

The Molecular Autopsy: A Review of Interprofessional Integration of Post-Mortem Biochemistry and Laboratory Forensics in Unexplained Surgical & Anesthetic Mortality

Mohammed Hathal Thunayyan Alotaibi (1) , Modhi Falaj Herbash Alotaibi (2) , Mohammed Abdulrahman M Abobaker (3) , Mohammed Eid S Aljohany (3) , Talal Eid Alanazi (4) , Khairat Majrshi (5) , Abdallah Ali Mohammed Hakami (6) , Saleh Alenazi (7) , Ahmed Ghurmallah Alzahrani (8) , Ghadeer Abduh Mohammed Baeshen (9) , Ismail Ahmad Ismail Alnumi (10)

(1) *Al-Fawaz Health Center, Ministry of Health, Saudi Arabia,*

(2) *Ministry Of Health, Saudi Arabia,*

(3) *Ministry of Health - Riyadh Branch, Saudi Arabia,*

(4) *Alhasa, Ministry of Health, Saudi Arabia,*

(5) *Forensic Medicine Services Department, Ministry of Health, Saudi Arabia,*

(6) *Eradah & Mental Health Hospital in Jazan, Ministry of Health, Saudi Arabia,*

(7) *Al Yamamah Hospital, Riyadh, Ministry of Health, Saudi Arabia,*

(8) *AlAzizia Children's Hospital, Jeddah, Ministry of Health, Saudi Arabia,*

(9) *Almaddah phcc, Aseer Health Cluster, Ministry of Health, Saudi Arabia,*

(10) *Public Health, Riyadh Health, Ministry of Health, Saudi Arabia*

Abstract

Background: Unexplained deaths occurring intraoperatively or in the immediate postoperative period present profound diagnostic and medico-legal challenges. Traditional autopsy may be non-diagnostic for metabolic, pharmacogenetic, or subtle biochemical fatal events. **Aim:** This narrative review examines the convergence of forensic medicine and medical laboratory science in the form of the "molecular autopsy," analyzing the interprofessional framework required to investigate such mortality.

Methods: A comprehensive literature search (2010-2024) was conducted across PubMed, Scopus, and Web of Science. Relevant studies on post-mortem biochemistry (thanatochemistry), forensic toxicology, and interdisciplinary death investigation protocols were synthesized.

Results: The molecular autopsy integrates post-mortem biochemical analyses (tryptase for anaphylaxis, serum electrolytes, creatine kinase for malignant hyperthermia) with detailed procedural and pharmacological context. Its efficacy is contingent upon rigorous interprofessional collaboration, including operating room staff (specimen integrity), pharmacy (medication reconciliation), nursing (clinical timeline), and infection control. Standardized protocols for sample collection, timing, and interpretation are paramount but inconsistently applied. **Conclusion:** The molecular autopsy is an indispensable adjunct to traditional autopsy for unexplained surgical deaths. Its systematic implementation requires formalized interprofessional protocols, standardized laboratory assays, and shared interpretive frameworks to elucidate causes like malignant hyperthermia, anaphylaxis, and toxic overdose, thereby improving patient safety and medico-legal accountability.

Keywords: Post-mortem biochemistry, Thanatochemistry, Malignant hyperthermia, Anaphylaxis, Interprofessional collaboration, Surgical mortality.

Introduction

The operating room and post-anesthesia care unit represent high-stakes environments where catastrophic, and at times unexplained, patient mortality can occur despite adherence to standard clinical protocols. When a patient dies during or shortly after a surgical procedure, the etiological spectrum ranges from obvious surgical mishaps to covert, molecularly mediated events invisible to gross anatomical examination (Saukko & Knight, 2015). Traditional medico-legal autopsy, focused on macroscopic and histological findings, may fail to identify fatal disorders rooted in biochemical,

metabolic, or pharmacogenetic aberrations (Zribi et al., 2021). This diagnostic vacuum underscores the critical need for a "molecular autopsy"—a term increasingly adopted to describe the application of specialized biochemical, toxicological, and genetic analyses to post-mortem specimens to uncover the pathophysiological mechanisms of death (Grassi et al., 2023).

