

Anesthesia Machines in Nursing Practice: Equipment Safety, Perioperative Monitoring, and Clinical Competency

Faris Saad Alghamdi ⁽¹⁾, Munirah Jayiz Alruwaili ⁽²⁾, Osama Faraj Shalih Alotaibi ⁽³⁾, Ibtisam Azzam Ali Bahkali ⁽⁴⁾, Ohud Awaji Yahya Hakami ⁽⁵⁾, Amal Ali Ahmed Aofiany ⁽⁶⁾, Mazin Mohammed S Shkar ⁽⁷⁾, Abdulelah Saud Hamad Alzunaytan ⁽⁸⁾, Abdullaiz Jarallah Obied Alenzi ⁽⁹⁾, Boshra Obaid Rhil Alanazi ⁽¹⁰⁾, Rauf Fahad Mohammed Hawbani ⁽¹¹⁾, Nourah Abdullah Ali Alssole ⁽¹²⁾, Nouf Saad Kurdi Alanazi ⁽¹³⁾

(1) Erada & Mental Health Complex - Riyadh City, Ministry of Health, Saudi Arabia,

(2) Women, Maternity And Children Hospital In Al-Jouf, Ministry of Health, Saudi Arabia,

(3) Armed Forces Hospital Al-Kharj, Ministry of Health, Saudi Arabia,

(4) Prince Mohammed Bin Nasser Hospital, Ministry of Health, Saudi Arabia,

(5) Muzhira Health Center, Ministry of Health, Saudi Arabia,

(6) Ma'taq Al-Asm Health Center, Ministry of Health, Saudi Arabia,

(7) Al Faisaliah Health Center In Riyadh, Ministry of Health, Saudi Arabia,

(8) Ruwaydah Alard General Hospital, Ministry of Health, Saudi Arabia,

(9) Eradah Mental Health Complex, Hail, Ministry of Health, Saudi Arabia,

(10) Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Ministry of Health, Saudi Arabia,

(11) Al Eradah & Psychiatric Hospital In Jazan, Ministry of Health, Saudi Arabia,

(12) King Khaled Hospital -Al Kharj, Ministry of Health, Saudi Arabia,

(13) Qurayyat General Hospital Al-Jouf Health Cluster, Ministry of Health, Saudi Arabia

Abstract

Background: Modern anesthesia machines have evolved into integrated workstations that deliver inhaled anesthetics, oxygenation, and ventilation while incorporating advanced safety mechanisms. Their complexity demands thorough understanding by anesthesiologists and perioperative teams to prevent adverse events.

Aim: This article aims to review the functional design, gas flow dynamics, critical components, safety systems, and interprofessional practices essential for safe anesthesia machine operation.

Methods: A comprehensive literature review and synthesis of engineering principles, clinical guidelines, and perioperative safety standards were conducted. Key topics include pressure systems, circle breathing circuits, vaporizer technology, CO₂ absorption, and occupational hazard mitigation.

Results: Modern anesthesia machines integrate high-, intermediate-, and low-pressure systems to regulate gas delivery and maintain patient safety. Circle systems enable low-flow anesthesia, reducing environmental pollution and cost, but increase vulnerability to leaks. Critical components—vaporizers, APL valve, oxygen flush, and CO₂ absorbent—require vigilant monitoring. Safety mechanisms such as PISS, DISS, flowmeter sequencing, scavenging systems, and hypoxia prevention strategies reduce catastrophic risks. Interprofessional interventions, including backup ventilation readiness, leak surveillance, and structured communication, significantly enhance patient and staff safety.

Conclusion: Safe anesthesia delivery depends on mastery of machine mechanics, adherence to pre-use checks, and collaborative vigilance. Despite automation, human factors remain the leading cause of critical incidents, underscoring the need for continuous education and teamwork.

Keywords: Anesthesia machine, circle system, vaporizer, APL valve, CO₂ absorbent, low-flow anesthesia, occupational safety, perioperative nursing, patient safety.

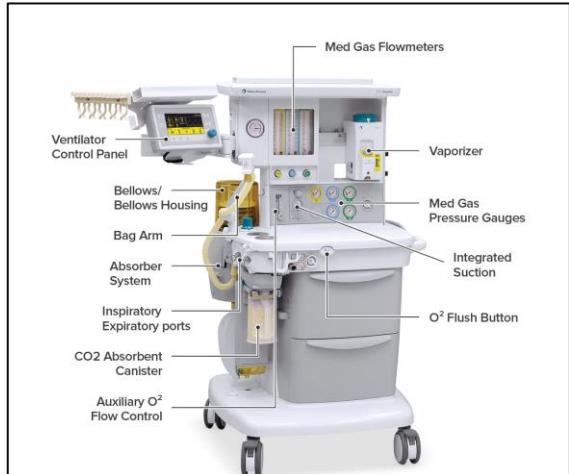
Introduction

The modern anesthesia machine represents one of the most technologically sophisticated and safety-critical devices in the operating room, serving as the central platform through which clinicians deliver inhaled anesthetics, provide oxygenation, and

support ventilation during surgical and procedural care. Contemporary systems are no longer limited to a basic gas delivery apparatus; rather, they function as integrated anesthesia workstations that combine precise gas mixing, vaporization, mechanical ventilation, and continuous physiologic monitoring

within a unified interface. This evolution reflects decades of innovation aimed at improving accuracy, reliability, and patient safety, particularly as surgical complexity and the acuity of perioperative patients have increased. In current practice, the anesthesia machine is designed to deliver consistent concentrations of oxygen and anesthetic agents, compensate for fluctuations in patient demand, and provide immediate feedback to clinicians through alarms and monitoring outputs that support rapid detection of adverse events. Historically, anesthesia machines were developed primarily to facilitate oxygenation and the administration of volatile anesthetics. Over time, however, advances in engineering, respiratory physiology, and perioperative safety science transformed these devices into comprehensive workstations incorporating increasingly complex ventilator modes, end-tidal carbon dioxide monitoring, end-tidal anesthetic concentration measurement, minimal alveolar concentration estimation, and integrated vital sign monitoring.[1] These capabilities allow clinicians to titrate anesthesia with greater precision, monitor adequacy of ventilation and perfusion, and identify circuit problems, airway obstruction, hypoventilation, or disconnections earlier than would be possible with clinical observation alone. In parallel, improvements in fail-safe mechanisms—such as oxygen supply failure protection, hypoxic guard systems, and standardized alarm hierarchies—have strengthened system resilience, reducing the likelihood that equipment malfunction or human error will translate into patient harm.

Despite these innovations, the anesthesia machine remains a device whose safe use depends on deep conceptual understanding rather than reliance on automation. The complexity of modern workstations can create a false sense of security if clinicians assume that integrated monitors and alarms will prevent critical incidents. In reality, effective use requires comprehension of gas flow dynamics, vaporizer function, breathing circuit design, ventilation principles, scavenging systems, and the interpretation of monitor data within the broader clinical context. This knowledge is essential not only for anesthesiologists but also for perioperative nurses and allied health professionals who support anesthesia delivery, participate in equipment checks, respond to alarms, and contribute to patient monitoring and safety during induction, maintenance, emergence, and transfer of care. Accordingly, even as anesthesia machines have become more advanced, foundational knowledge of their structure, function, and failure modes remains a core competency in anesthesiology and a crucial element of interprofessional perioperative practice.[1]


Function

The modern anesthesia machine functions as an integrated anesthesia workstation that combines

gas supply regulation, precision vapor delivery, and mechanical ventilation within a single safety-engineered platform. Its design supports the continuous delivery of oxygen and inhaled anesthetics while enabling clinicians to control ventilation and monitor the patient's physiologic response throughout induction, maintenance, and emergence from anesthesia. Because inhaled anesthetic administration is inseparable from respiratory mechanics and circuit integrity, contemporary machines incorporate ventilators and monitoring systems to achieve stable anesthetic depth while maintaining gas exchange. In practical terms, the anesthesia machine serves as both a delivery system and a safety system: it provides the means to administer anesthetic gases and, simultaneously, includes layers of engineering controls intended to prevent hypoxic mixtures, detect disconnections, limit excessive pressures, and reduce occupational exposure to waste anesthetic gases. Although anesthesia workstations contain many components, their clinical purpose can be distilled into four core functions. First, they enable oxygenation, ensuring a reliable oxygen source and allowing accurate titration of inspired oxygen concentration to maintain adequate arterial oxygenation during anesthesia. Second, they provide the accurate mixture and delivery of anesthetic vapors, allowing clinicians to deliver volatile agents at controlled concentrations and to adjust dosing dynamically in response to surgical stimulation and patient physiology. Third, they support appropriate ventilation, either by facilitating spontaneous breathing through the breathing circuit or by delivering controlled or assisted ventilation via an integrated ventilator. Fourth, they are engineered to reduce exposure of anesthetic vapors to personnel, primarily through scavenging systems, circuit design, and leak-reduction features that limit environmental contamination by waste anesthetic gases.[2] These functions are clinically inseparable: ineffective oxygenation undermines patient safety immediately, imprecise vapor delivery destabilizes anesthetic depth, inadequate ventilation compromises carbon dioxide elimination and acid–base balance, and poor scavenging can create occupational hazards that affect the perioperative workforce.

