, particularly when the lesion is mistaken for malignancy or another serious dermatologic disorder, patients may even receive radiotherapy prior to the establishment of a dental cause, representing a profound escalation of unwarranted treatment and potential harm.[3] Beyond the consequences of inappropriate

interventions, delayed diagnosis can worsen local tissue outcomes. Chronic inflammation and repeated manipulation of the drainage site promote fibrosis, tethering, and pigmentary alteration, thereby increasing the likelihood of permanent cosmetic deformity. When fistulas are not recognized and treated in a timely manner, they may heal with aesthetically unfavorable scars that persist even after infection eradication.[12] Additionally, persistent infection may contribute to ongoing discomfort, intermittent drainage, and social embarrassment, while repeated antibiotic exposure can carry systemic risks and does not provide definitive resolution in the absence of source control. Collectively, these complications highlight that the most significant risk in odontogenic OCF is not failure of dental therapy, but failure to diagnose the dental etiology early—an error that amplifies procedural exposure and worsens aesthetic sequelae.[3][12]

Patient Education

Effective prevention of oral cutaneous fistula (OCF), particularly those of odontogenic origin, is fundamentally grounded in preventing dental caries and subsequent dentoalveolar infection. Oral hygiene measures are therefore central to deterrence, as consistent plaque control reduces the incidence of carious lesions and periodontal inflammation that can ultimately progress to pulpal involvement and peripapical disease. Preventive practices include regular tooth brushing and flossing, alongside broader public health strategies such as fluoridation of communal drinking water, which has been associated with reduced caries prevalence and improved population-level oral health. Routine dental examinations play an additional preventive role by facilitating early detection of caries, defective restorations, and pulpal pathology before these conditions evolve into chronic infections capable of forming sinus tracts. Patient education should emphasize that chronic dental infection may be deceptively silent. Individuals should be counseled that the absence of severe toothache does not reliably exclude significant dental disease, and that persistent or recurrent facial skin lesions—particularly nodules, dimples, or draining sites—may originate from a dental focus even when oral symptoms are minimal. In practical terms, patients should be advised to seek prompt dental evaluation when toothache, swelling, or signs suggestive of dental abscess occur, rather than relying on self-care or repeated antibiotic prescriptions. Education is also important for patients who have previously undergone cutaneous procedures for a presumed dermatologic lesion, as recurrence after skin-directed therapy should prompt reconsideration of an odontogenic source. By framing prevention as both daily hygiene and timely professional assessment, clinicians can reduce the likelihood of advanced dentoalveolar infection and thereby decrease the risk of OCF development [16].

Enhancing Healthcare Team Outcomes

Oral cutaneous fistula frequently presents as a diagnostic dilemma because its manifestations can be subtle, nonspecific, and morphologically diverse. Patients may exhibit intermittent drainage, a small erythematous nodule, or a dimpled scar, and the lesion may be located at sites that do not immediately suggest an oral origin. This variability contributes to confusion across clinical disciplines and can delay definitive management. Although it remains under-recognized outside dental practice, chronic dental infection is the most common cause of cutaneous fistulas affecting the face and neck.[6][7][9][11] In many healthcare pathways, dermatologists are consulted first because the tract opens onto the skin, and surgeons may be involved when lesions are presumed cystic, suppurative, or neoplastic. Without deliberate interdisciplinary communication, patients may experience repeated cutaneous interventions that fail to address the underlying cause. Optimizing outcomes therefore depends on coordinated, team-based care that integrates dental expertise early in the evaluation process. When clinicians encounter a persistent or recurrent cervicofacial lesion—especially one that drains intermittently or recurs after local excision—formal assessment of the oral cavity and dentition should be prioritized. Involvement of a dentist is critical to identify potential odontogenic sources, perform appropriate clinical tests, and obtain dental imaging to confirm periapical pathology. Early dental consultation helps rule out a dental origin, prevents unnecessary delays, and reduces the likelihood of recurrent disease driven by an untreated infection focus. In addition, effective team communication supports appropriate triage: dermatology and surgery can focus on excluding primary cutaneous pathology and managing residual scarring or complex defects, while dental services provide definitive source control. This integrated approach shortens the diagnostic timeline, limits avoidable procedures, and improves both clinical resolution and cosmetic outcomes for patients with OCF.[6][7][9][11]

Conclusion:

Odontogenic orocutaneous fistula represents a diagnostic challenge due to its rarity and misleading presentation as a cutaneous lesion. The condition predominantly arises from chronic dental infections, yet its extraoral manifestation often leads patients to seek dermatologic or surgical care, resulting in misdiagnosis and inappropriate treatment. This delay not only prolongs morbidity but also increases the risk of scarring and psychosocial distress. Accurate diagnosis hinges on maintaining a high index of suspicion, performing thorough dental evaluations, and utilizing radiographic techniques such as gutta-percha tract tracing. Definitive management requires elimination of the odontogenic source through

endodontic therapy or extraction, which typically results in rapid and complete resolution of the fistula. Adjunctive interventions may be considered for complex cases or cosmetic rehabilitation. Prognosis is favorable when timely and appropriate treatment is instituted; however, residual aesthetic sequelae may persist, underscoring the importance of early detection. Preventive strategies, including patient education on oral hygiene and routine dental care, remain essential to reducing incidence. Ultimately, interdisciplinary collaboration is vital to optimize outcomes, minimize unnecessary procedures, and ensure comprehensive care for affected individuals.