This review explores the convergence of forensic pathology and medical laboratory science in investigating unexplained intra- and post-operative deaths. The core premise is that such investigations are inherently interprofessional, extending far beyond the

autopsy suite. They demand the integrated expertise of forensic pathologists, clinical biochemists, toxicologists, pharmacists, perioperative nurses, surgeons, anesthesiologists, and infection prevention specialists (Chen et al., 2015). Each discipline contributes a vital piece of the puzzle: from the secure chain-of-custody for blood samples drawn in the operating room to the pharmacological reconciliation of administered drugs, and from the interpretation of labile post-mortem biochemical markers to the exclusion of iatrogenic sepsis. This synthesis aims to analyze the components, collaborative protocols, and interpretive challenges of the molecular autopsy, with a focus on its role in elucidating enigmatic fatalities such as malignant hyperthermia (MH), anaphylactic reactions, and medication-related overdoses or idiosyncratic reactions (Ramanathan et al., 2020).

The Landscape of Unexplained Perioperative Mortality

Perioperative mortality, while declining due to advances in safety, remains a significant concern. A subset of these deaths is classified as "unexplained" or "unexpected" after initial review, often triggering a root-cause analysis and medico-legal investigation (Laurenza et al., 2020). Causes can be broadly categorized: complications of underlying disease, surgical error (e.g., hemorrhage, embolism), anesthetic mishap (e.g., airway loss, overdose), and rare, often genetically predisposed, syndromes triggered by the physiological stress of surgery and anesthesia (Rosenberg et al., 2015). It is this latter category for which the molecular autopsy is particularly crucial. Examples include Malignant Hyperthermia (MH), a pharmacogenetic disorder of skeletal muscle calcium regulation triggered by volatile anesthetics and succinylcholine; anaphylaxis to perioperative drugs (e.g., antibiotics, neuromuscular blocking agents, chlorhexidine); and undiagnosed metabolic disorders like porphyria or mitochondrial diseases that decompensate under stress (Carlson et al., 2022). Furthermore, deaths from electrolyte disturbances (e.g., hyperkalemia from succinylcholine in undiagnosed neuromuscular disorders), occult endocrine crises (e.g., adrenal insufficiency), or drug interactions leading to toxic levels are often only discernible through biochemical analysis (Ferrara et al., 2017).

The limitations of standard autopsy in these contexts are well-documented. MH may leave only subtle, non-specific findings such as muscle rigidity and mild pulmonary edema. Anaphylaxis may present with gross findings of laryngeal edema or bronchospasm, but confirmation requires biochemical evidence of mast cell degranulation (Mondello et al., 2023). Toxic deaths may leave no anatomical trace. Consequently, the forensic pathologist is increasingly reliant on the laboratory to provide a chemical "snapshot" of the internal environment at or near the time of death.

Post-Mortem Biochemistry (Thanatochemistry)

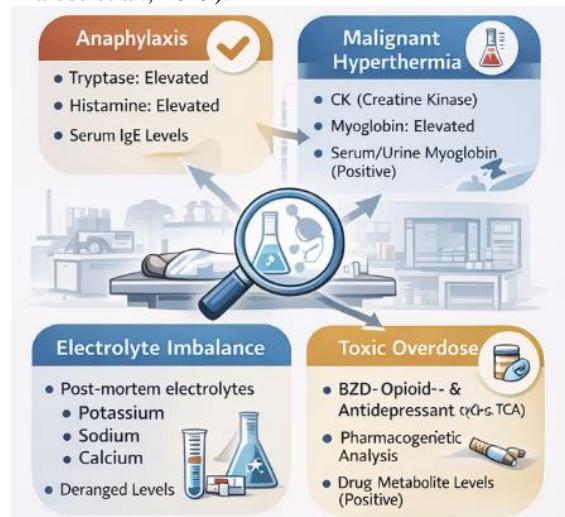
Post-mortem biochemistry, or thanatochemistry, involves the analysis of vitreous humor, blood (preferably from a peripheral site like the femoral vein), cerebrospinal fluid (CSF), and sometimes tissues to assess metabolic status at death. Its interpretation is fraught with challenges due to post-mortem changes: autolysis, diffusion, and bacterial metabolism continuously alter analyte concentrations (Dawidowska et al., 2021). Therefore, understanding pre-analytical variables is as important as the analysis itself (Table 1).