From an engineering and troubleshooting perspective, the anesthesia machine is often conceptualized as three pressure “zones” that reflect how gases are stored, regulated, and ultimately delivered to the patient: a high-pressure system, an intermediate-pressure system, and a low-pressure system.[2] High and intermediate pressures are typically measured in pounds per square inch (psi) or kilopascals (kPa), while the low-pressure circuit—closer to the patient and ventilation mechanics—is commonly discussed using centimeters of water (cmH₂O), which aligns with respiratory pressure

monitoring. The high-pressure system begins at the gas source when cylinders are used. Anesthesia machines may receive oxygen, air, and nitrous oxide from an attached E-cylinder (where “E” denotes the cylinder size). In this configuration, oxygen pressure is characteristically high (often cited around 2200 psi when full), whereas nitrous oxide is stored differently and is commonly referenced at about 745 psi under typical conditions.[2] Because these cylinder pressures are far too high for downstream components, a pressure regulator reduces the pressure to a safer working level (commonly around 45 psi) before the gas enters subsequent machine pathways.[2] Clinically, the high-pressure system becomes particularly important when the central pipeline supply is unavailable or fails—such as in remote anesthesia locations, during facility outages, or in transport scenarios where cylinders are the primary gas source. In these settings, the high-pressure components are not merely backup hardware; they are essential to continuity of oxygen delivery and thus to patient safety. The intermediate-pressure system is the zone that typically receives gas from the hospital pipeline supply. In most facilities, pipeline gases are delivered at standardized pressures (often approximately 50 psi), making the pipeline the primary source of oxygen and other gases for anesthesia machines during routine operating room care.[2] This intermediate-pressure supply is then routed through safety mechanisms and into the flow control assemblies. The clinical value of the intermediate-pressure system lies in its stability and convenience: pipeline supply reduces the need for frequent cylinder changes, lowers the likelihood of gas depletion during lengthy cases, and supports consistent delivery pressures that facilitate accurate flow control. Nevertheless, because pipeline failure is possible, anesthesia practice still emphasizes verifying backup cylinder availability and functional readiness as part of pre-use checks.

Fig. 1: Anesthesia Machine.

Downstream from the flowmeters lies the low-pressure system, which is the portion of the machine most directly connected to anesthetic vapor

delivery and the patient breathing circuit.[2] In this zone, the machine delivers “fresh gas flow”—a clinician-controlled mixture of oxygen and, when used, nitrous oxide—into the vaporizers, where volatile anesthetics are added to the gas stream to produce the desired inspired anesthetic concentration. The low-pressure system is especially significant because it is the region where leaks, misconnections, or vaporizer malfunctions can directly affect what the patient actually inhales. It is also the part of the system in which the patient inspires and expires, linking anesthetic delivery to ventilation mechanics and to measured respiratory pressures.[2] For perioperative teams, understanding the low-pressure pathway helps explain why seemingly small problems—such as a loose connection, an improperly seated vaporizer, or a circuit leak—can rapidly result in inadequate anesthetic depth, hypoventilation, hypoxia, or increased occupational exposure. In summary, the function of the modern anesthesia machine is best understood as an integrated set of capabilities that ensure oxygenation, deliver precise anesthetic vapor mixtures, provide controlled ventilation, and protect healthcare personnel from waste anesthetic exposure.[2] Conceptualizing the machine by its high-, intermediate-, and low-pressure systems supports both routine safety checks and rapid troubleshooting during alarms or physiologic deterioration, reinforcing that safe anesthesia delivery depends on mastery of both clinical physiology and device system design.

Gas Flow Through the Anesthesia Machine

Understanding gas flow through the modern circle-system anesthesia machine is essential for safe anesthetic delivery because it clarifies how oxygen and anesthetic vapor reach the patient, how exhaled gases are managed, and where common failure points can occur. Although contemporary anesthesia workstations incorporate sophisticated monitors and alarms, the physiologic safety of inhalational anesthesia still depends on the integrity of the gas pathway—from supply sources to flow control, vaporization, circuit valves, carbon dioxide removal, pressure relief, and scavenging. The circle system is specifically engineered to permit rebreathing of anesthetic gases after carbon dioxide (CO₂) removal, thereby improving efficiency, supporting low-flow anesthesia, and reducing waste anesthetic emissions. Gas supply enters the anesthesia machine from two potential sources: the hospital pipeline system and compressed gas cylinders mounted on the machine, typically E-cylinders. In modern operating rooms, the pipeline supply is usually the primary source and delivers oxygen, air, and nitrous oxide at regulated intermediate pressures commonly in the range of approximately 45 to 60 psi. This intermediate-pressure supply is stable and designed to support consistent downstream performance. However, anesthesia machines are also equipped with cylinder supply as a backup for situations in which the

pipeline fails, is disconnected, or is unavailable (such as remote anesthesia locations). In that event, the E-cylinder system takes precedence. Cylinder pressure is higher and more variable than pipeline pressure, so a pressure regulator is required to reduce this high pressure down to a working level comparable to the intermediate pressure range, again approximately 45 to 60 psi, ensuring that the downstream components receive gas at an appropriate and safe pressure.

Once gases are within the intermediate pressure system, they travel to the flow control section of the machine. Here, gases pass through flowmeters or electronic flow control assemblies that allow the anesthesiologist to titrate the composition and total flow of fresh gas delivered to the breathing circuit. This stage is clinically critical because fresh gas flow directly influences inspired oxygen concentration, anesthetic agent delivery (when volatile agents are used), and the degree of rebreathing within the circle system. Downstream from the flowmeters, the gas transitions into the low-pressure system, where pressures are typically less than 1 psi and are more appropriately conceptualized in centimeters of water (cm H₂O). This shift is relevant because 1 psi is approximately equivalent to 70 cm H₂O, emphasizing that small pressure changes in the low-pressure system can have clinically meaningful consequences for ventilation and circuit function. After flow regulation, the gas stream may interact with a vaporizer—commonly a variable bypass or measured-flow device—where volatile anesthetic is added to produce the desired inspired anesthetic concentration. The vaporized fresh gas mixture then enters the circle breathing circuit and must pass through the unidirectional inspiratory valve. This valve ensures one-way flow toward the patient, preventing backflow that could compromise inspiratory gas composition or cause rebreathing without adequate CO₂ removal. From the inspiratory valve, gas moves through the inspiratory limb and is delivered to the patient's airway via the patient connection.

The patient's expired gas then travels away from the patient through the expiratory limb and passes through the expiratory unidirectional valve. This valve ensures that exhaled gases move in a single direction through the circuit, preventing mixing of inspiratory and expiratory streams before CO₂ can be removed. The management of circuit pressure becomes especially important at this point. When the ventilator is switched off or the machine is set to manual/spontaneous mode, excess pressure generated within the system—whether from fresh gas flow, manual ventilation, or patient exhalation—can be released via the adjustable pressure-limiting (APL) valve. Gas vented through the APL valve is not released into the operating room environment; instead, it is directed to the scavenging system, which removes waste anesthetic gases and reduces

occupational exposure. Not all expired gas is discarded. A defining feature of the circle system is that gas remaining within the circuit is routed through the CO₂ absorber, where carbon dioxide is chemically removed. This step is essential because it allows the remaining gas—still containing oxygen and anesthetic agent—to be safely rebreathed without causing hypercapnia. After CO₂ removal, the “cleaned” exhaled gas rejoins incoming fresh gas flow from the pipeline or cylinder supply. This recombination enables recycling of gases within the circle system, making low-flow anesthesia feasible and minimizing the consumption of volatile anesthetic while also decreasing environmental contamination.[3][4][5] In summary, gas flow through a modern circle-system anesthesia machine proceeds from regulated gas sources (pipeline and cylinder backup), through flow control and vaporization, across unidirectional inspiratory delivery to the patient, and then through unidirectional expiratory routing to pressure relief and scavenging, followed by CO₂ absorption and rejoining with fresh gas for reuse. This closed-loop efficiency is central to contemporary inhalational anesthesia, and understanding each step supports rapid troubleshooting when oxygenation, ventilation, anesthetic depth, or circuit pressures deviate from expected targets.[3][4][5]

Important Components of the Anesthesia Machine

Modern anesthesia workstations are engineered to deliver inhalational anesthesia safely by integrating gas supply regulation, flow control, ventilation support, and waste-gas management into a cohesive system. Within this architecture, several components are particularly consequential because they directly determine the inspired anesthetic concentration, the pressure environment of the breathing circuit, the oxygen supply available in emergencies, and the feasibility of safe gas recycling in a circle system. A clinically useful way to approach these components is to emphasize not only what they do under normal circumstances, but also how they influence patient safety, how they interact with each other during different phases of anesthesia, and which failure modes can produce rapid physiologic harm. Among the most important elements are the vaporizer, the adjustable pressure-limiting (APL) valve, the oxygen flush button, and the carbon dioxide absorbent. Each of these is integral to the balance between adequate oxygenation and ventilation, appropriate anesthetic depth, prevention of barotrauma, and minimization of occupational exposure to waste anesthetic gases.