References:

1. Ohta K, Yoshimura H. Odontogenic cutaneous fistula of the face. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne*. 2019 Nov 18:191(46):E1281. doi: 10.1503/cmaj.190674.
2. Figaro N, Juman S. Odontogenic Cutaneous Fistula: A Cause of Persistent Cervical Discharge. *Case reports in medicine*. 2018;2018():3710857. doi: 10.1155/2018/3710857.
3. Guevara-Gutiérrez E, Riera-Leal L, Gómez-Martínez M, Amezcua-Rosas G, Chávez-Vaca CL, Tlacuilo-Parra A. Odontogenic cutaneous fistulas: clinical and epidemiologic characteristics of 75 cases. *International journal of dermatology*. 2015 Jan;54(1):50-5. doi: 10.1111/ijd.12262.
4. Lee EY, Kang JY, Kim KW, Choi KH, Yoon TY, Lee JY. Clinical Characteristics of Odontogenic Cutaneous Fistulas. *Annals of dermatology*. 2016 Aug;28(4):417-21. doi: 10.5021/ad.2016.28.4.417.
5. Kelly MS, Murray DJ. Surgical management of an odontogenic cutaneous fistula. *BMJ case reports*. 2021 Mar 16:14(3):. doi: 10.1136/bcr-2020-240306.
6. Roche E, García-Melgares ML, Laguna C, Martín-González B, Fortea JM. [Chronic cutaneous fistula secondary to mandibular osteomyelitis]. *Actas dermo-sifiliograficas*. 2006 Apr;97(3):203-5
7. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, O'Ryan F, American Association of Oral and Maxillofacial Surgeons. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw--2014 update. *Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons*. 2014 Oct;72(10):1938-56. doi: 10.1016/j.joms.2014.04.031.
8. Dawson C, Gadiwalla Y, Martin T, Praveen P, Parmar S. Factors affecting orocutaneous fistula formation following head and neck reconstructive surgery. *The British journal of*

-
- oral & maxillofacial surgery. 2017 Feb;55(2):132-135. doi: 10.1016/j.bjoms.2016.07.021.
9. Mahmood R, Puthussery FJ, Flood T, Shekhar K. Dental implant complications - extra-oral cutaneous fistula. British dental journal. 2013 Jul;215(2):69-70. doi: 10.1038/sj.bdj.2013.683.
10. Ogawa K, Kondoh K, Kanaya K, Ochi A, Sakamoto T, Yamasoba T. Bilateral cervical fistulas from heterotopic salivary gland tissues. ORL; journal for oto-rhino-laryngology and its related specialties. 2014;76(6):336-41. doi: 10.1159/000369625.
11. Pasupathy SP, Chakravarthy D, Chanmougananda S, Nair PP. Periapical actinomycosis. BMJ case reports. 2012 Aug 1:2012(): doi: 10.1136/bcr-2012-006218.
12. Borbon C, Gallesio C, Ramieri G. Odontogenic Cutaneous Fistula: A Case in Aged Patient With Delayed Diagnosis. The Journal of craniofacial surgery. 2021 Jun 1:32(4):e340-e342. doi: 10.1097/SCS.0000000000007114.
13. Samir N, Al-Mahrezi A, Al-Sudairy S. Odontogenic Cutaneous Fistula: Report of two cases. Sultan Qaboos University medical journal. 2011 Feb;11(1):115-8
14. Spear KL, Sheridan PJ, Perry HO. Sinus tracts to the chin and jaw of dental origin. Journal of the American Academy of Dermatology. 1983 Apr;8(4):486-92
15. Witherow H, Washan P, Blenkinsopp P. Midline odontogenic infections: a continuing diagnostic problem. British journal of plastic surgery. 2003 Mar;56(2):173-5
16. Cioffi GA, Terezhalmey GT, Parlette HL. Cutaneous draining sinus tract: an odontogenic etiology. Journal of the American Academy of Dermatology. 1986 Jan;14(1):94-100
- Andrews BT, Smith RB, Hoffman HT, Funk GF. Orocutaneous and pharyngocutaneous fistula closure using a vacuum-assisted closure system. The Annals of otology, rhinology, and laryngology. 2008 Apr;117(4):298-302