Vaporizer

Vaporizers are the devices responsible for converting volatile liquid anesthetics into a precisely metered vapor and adding that vapor to the fresh gas flow destined for the patient. Their clinical significance is foundational: small deviations in

delivered anesthetic concentration can translate into inadequate hypnosis (with risk of awareness), excessive cardiovascular depression, delayed emergence, or hemodynamic instability. Although anesthesia machines contain many safety systems, the vaporizer remains a critical determinant of both efficacy and safety because the patient's inspired anesthetic concentration is ultimately the product of how the vaporizer interacts with fresh gas flow and ambient conditions. Broadly, anesthesia vaporizers can be categorized into variable bypass vaporizers and measured flow vaporizers. Variable bypass vaporizers are common for agents such as halothane, isoflurane, enflurane, and sevoflurane.^[5] Their operating principle is based on dividing the incoming fresh gas flow into two streams: one stream enters the vaporizing chamber, where it becomes saturated with anesthetic vapor, while the other stream bypasses the chamber. These two streams later recombine downstream, producing a final gas mixture with a predictable anesthetic concentration. The clinician sets this concentration using a dial that effectively determines the "splitting ratio," describing the proportion of gas that traverses the vaporizing chamber relative to the bypass channel. Because saturation vapor pressure varies with temperature, variable bypass vaporizers incorporate temperature-compensating mechanisms designed to stabilize output across a wide operating-room temperature range and maintain a steady anesthetic concentration at a given atmospheric pressure.^[5] This compensation is not merely an engineering convenience; it is a patient safety requirement, because temperature-dependent volatility would otherwise cause the vaporizer output to drift, increasing the risk of overdose or underdose during prolonged cases or in environments with fluctuating ambient conditions.

An additional safety feature of variable bypass systems is agent specificity. Each vaporizer is calibrated for a particular anesthetic because different volatile agents have distinct physical properties, including vapor pressure and boiling point. Using the wrong agent in a vaporizer, or placing an incompatible vaporizer on a machine, can lead to unpredictable output and unsafe dosing. For that reason, vaporizers are designed with keyed filling systems, labeled dials, and interlock mechanisms intended to reduce misconnections and prevent multiple vaporizers from being simultaneously "on." Clinically, these design elements align with the broader goal of preventing wrong-agent errors and reducing human-factor vulnerabilities in high-stakes perioperative environments. Measured flow vaporizers function differently and are used when the physical properties of a volatile anesthetic make conventional variable bypass designs impractical. The prototypical example is the desflurane vaporizer.^[5] Desflurane has a low boiling point and high volatility, which makes its vapor output highly

sensitive to temperature and pressure changes. To ensure stable dosing, the desflurane vaporizer is heated to a constant temperature of approximately 39 °C.^[5] Unlike variable bypass vaporizers—where fresh gas flow passes through the vaporizer and picks up anesthetic—measured flow systems conceptualize the vaporizer as an active module in which anesthetic vapor generation occurs within the device itself. In this configuration, the vaporizer effectively manages anesthetic vapor flow as a controlled output rather than relying on passive saturation of a portion of fresh gas. The system is commonly described as containing two circuits arranged in parallel: one circuit carries fresh gas flow, and the other carries inhalational anesthetic vapor flow. These streams remain separate while within the vaporizer and do not mix until downstream, just before entry into the inspiratory limb.^[5] This architecture allows precise control despite desflurane's volatility, but it also emphasizes the importance of machine integration, electrical power reliability, and clinician awareness of how vapor output is generated and delivered.

From a nursing and perioperative safety standpoint, vaporizers matter not only for dosing but also for workflow and risk mitigation. Vaporizer filling, correct mounting, ensuring the dial is "off" when not in use, and responding appropriately to end-tidal anesthetic monitoring trends are all practical components of safe practice. Because end-tidal agent concentration offers real-time feedback on delivered vapor and patient uptake, discrepancies between set vaporizer concentration and measured end-tidal values should prompt a structured assessment for leaks, empty vaporizers, misfilled agents, incorrect fresh gas flow settings, or circuit disconnections. Thus, the vaporizer is best understood as a precision dosing device that must be continuously validated through monitoring and integrated team vigilance.

Adjustable Pressure Limiting Valve (APL Valve)

The adjustable pressure-limiting (APL) valve—often referred to colloquially as the "pop-off valve"—is a central pressure safety component in the circle system.^{[2][3]} It is positioned between the expiratory unidirectional valve and the carbon dioxide absorber, a location that reflects its role in controlling circuit pressure during manual and spontaneous ventilation.^{[2][3]} The APL valve serves as a pressure relief mechanism, protecting both the patient and machine components from dangerous pressure accumulation. Without such a valve, obstruction in the circuit, excessive fresh gas flow, or vigorous manual bag ventilation could generate high pressures that cause barotrauma, including alveolar rupture and pneumothorax, or that damage sensitive machine elements such as flowmeters and vaporizers. The defining feature of the APL valve is that it is adjustable, allowing clinicians to set the maximum pressure permitted in the breathing circuit during phases of anesthesia where the ventilator is not controlling pressure. During spontaneous breathing,

the valve is typically left relatively open, minimizing resistance and allowing the patient to exhale comfortably through the circuit. As the anesthetic progresses to induction and controlled ventilation becomes necessary, the APL valve is partially closed to permit generation of positive pressure when squeezing the reservoir bag. The text notes that clinicians typically close it partially to pressures less than about 20 cm H₂O to allow positive pressure ventilation while still maintaining a safety margin against excessive pressures.[2][3] This range is not arbitrary: pressures high enough to ventilate effectively can be achieved without approaching the levels that are commonly associated with barotrauma risk, especially in patients with fragile lungs or those undergoing procedures that alter thoracic mechanics. A key safety function of the APL valve is its integration with scavenging. Any gas vented by the valve to limit pressure is routed to the scavenger system rather than released into the operating room.[2][3] This design reduces occupational exposure to anesthetic gases and supports environmental controls, particularly during mask ventilation, induction, or circuit flushing when waste gas volumes can be substantial. Clinically, understanding the APL valve's behavior also supports rapid troubleshooting: elevated airway pressures during manual ventilation may reflect an overly closed APL valve, circuit obstruction, kinked tubing, bronchospasm, or reduced compliance. Conversely, inability to generate pressure for ventilation may reflect an overly open APL valve, circuit leaks, or improper connections. Because these issues can lead to hypoventilation or hypoxia, the APL valve is a frequent focus during pre-use checks and during real-time response to ventilation alarms.

Oxygen Flush Button

The oxygen flush button is an intermediate-pressure system feature that enables rapid delivery of a high flow of 100% oxygen directly into the breathing circuit. When activated, it opens a direct pathway between the pipeline oxygen supply and the oxygen pressure regulator, delivering approximately 35 to 70 liters per minute of pure oxygen at a pressure of about 45 to 60 psi.[2] Clinically, this provides an immediate method to rapidly increase oxygen concentration within the circuit and to quickly fill the reservoir bag, which can be crucial during urgent mask ventilation when the clinician cannot obtain an adequate mask seal or when a difficult airway scenario requires rapid restoration of oxygen reserves. A common practical scenario described is mask ventilation in which seal failure may occur due to factors such as facial hair, operator technique issues, or difficult airway anatomy.[2] In these contexts, oxygen flush can help rapidly replenish the circuit with oxygen and maintain bag volume, supporting ventilation attempts. However, the oxygen flush button is a high-risk safety feature

precisely because it bypasses the usual flowmeter and vaporizer pathway. While the button is pressed, the patient receives oxygen only—without volatile anesthetic vapor or nitrous oxide—even if those agents are turned on.[2] This has two clinically important implications. First, it can contribute to intraoperative awareness if used repeatedly or for prolonged periods during maintenance of anesthesia, because the delivered anesthetic concentration may fall abruptly. Second, the flush delivers gas at higher pressures than the typical low-pressure pathway, increasing the risk of barotrauma if the circuit is occluded, if the APL valve is closed, or if excessive pressure is generated during manual ventilation.[2] Consequently, safe use requires situational awareness, brief activation when appropriate, careful attention to circuit patency, and ongoing monitoring of airway pressures and patient physiology. In nursing and interprofessional practice, the oxygen flush button is significant because team members may observe its use during induction or resuscitation and should recognize both its intended benefit and its hazards. Awareness of the flush's bypass behavior can explain sudden changes in agent monitoring (such as a drop in end-tidal anesthetic concentration) or abrupt changes in circuit pressure. It also underscores why routine machine checks include verification that the flush functions correctly and that the team understands when and how it should be used.

Carbon Dioxide Absorbent

Carbon dioxide absorbent is an essential component of the circle breathing circuit that enables safe rebreathing by removing CO₂ from exhaled gases before they are returned to the inspiratory limb.[6] Without CO₂ absorption, rebreathing within the circle system would rapidly lead to hypercapnia, respiratory acidosis, sympathetic stimulation, and potentially dangerous hemodynamic consequences. CO₂ absorbents function through chemical binding and conversion reactions. The absorbent contains mixtures that may include calcium hydroxide, sodium hydroxide, potassium hydroxide, and barium hydroxide, providing alkaline substrates that react with carbon dioxide to trap it within the absorbent canister.[6] As exhaled gas passes through the absorber, CO₂ undergoes chemical reactions with these bases, thereby removing carbon dioxide from the gas stream and enabling the remaining oxygen and anesthetic vapor to be recycled. This mechanism supports low-flow anesthesia, in which fresh gas flows may be reduced below alveolar ventilation to minimize anesthetic consumption and cost while still maintaining stable inspired gas composition.[1][7] The economic and environmental implications are significant: reduced volatile anesthetic use decreases waste and can lower operating room pollution when combined with effective scavenging. However, this efficiency is only safe if CO₂ removal is reliable,

making absorbent integrity a crucial patient safety issue. To support timely maintenance, CO₂ absorbents are designed with chemical indicators that change color as the material becomes saturated. The text emphasizes that when the filter is about two-thirds saturated, it should be changed to prevent rebreathing of carbon dioxide.[1][7] Clinically, this is reinforced by monitoring: modern anesthesia machines often detect CO₂ in the inspiratory limb, which should not occur if the absorber is functioning properly. The appearance of CO₂ in inspired gas indicates absorbent exhaustion or failure and signals the need to replace the soda lime canister.[1][7] This relationship between monitoring and equipment function is a key principle in anesthesia safety: physiologic and gas monitoring serve as real-time validation of machine component performance, and deviations should prompt immediate corrective action. From a perioperative nursing and interprofessional perspective, CO₂ absorbent management intersects with workflow and patient safety checks. Ensuring the absorbent is fresh before long cases, recognizing the significance of color change, and understanding how absorbent failure manifests on capnography and inspired gas analysis are practical competencies that support rapid response. Furthermore, because low-flow strategies increase reliance on effective CO₂ absorption, teams should be particularly vigilant during low-flow anesthesia, where absorber exhaustion may become clinically apparent sooner than expected depending on metabolic CO₂ production, circuit volume, and absorbent capacity.

Integrating Component Function Into Safe Practice

Although these components can be described individually, their real significance emerges from how they interact in the circle system. Vaporizers determine anesthetic concentration; the oxygen flush can rapidly alter that concentration by bypassing vaporizers; the APL valve governs pressure during manual and spontaneous ventilation; and the CO₂ absorbent enables safe gas recycling that makes low-flow strategies feasible.[1][2][3][5][6][7] Failures or misuse in one component often reverberate through the system and appear as changes in patient physiology or monitor readings. For example, a prolonged oxygen flush can decrease volatile delivery, while an overly closed APL valve combined with high fresh gas flow can elevate circuit pressure, increasing barotrauma risk. Likewise, exhausted CO₂ absorbent can lead to rising inspired CO₂ and increasing end-tidal CO₂, which may be misattributed to hypoventilation unless absorber failure is considered. Therefore, safe anesthesia care requires a systems-based understanding that connects component mechanics with clinical monitoring and interprofessional teamwork, ensuring rapid recognition of abnormal patterns and timely

corrective action to protect the patient and the operating room team.[1][2][3][5][6][7]

Types of Anesthesia Circuits

Anesthesia breathing circuits are fundamental components of the anesthesia workstation because they provide the pathway through which fresh gas flow and volatile anesthetics are delivered to the patient and through which exhaled gases are returned, scavenged, or recycled. The selection of an anesthesia circuit influences the efficiency of ventilation, the potential for rebreathing carbon dioxide, the stability of inspired anesthetic concentration, heat and humidity conservation, and the degree of environmental contamination with waste anesthetic gases. While the circle system is the dominant configuration in modern operating rooms, several alternative circuit designs remain clinically relevant, particularly in pediatrics, remote anesthesia locations, transport scenarios, and settings where simplicity, low resistance, or rapid setup is prioritized. Among these alternatives are the Mapleson systems (A, B, C, D—including the Bain modification—E, and F, also known as the Jackson-Rees modification). In Mapleson D, E, and F systems, a characteristic feature is a T-piece configuration positioned close to the patient, which minimizes apparatus dead space and reduces resistance at the patient interface.[8]

The circle system is the most commonly used circuit in contemporary anesthesia machines and is designed as a rebreathing system with unidirectional valves and a carbon dioxide absorber. Its defining capability is the recycling of exhaled gases after removal of CO₂, allowing the same circuit to function across a range of operating modes depending on the settings of fresh gas inflow. When fresh gas flow (FGF) approximates the patient's uptake of oxygen and anesthetic, the circle system can behave as a closed system, maximizing conservation of gases and minimizing waste. When fresh gas flow is set higher, the circle system functions as a semi-closed system in which a greater fraction of gas exits through the expiratory relief pathway, reducing the proportion of rebreathed gas while still preserving the advantages of CO₂ absorption. Some descriptions also include semi-open behavior, reflecting circuit conditions where high FGF and venting reduce rebreathing further. Across these modes, the circle system offers important benefits: it conserves airway moisture and heat, which can help limit airway drying, preserve mucociliary function, and reduce perioperative heat loss. In addition, the circuit's design limits leakage of anesthetic gases into the environment compared with open systems, particularly when scavenging is effective and the circuit remains well sealed. These features support both patient comfort and occupational safety. Nevertheless, the circle system also has recognized disadvantages—often discussed under “issues of concern”—including increased

complexity, potential for malfunction at unidirectional valves, dependence on functional CO₂ absorption, and the need for careful leak testing to prevent hypoventilation or inadequate anesthetic delivery. Thus, while it is highly versatile, it requires a robust understanding of system mechanics and vigilant monitoring.

The Mapleson circuits represent a family of non-rebreathing or partial rebreathing systems that lack unidirectional valves and CO₂ absorbers. Their performance depends heavily on fresh gas flow rates and the positioning of the fresh gas inlet relative to the patient and the expiratory outlet. Among them, the Mapleson D system is notable, and its Bain modification is widely recognized in clinical practice. The Bain system is a coaxial modification of Mapleson D, in which a tube delivering fresh gas runs inside a larger corrugated expiratory tube. This “tube-within-a-tube” arrangement offers practical advantages. By routing fresh gas through the inner tube, the system can help warm and humidify the incoming gas as it travels alongside exhaled gas in the outer corrugated limb, thereby improving heat and moisture conservation compared with some other non-rebreathing circuits.[8] The coaxial design can also be more compact and convenient for certain clinical environments. However, safe performance still depends on adequate fresh gas flow to prevent rebreathing, and clinicians must remain attentive to potential disconnections or kinking of the inner fresh gas tube, which could significantly alter circuit function and ventilation efficiency. The Mapleson F circuit, commonly referred to as the Jackson-Rees system, is particularly important in pediatric anesthesia. It is a modification of the Mapleson E circuit and is typically configured with a reservoir bag attached to the expiratory limb; in some versions, an adjustable overflow valve may also be present. A key advantage of the Mapleson F/Jackson-Rees design is that it imposes minimal resistance to spontaneous ventilation and has minimal apparatus dead space, characteristics that are valuable in neonates and young children whose tidal volumes are small and whose work of breathing can increase markedly with added circuit resistance.[8] These properties make it well suited for pediatric cases, especially when spontaneous ventilation is desired. However, this system is relatively inefficient because it generally requires high fresh gas flows to prevent CO₂ rebreathing. High FGF requirements can increase anesthetic gas consumption and contribute to environmental pollution if scavenging is inadequate.[8] Therefore, clinicians must balance the pediatric-friendly mechanics of the circuit against its resource use and potential exposure risks, using monitoring such as capnography and inspired gas analysis to ensure adequate ventilation and prevention of rebreathing. In summary, anesthesia circuits differ in design complexity, efficiency, and

suitability for specific patient populations and clinical contexts. The circle system dominates modern practice due to its versatility, ability to recycle gases, and advantages in conserving heat and humidity while limiting anesthetic leakage. Mapleson systems remain relevant alternatives, with the Bain modification offering coaxial warming benefits and the Jackson-Rees configuration providing low resistance and minimal dead space for pediatric anesthesia, albeit at the cost of higher fresh gas flow demands to avoid rebreathing.[8]

Issues of Concern

The circle system is the dominant breathing circuit in contemporary anesthesia practice because it allows efficient delivery of inhaled anesthetics, supports rebreathing after carbon dioxide removal, and enables low-flow techniques that reduce anesthetic waste and operating-room pollution. However, these advantages are counterbalanced by important pitfalls that arise from the circuit's complexity and the high reliance on system integrity. The circle circuit contains multiple interconnected components—unidirectional valves, connectors, tubing, reservoir bag, carbon dioxide absorbent canister, vaporizers, scavenging interfaces, and ventilator modules—each of which represents a potential point of failure. Even minor disruption at any junction can alter delivered tidal volume, inspired oxygen concentration, or anesthetic concentration, thereby threatening oxygenation, ventilation, and anesthetic depth. The clinical consequence is that the circle system, while highly functional, is also prone to leaks and discontinuities that can inhibit optimal use, particularly when fresh gas flows are intentionally kept low. A key driver of vulnerability is the practice of low-flow anesthesia, which is one of the circle system's greatest benefits. Low fresh gas flow reduces the consumption of expensive volatile anesthetics, promotes recycling of anesthetic gases, and decreases environmental contamination. Low-flow anesthesia is generally defined as delivery of anesthesia with a gas flow that is less than alveolar ventilation.[1][4] In this mode, the system depends more heavily on tight circuit integrity: when fresh gas inflow is reduced, any leak represents a larger proportional loss of delivered volume and anesthetic concentration, and small leaks that might be tolerated under high-flow conditions can become clinically significant. A leak may manifest as an inability to maintain circuit pressures, reduced delivered tidal volumes, falling inspired oxygen concentration, rising end-tidal carbon dioxide due to hypoventilation, or a drop in measured end-tidal anesthetic concentration that increases the risk of intraoperative awareness. For this reason, performing a leak test or machine test before anesthesia machine use is strongly advisable to minimize the chance that an unrecognized leak will impair ventilation and anesthetic delivery.[9]

Although modern machines often internalize components and automate checks to reduce user-dependent disruptions, common sources of leakage remain clinically important and frequently encountered. Poor mask seal during induction or mask ventilation is one of the most common and can lead to significant loss of delivered volume and anesthetic, especially in patients with facial hair, unusual facial anatomy, or difficult mask fit. Dislodgement of an endotracheal tube can produce abrupt loss of circuit integrity and inadequate ventilation, and it may be accompanied by changes in capnography or airway pressure alarms. Circuit discontinuity—such as disconnection of the inspiratory or expiratory limb—can cause immediate ventilatory failure and rapid desaturation if not recognized promptly. Less obvious discontinuities include an open filling tank on a variable bypass vaporizer or other breaches in the low-pressure pathway that allow fresh gas and anesthetic vapor to escape. Similarly, a poorly attached or detached carbon dioxide absorbent canister can create a major leak within the circle system, impairing both ventilation mechanics and the ability to recycle gas effectively. These examples illustrate that leaks may be patient-related, device-related, or user-related, and the team must maintain situational awareness throughout the case rather than relying solely on pre-use testing. When a leak occurs, prompt recognition and systematic tracing are essential. Early signs may include difficulty maintaining airway pressure, unexpected decreases in delivered tidal volume, an inability to fill the reservoir bag, or a sudden drop in end-tidal agent concentration suggesting loss of anesthetic delivery. Practical bedside methods of identifying a leak include listening for a characteristic “hissing” sound and detecting the odor of volatile anesthetic escaping into the environment, while simultaneously inspecting circuit connections from the patient interface back to the machine. Because deterioration can be rapid—particularly in small children, patients with limited cardiopulmonary reserve, or those receiving neuromuscular blockade—calling for assistance early is a safety-critical behavior when the patient begins to decompensate, such as with oxygen desaturation or hemodynamic instability. If machine failure compromises ventilation or anesthetic delivery, it is prudent to immediately transition to an alternate means of ventilation, such as a bag-valve-mask or self-inflating manual resuscitator, and to provide an alternate means of anesthesia, such as intravenous anesthetic agents, until the anesthesia machine’s function is restored. This approach prevents preventable hypoxia and reduces the risk of awareness during anesthesia while troubleshooting proceeds.

Another major concern associated with circle systems is occupational exposure to waste anesthetic gases. Even with an efficient circuit, volatile anesthetics can still leak into the operating

room, particularly during mask ventilation, circuit disconnections, improper scavenger function, or chronic micro-leaks. To mitigate this hazard, scavenging systems were developed to capture and remove anesthetic gases vented from the circuit, including those released via pressure relief mechanisms such as the APL valve. Occupational exposure is not merely an environmental nuisance; it is a recognized health-security issue for perioperative personnel. Beyond the possibility of nephrotoxicity, hepatotoxicity, and neurotoxicity, long-term exposure to volatile anesthetics has been correlated with genotoxic and mutagenic events, including chromosomal aberrations and sister chromatid exchange.[10][11] Moreover, female anesthesiologists have been reported to experience higher rates of first-trimester abortions compared with the general population, raising additional concerns about reproductive risks in chronically exposed populations.[12] These associations underscore why leak reduction, effective scavenging, and rigorous machine maintenance are essential not only for patient safety but also for workforce protection. Given these risks, structured pre-use checks and routine servicing are indispensable. Prior to machine use, a comprehensive checklist verifying correct functioning of key components helps prevent catastrophic equipment failures that could result in awareness during anesthesia, delivery of hypoxic gas mixtures, administration of excessive inhalational anesthetic concentrations, or inability to ventilate the patient after induction.[7][13] Modern anesthesia workstations typically perform an automated machine check at least once daily, and many incorporate automated leak tests that allow rapid evaluation of circuit continuity between cases.[7][13] However, clinicians must recognize that automation reduces—but does not eliminate—risk. Automated systems may fail to detect certain configuration errors, intermittent leaks, or user-dependent issues that develop after the test, and therefore the ability to perform manual checks remains an important competency, even if more labor-intensive. Routine preventive maintenance and servicing reduce the likelihood of component degradation and latent failure. When formal machine checks do not reveal malfunction, rapid recognition of abnormal monitor trends and early corrective action are crucial to minimizing harm. In high-reliability perioperative practice, the circle system’s efficiency is best leveraged when it is paired with disciplined checks, vigilant monitoring, effective scavenging, and a well-coordinated team response to leaks or failures that threaten ventilation, oxygenation, or anesthetic delivery.[1][4][7][9][10][11][12][13]

Clinical Significance

The modern anesthesia machine has substantial clinical significance because its incorporation of a circle breathing circuit and closed-circuit functionality enables the safe reuse of inhaled

gases, improving both environmental stewardship and the efficiency of perioperative care. In closed or semi-closed operation, exhaled gases are not discarded outright; instead, they are routed through the anesthesia circuit, where carbon dioxide is removed and the remaining gas mixture—containing oxygen and, when used, nitrous oxide and volatile anesthetics such as isoflurane or sevoflurane—can be reintegrated with fresh gas flow and rebreathed by the patient. This engineering approach directly reduces the volume of anesthetic gases vented into the operating room and, ultimately, into the broader environment, thereby decreasing pollution associated with routine surgical practice. In an era of heightened attention to sustainability in healthcare, the anesthesia machine's ability to minimize waste anesthetic emissions represents a meaningful contribution to environmentally responsible clinical operations. A central enabling feature is the carbon dioxide absorbent system, which allows carbon dioxide to be filtered out of the exhaled gas stream so that the remaining gases can be safely recycled. Advances in absorbent formulations and in monitoring technologies have improved the reliability of this process, allowing clinicians to maintain adequate ventilation and prevent carbon dioxide rebreathing while still leveraging the benefits of gas conservation. By chemically trapping carbon dioxide within the absorber, the circuit preserves oxygen and volatile anesthetic concentrations, supporting stable anesthetic delivery with reduced fresh gas requirements. This, in turn, enables the practice of low-flow anesthesia, typically defined as delivering anesthesia with gas flows below alveolar ventilation.^[4] Low-flow techniques magnify the efficiency of the circle system by further limiting the amount of new gas required, which reduces consumption of costly volatile agents and decreases the volume of waste gas that must be scavenged or expelled. The clinical and operational benefits extend beyond environmental considerations. Recycling gases can translate into reduced drug expenditure, improved humidity and heat conservation within the airway circuit, and more controlled delivery of inhalational agents when the system is functioning optimally. In contrast, anesthesia circuits without closed-circuit capability can still deliver anesthesia effectively, but they do so by continuously venting exhaled gases and relying on higher fresh gas flows to prevent rebreathing. This approach carries a significant financial cost due to increased anesthetic consumption and can amplify environmental impact when used widely across surgical systems and high-volume operating suites.^[4] Consequently, the modern anesthesia machine's closed-circuit capacity is clinically significant not only as a technological advancement, but also as a practical mechanism for improving sustainability, reducing costs, and

supporting high-quality perioperative anesthesia delivery at scale.^[4]

Other Issues

Safety Mechanisms

Safety mechanisms built into modern anesthesia machines are designed to prevent catastrophic errors in gas delivery, reduce the likelihood of hypoxic mixtures, and protect both patients and perioperative personnel from avoidable harm. Because the anesthesia workstation interfaces directly with a patient's airway and cardiopulmonary physiology, even a brief failure in oxygen delivery or an incorrect gas connection can cause rapid, irreversible injury. For this reason, contemporary systems rely on layered safeguards: mechanical design constraints that prevent misconnections, pressure regulation that stabilizes gas delivery, scavenging systems that protect staff, and proportioning devices and interlocks that reduce user-dependent dosing errors. These safety features do not eliminate the need for vigilance, but they substantially reduce the probability that a single human error will translate into a life-threatening event.

Pin Index Safety System

The Pin Index Safety System (PISS) exists to prevent attachment of an incorrect E-cylinder to the wrong yoke on the anesthesia machine.^[2] E-cylinders for oxygen, nitrous oxide, and air may appear similar in form factor, and in high-pressure systems, misconnection could result in delivery of the wrong gas to the patient with severe consequences. PISS mitigates this risk by using two index pins on the machine yoke that correspond only to the correct pinhole configuration on the specific cylinder type. Because each gas cylinder has a distinct pinhole pattern, only the appropriate cylinder can be physically seated and secured on the matching yoke, thereby reducing the risk of misconnections and inadvertent administration of the wrong gas.^[2] A critical operational implication is that the pins should never be altered, exchanged, or bypassed. Tampering with the PISS defeats a primary safety barrier and can reintroduce the possibility of delivering a hypoxic or otherwise inappropriate gas mixture during induction or maintenance of anesthesia.^[2] In safety culture terms, preserving these engineering controls is as important as maintaining any medication safety standard, because both address preventable, high-consequence errors.

Diameter Index Safety System

Similar in intent to PISS but applied to the pipeline infrastructure, the Diameter Index Safety System (DISS) prevents inappropriate connections between pipeline gas hoses and the anesthesia machine.^[3] Pipeline gases are the primary gas source in most modern operating rooms; therefore, preventing misconnections at this interface is a core safety requirement. DISS accomplishes this by using

non-interchangeable connections of varying diameters and threading configurations so that each pipeline gas has a unique connector.[3] This design makes it physically difficult to connect, for example, a nitrous oxide hose to an oxygen inlet. The clinical relevance is substantial: pipeline misconnections could cause widespread harm because they may persist unnoticed across multiple cases until detected by alarms, monitors, or adverse events. DISS therefore functions as a system-level safeguard that reduces dependence on labeling and human attentiveness alone, which are less reliable under time pressure, fatigue, or workflow disruption.[3]

The Sequence of Flowmeters

Flowmeters are the user-facing controls that allow titration of gases delivered from the pipeline or cylinder sources. They are commonly described as tapered tubes with a smaller diameter at the bottom and a bobbin that rises as gas flow increases, providing a visual representation of flow rate.[2] While their mechanical principle supports precision, the sequence in which flowmeters are arranged is a major safety feature in itself. Specifically, oxygen should be positioned downstream (closest to the common gas outlet) relative to other gases, such as nitrous oxide.[2] The rationale is protective: if oxygen were placed upstream and a leak occurred between the oxygen flowmeter and downstream flowmeters, oxygen could be diverted away from the patient while another gas continued to flow, thereby generating a hypoxic mixture. Conversely, with oxygen located downstream, a leak in the flowmeter region is more likely to reduce total delivered flow or dilute anesthetic concentration—potentially leading to lighter anesthesia—while markedly reducing the risk of delivering a dangerously low oxygen fraction.[2] In practical terms, this arrangement prioritizes avoidance of hypoxia over maintaining perfect anesthetic concentration, reflecting the principle that oxygenation failure is immediately lethal, whereas transient underdosing of anesthetic—while still serious—can often be corrected if detected quickly.

Gas Scavenging System

In addition to protecting patients, anesthesia workstations incorporate mechanisms to protect operating room personnel. Chronic exposure to waste anesthetic gases is considered a potential occupational hazard, with studies associating long-term exposure with adverse reproductive outcomes such as increased risk of spontaneous abortion, infertility, and congenital anomalies in offspring, as well as possible multi-organ system dysfunctions among exposed clinicians.[7][3] To reduce this risk, modern anesthesia machines incorporate gas scavenging systems that capture exhaled and vented volatile anesthetic gases and transport them away from the operating room environment.[7][3] Typically, the scavenging interface collects gases from sites such as the exhaust port and the adjustable

pressure-limiting valve, where excess circuit pressure is released. Many machines use an “open” collection system that sits over these exhaust outlets, gathering waste gases into a reservoir. The reservoir is then evacuated using pipeline suction, transporting the gases out of the operating room and, commonly, outside the building.[7][3] A key safety point is that scavenging must not inadvertently alter patient ventilation. To prevent transmission of excessive negative or positive pressures from the scavenging system back into the breathing circuit, positive and negative pressure relief valves are incorporated.[7][3] These valves protect against situations in which suction is too strong (which could draw volume from the breathing circuit) or in which obstruction of the scavenging pathway causes pressure buildup (which could increase circuit pressure). In other words, scavenging is simultaneously an occupational safety measure and a patient safety measure, because poorly designed or malfunctioning scavenging could destabilize ventilation. The presence of relief valves reflects an engineering recognition that environmental protection must not compromise the primary function of ventilating and anesthetizing the patient.[7][3]

Pressure Regulator

Stable gas delivery requires stable pressure. Anesthesia machines therefore use pressure regulators to reduce and normalize the high and variable pressures of E-cylinders before gases enter the intermediate pressure system. This function is essential because the high-pressure content of cylinders is far beyond what the breathing circuit and patient lungs can safely tolerate. Oxygen E-cylinders can exceed 2000 psi (approximately 13,700 kPa), while the machine’s intermediate pressure system—typically supplied by the pipeline—operates around 45 to 60 psi (approximately 475 to 413 kPa).[3] A pressure regulator placed between the cylinder source and the intermediate system reduces cylinder pressure to a workable range and helps maintain consistent flow despite declining cylinder pressure as the tank empties. Regulators also smooth fluctuations in pipeline pressures that may occur across the day as demand changes, supporting predictable performance of flow control, vaporizers, and ventilatory mechanics.[3] Clinically, pressure regulation is a prerequisite for accurate dosing and safe ventilation: without it, high-pressure surges could increase delivered volumes, elevate airway pressures, and raise barotrauma risk, while low or unstable pressures could reduce delivered oxygen concentration and impair ventilation.

Prevention of Hypoxia

Because hypoxia is among the most rapidly fatal perioperative emergencies, anesthesia machines incorporate multiple redundant strategies to prevent hypoxic gas delivery. One safeguard is the presence of a minimal mandatory oxygen flow when the machine is turned on, reducing the chance of

inadvertently delivering a gas mixture devoid of oxygen.[3] Machines also discourage users from selecting an oxygen concentration below atmospheric levels (approximately 21%), reflecting the principle that the delivered mixture should not be less oxygen-rich than ambient air.[3] Historically, hypoxic mixtures have occurred when nitrous oxide is used without sufficient supplemental oxygen, especially when user error, equipment malfunction, or unusual workflow contributes to misadjusted flow settings. To protect against hypoxic mixtures during nitrous oxide administration, modern machines employ mechanical or electronic linkages between the nitrous oxide and oxygen flow control valves. This proportioning system constrains the nitrous oxide-to-oxygen ratio so that increasing nitrous oxide flow requires a corresponding oxygen flow, helping maintain a minimum safe inspired oxygen fraction.[3] While such systems reduce risk, they do not replace the need for oxygen analyzers and vigilant monitoring, particularly because pipeline misconnections, analyzer malfunction, or circuit leaks can still result in unrecognized hypoxia if alarms are ignored or disabled. Finally, safety interlocks extend beyond oxygen protection into anesthetic dosing control. Vaporizer interlocks prevent more than one vaporizer from being activated simultaneously, thereby reducing the risk of delivering excessively high concentrations of volatile anesthetics.[3][5] This is clinically important because overdosing can cause profound hypotension, myocardial depression, delayed emergence, and respiratory compromise. By preventing simultaneous vaporizer activation, the machine enforces a “single-agent” inhalational pathway that aligns with standard practice and reduces a common human-factor risk, especially in environments with multiple vaporizers mounted on the same workstation.[3][5] Overall, these safety mechanisms—PISS, DISS, downstream oxygen flowmeter sequencing, scavenging systems with relief valves, pressure regulators, hypoxia prevention strategies, and vaporizer interlocks—represent a layered safety architecture that supports reliable anesthesia delivery and protects both patients and staff.[2][3][5][7] Even with these safeguards, the anesthesia provider’s situational awareness, adherence to pre-use checks, and prompt response to monitor alarms remain essential, because safety mechanisms are designed to reduce risk, not to eliminate it entirely.

Enhancing Healthcare Team Outcomes

Optimizing patient outcomes in the operating room requires more than technical proficiency from any single clinician; it depends on an interprofessional system that functions reliably under time pressure, uncertainty, and high cognitive workload. The operating room is inherently stressful because it demands continuous synchrony among anesthesiologists, surgeons, nurses, anesthesia

technicians, circulating staff, and operating room aides. At the center of this environment is the patient, whose physiologic stability must be maintained while the surgical team performs invasive interventions and the anesthesia team simultaneously manages hypnosis, analgesia, ventilation, oxygenation, and hemodynamics. The anesthesia machine sits at the core of these tasks, acting as the platform for gas delivery, ventilatory support, and monitoring integration. As anesthesia workstations have expanded to include sophisticated ventilator modes, gas analyzers, capnography, oxygen monitoring, alarm hierarchies, and automated self-check routines, they have improved safety but also increased complexity. Consequently, safe operation remains dependent on vigilant attention, anticipatory troubleshooting, and rapid recognition of failure states—particularly those that threaten oxygenation, ventilation, or anesthetic depth. Despite major advances in engineering controls, human factors remain the dominant source of critical incidents. Anesthesia machines are designed with multiple safety mechanisms, yet their performance can be undermined by configuration errors, inadequate pre-use checks, inadvertent disconnections, incorrect vaporizer handling, or misuse of manual ventilation controls. The evidence summarized in the prompt underscores this reality: in a cohort study of critical incidents, only a small minority of substantive negative outcomes were attributable to equipment failure, implying that user error and systems factors—communication, teamwork, training, situational awareness—drive most preventable harm. [Level 3] In practical terms, this means that improving outcomes is less about acquiring “better machines” and more about ensuring that people use existing machines safely, consistently, and with shared mental models. Interprofessional education that frames the anesthesia machine as a shared safety responsibility can reduce morbidity and mortality by enabling earlier detection of leaks, misconnections, inadequate ventilation, and falling anesthetic concentrations.[14] When nurses, technicians, and surgeons understand how machine malfunction manifests—such as sudden loss of capnography, unexpected drops in end-tidal anesthetic concentration, inability to maintain airway pressure, or rising inspired CO₂—they can communicate concerns promptly rather than assuming the issue is “anesthesia-only.” This shared vigilance is central to high-reliability perioperative care.

Team performance also improves when roles are fluid and supportive without compromising scope of practice. A practical example is mask ventilation difficulty, such as with facial hair, poor facial contours, or an evolving difficult airway. In such moments, coordinated assistance can restore ventilation faster than a single provider acting alone. A nurse who recognizes that the anesthesia provider

requires both hands to optimize the mask seal can support the process by squeezing the reservoir bag under direction, thereby improving delivered tidal volumes while the provider focuses on airway positioning and seal integrity. This behavior is not merely helpful; it can prevent rapid oxygen desaturation and avert progression to a crisis. Similar team contributions include checking circuit connections during alarms, ensuring suction availability, retrieving airway adjuncts, confirming that scavenging hoses are attached, or bringing backup equipment when the primary machine performance is in question. Effective teams normalize these supportive actions, communicate clearly, and avoid hesitation when patient safety is threatened. Enhancing outcomes also requires attention to occupational health hazards created by anesthesia equipment. Waste anesthetic gas exposure is an established concern, and staff must be educated that the anesthesia machine is not only a patient-delivery device but also a potential source of workplace exposure if scavenging is ineffective or if leaks occur. The text notes animal studies linking volatile anesthetic exposure to nephrotoxicity and cognitive effects, including risks associated with Compound A in sevoflurane.[15][16] At the same time, a meta-analysis of randomized controlled studies did not find a significant relationship between compromised renal function and volatile anesthesia exposure in healthy patients, highlighting that toxicity evidence can vary by model, exposure conditions, and population.[17] [Level 1] However, occupational risk remains clinically relevant, particularly because epidemiologic observations have reported higher rates of spontaneous abortions and infertility among female anesthesiologists compared with the general population.[7] These data reinforce the importance of functioning scavenging systems, routine leak checks, and staff training that treats exposure reduction as a collective responsibility rather than an optional technical detail.

Ultimately, better outcomes arise when operating room teams embed anesthesia machine safety into culture and workflow. This includes structured pre-case briefings that confirm machine readiness, shared awareness of backup ventilation strategies, standard language for alarm escalation, and a supportive environment in which any team member can raise concerns without fear of hierarchy. Education, simulation, and continuous quality improvement reinforce the ability to respond rapidly to evolving failures and reduce the likelihood that human error translates into hypoxia, awareness, or preventable perioperative morbidity.[14] A team that understands both the machine's strengths and its vulnerabilities is more capable of maintaining stable anesthesia, protecting staff, and delivering safe, efficient surgical care.

Nursing, Allied Health, and Interprofessional Team Interventions

Modern anesthesia machines are designed to be safer and more user-friendly than earlier generations, integrating alarms, automated self-tests, and real-time monitoring displays to support decision-making. Nevertheless, the complexity of these workstations means that user error and system-level vulnerabilities persist, and patient harm can occur rapidly if oxygenation, ventilation, or anesthetic delivery fails. For that reason, nursing and allied health interventions are central to resilience in the operating room. While not all staff must understand the engineering details of high-, intermediate-, and low-pressure systems, a working familiarity with key components and common failure patterns can empower non-anesthesia personnel to recognize problems quickly, communicate effectively, and assist in restoring safe function. In this context, interprofessional interventions aim to create redundancy: if one layer of oversight fails, another can detect and correct the issue before patient deterioration occurs. A fundamental intervention is preparedness for immediate backup ventilation. Every operating room should have a bag-valve-mask (BVM) or self-inflating bag readily available and visible, and staff should know its location without delay. When an anesthesia machine fails—whether due to circuit disconnection, ventilator malfunction, loss of gas supply, or a significant leak—the fastest route to patient stabilization is often manual ventilation with a BVM while the anesthesia provider troubleshoots. Nursing staff and anesthesia technicians can assist by retrieving the BVM, attaching oxygen, confirming that masks and airway adjuncts are available in appropriate sizes, and preparing suction. This rapid support is crucial because hypoxia and anoxic brain injury can develop within minutes during complete ventilation failure. Timely handoff of backup equipment is therefore not a minor convenience but a high-impact safety action that can prevent catastrophic outcomes [14].

Another high-value intervention is active surveillance for circuit leaks and disconnections, particularly in the low-pressure circle system, which is efficient but vulnerable to disruption. Because the breathing circuit includes multiple connection points and can be manipulated during patient positioning, surgical draping, and equipment movement, disconnections may occur without immediate awareness. Nurses and allied health professionals who understand that sudden loss of capnography waveform, unexplained alarm activation, or changes in ventilator pressures can signal circuit discontinuity can perform rapid visual checks of the inspiratory and expiratory limbs, the patient connection, and the CO₂ absorbent canister seating. When an abnormality is identified—such as a loose elbow connector, a disconnected limb behind the drapes, or a canister not fully latched—prompt notification allows the anesthesia provider to correct the issue quickly, potentially preventing desaturation and awareness. In

this way, the team functions as an extension of the anesthesia provider's situational awareness, especially during periods when the provider's attention is divided between airway management, hemodynamics, medication administration, and coordination with the surgical team. Interprofessional interventions also include protecting the integrity of anesthesia workflow and resisting unsafe time pressures. Operating rooms often emphasize faster turnover between cases, which can inadvertently compress the time allocated for machine checks, circuit inspection, and vaporizer readiness. Nursing leadership and perioperative teams play a critical role by recognizing that the anesthesia machine is the most important piece of equipment in the room and that its failure can cause death or severe neurologic injury within minutes. Accordingly, staff should support the anesthesia provider in completing routine checks without interruption, ensuring that the machine has undergone the daily automated test and that a between-case leak test or circuit continuity assessment is performed when indicated. When workflow demands compete with safety checks, a culture that prioritizes patient safety empowers staff to pause and address concerns rather than proceeding in the face of uncertainty [14].

Occupational safety interventions are also part of interprofessional practice. Nurses and allied health staff should ensure that gas scavenging systems are connected correctly, that suction is functioning, and that obvious sources of leak—such as poorly seated masks during induction or open vaporizer filling ports—are corrected. Because waste anesthetic exposure is an occupational hazard, ensuring scavenging integrity protects staff while also reducing environmental contamination. Staff should feel responsible for speaking up if they notice strong anesthetic odor, suspected leaks, or repeated circuit venting, and should coordinate with anesthesia providers to investigate the source. These actions align patient safety and workplace health as a single integrated goal rather than competing priorities. Finally, effective interventions depend on communication discipline. When concerns arise, closed-loop communication improves reliability: the observing staff member states the concern clearly, the anesthesia provider acknowledges, and corrective action is confirmed. This reduces ambiguity during alarms, prevents duplicate or conflicting actions, and accelerates restoration of safe ventilation and anesthetic delivery. Even though in-depth mechanical knowledge of the anesthesia machine is not required for all operating room personnel, familiarity with the most common failure points—disconnects, mask seal failure, absorbent canister issues, scavenging disconnections, and the need for immediate backup ventilation—can markedly improve safety margins. In sum, nursing, allied health, and interprofessional interventions strengthen the operating room's

capacity to anticipate, detect, and recover from anesthesia machine vulnerabilities, reducing preventable hypoxia, intraoperative awareness, and other adverse outcomes while supporting efficient, high-quality perioperative care.[14]

Conclusion:

Modern anesthesia machines represent a cornerstone of perioperative care, combining gas delivery, ventilation, and monitoring within a safety-engineered platform. Their ability to support low-flow anesthesia enhances efficiency and environmental stewardship, but also introduces vulnerabilities such as circuit leaks and component failures. While technological advances have reduced equipment-related incidents, human factors—configuration errors, inadequate checks, and poor communication—remain the predominant source of harm. Consequently, safe practice requires a systems-based approach that integrates technical proficiency with interprofessional collaboration. Structured pre-use testing, vigilant monitoring of vaporizer output, circuit integrity, and CO₂ absorption are essential to prevent hypoxia, awareness, and barotrauma. Equally important is occupational safety: effective scavenging and leak prevention protect staff from chronic exposure to waste anesthetic gases. Nursing and allied health interventions, including readiness for backup ventilation and active surveillance for disconnections, create redundancy that strengthens resilience during crises. Ultimately, the anesthesia machine's complexity demands continuous education, simulation-based training, and a culture that prioritizes safety over speed. By embedding these principles into workflow, perioperative teams can leverage the machine's capabilities while minimizing risks, ensuring optimal patient outcomes and safeguarding the health of the surgical workforce.

References:

1. Patil VP, Shetmahan MG, Divatia JV. The modern integrated anaesthesia workstation. *Indian journal of anaesthesia*. 2013 Sep;57(5):446-54. doi: 10.4103/0019-5049.120139.
2. Gurudatt C. The basic anaesthesia machine. *Indian journal of anaesthesia*. 2013 Sep;57(5):438-45. doi: 10.4103/0019-5049.120138.
3. Subrahmanyam M, Mohan S. Safety features in anaesthesia machine. *Indian journal of anaesthesia*. 2013 Sep;57(5):472-80. doi: 10.4103/0019-5049.120143.
4. Upadhyay M, Saneesh PJ. Low-flow anaesthesia - underused mode towards "sustainable anaesthesia". *Indian journal of anaesthesia*. 2018 Mar;62(3):166-172. doi: 10.4103/ija.IJA_413_17.
5. Chakravarti S, Basu S. Modern anaesthesia vapourisers. *Indian journal of anaesthesia*. 2013

Sep:57(5):464-71. doi: 10.4103/0019-5049.120142.

6. Kharasch ED, Powers KM, Artru AA. Comparison of Amsorb, sodalime, and Baralyme degradation of volatile anesthetics and formation of carbon monoxide and compound a in swine in vivo. *Anesthesiology*. 2002 Jan;96(1):173-82

7. Gonoppanavar U, Prabhu M. Anaesthesia machine: checklist, hazards, scavenging. *Indian journal of anaesthesia*. 2013 Sep;57(5):533-40. doi: 10.4103/0019-5049.120151.

8. Kaul TK, Mittal G. Mapleson's Breathing Systems. *Indian journal of anaesthesia*. 2013 Sep;57(5):507-15. doi: 10.4103/0019-5049.120148.

9. Al Suhaibani M, Al Malki A, Al Dosary S, Al Barmawi H, Pogoku M. Pre-use anaesthesia machine check; certified anesthesia technician based quality improvement audit. *Anesthesia, essays and researches*. 2014 Sep-Dec;8(3):354-60. doi: 10.4103/0259-1162.143142.

10. Byhahn C, Wilke HJ, Westpphal K. Occupational exposure to volatile anaesthetics: epidemiology and approaches to reducing the problem. *CNS drugs*. 2001;15(3):197-215

11. Yılmaz S, Çalbayram NÇ. Exposure to anesthetic gases among operating room personnel and risk of genotoxicity: A systematic review of the human biomonitoring studies. *Journal of clinical anesthesia*. 2016 Dec;35():326-331. doi: 10.1016/j.jclinane.2016.08.029.

12. Nagella AB, Ravishankar M, Hemanth Kumar VR. Anaesthesia practice and reproductive outcomes: Facts unveiled. *Indian journal of anaesthesia*. 2015 Nov;59(11):706-14. doi: 10.4103/0019-5049.170028.

13. McIntyre JW. Anesthesia equipment malfunction: origins and clinical recognition. *Canadian Medical Association journal*. 1979 Apr 21;120(8):931-4

14. Cooper JB, Newbower RS, Kitz RJ. An analysis of major errors and equipment failures in anesthesia management: considerations for prevention and detection. *Anesthesiology*. 1984 Jan;60(1):34-42

15. Jin L, Baillie TA, Davis MR, Kharasch ED. Nephrotoxicity of sevoflurane compound A [fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether] in rats: evidence for glutathione and cysteine conjugate formation and the role of renal cysteine conjugate beta-lyase. *Biochemical and biophysical research communications*. 1995 May 16;210(2):498-506

16. Lee BH, Chan JT, Hazarika O, Vutskits L, Sall JW. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory. *PloS one*.

2014;9(8):e105340. doi: 10.1371/journal.pone.0105340.

17. Ong Sio LCL, Dela Cruz RGC, Bautista AF. Sevoflurane and renal function: a meta-analysis of randomized trials. *Medical gas research*. 2017 Jul-Sep;7(3):186-193. doi: 10.4103/2045-9912.215748