Sample Selection and Timing

The choice of specimen is critical. Peripheral blood is preferred over central blood (e.g., from the heart), which is more susceptible to contamination from gastric or pulmonary contents and post-mortem diffusion from adjacent organs (Poovaragavan et al., 2023). Vitreous humor, being anatomically isolated, is excellent for stable electrolytes (sodium, chloride) and some metabolites like glucose, lactate, and creatinine, as it is less subject to early post-mortem change (Madea, 2022). CSF can be useful for markers of cerebral pathology. The timing of collection is paramount; the sooner after death, the more reliable the results, especially for labile analytes like hormones or certain enzymes.

Key Analytes and Their Interpretation

The interpretation of post-mortem biochemical findings, or thanatochemistry, is a nuanced discipline requiring a deep understanding of both pathophysiology and the profound alterations that occur after death. The choice of analyte and specimen is critical, as is the context provided by the clinical scenario. Vitreous humor, owing to its relative isolation from the rapid metabolic and bacterial changes affecting blood, serves as a primary fluid for assessing several metabolic parameters. Analyses of vitreous sodium, chloride, and urea nitrogen are fundamental for evaluating antemortem hydration status and renal function, providing clues to conditions like dehydration or undiagnosed renal failure (Rousseau et al., 2018). Similarly, vitreous glucose and lactate are pivotal in the investigation of suspected fatal hypoglycemia or hyperglycemic crises such as diabetic ketoacidosis. However, interpreters must exercise caution, as an elevated vitreous lactate is a non-specific finding that can result from agonal stress or tissue hypoxia, not solely from a primary metabolic disorder (Palmiere et al., 2013).


For catastrophic hypermetabolic events triggered by anesthesia, specific markers of muscle cell integrity are paramount. Serum or plasma creatine kinase (CK) and myoglobin are the central biochemical correlates for syndromes like malignant hyperthermia (MH) and neuroleptic malignant syndrome. A markedly elevated CK, often exceeding 10,000 IU/L and frequently reaching into the hundreds of thousands, provides strong laboratory support for extensive rhabdomyolysis (Mullins, 2018). This finding should be correlated with the clinical timeline

and toxicology, as strenuous agonal convulsions or intramuscular injections can also cause significant, though typically less extreme, elevations. The detection of myoglobinuria, if a timely urine sample is secured, offers corroborative evidence of muscle breakdown and can inform histopathological examination of the kidneys for cast formation (Musshoff et al., 2020).

In the investigation of sudden perioperative collapse, anaphylaxis is a critical differential, and its post-mortem confirmation relies heavily on biochemical evidence. Serum tryptase, a neutral protease released from mast cell granules during systemic degranulation, is the cornerstone test. A significant elevation in total tryptase measured in post-mortem peripheral serum—with a threshold of $>30-40 \mu\text{g/L}$ frequently cited as suggestive in the appropriate clinical context—supports the diagnosis of fatal anaphylaxis (Edston & van Hage-Hamsten, 2005). The interpretation is significantly strengthened by demonstrating a rise in serial samples if available. Nonetheless, this biomarker must be interpreted with caution. Elevated post-mortem tryptase levels are not pathognomonic and have been documented in deaths from trauma, sudden cardiac death, and other non-allergic causes, while conversely, not all fatal anaphylactic reactions produce a diagnostically elevated level (Tanno et al., 2017; Mondello et al., 2023).

The search for endocrine crises or systemic infection presents further analytical challenges. In cases of suspected undiagnosed adrenal insufficiency precipitating perioperative shock, the measurement of cortisol in post-mortem blood may be attempted. However, reliable interpretation requires the use of post-mortem-specific reference intervals and assays

validated for hemolyzed and degraded specimens, as thyroid hormones are generally considered too labile for meaningful post-mortem assessment (Palmiere & Mangin, 2012). Similarly, ruling out iatrogenic or rapidly progressing sepsis as a cause of death is difficult. While traditional markers like C-reactive protein (CRP) are often unstable, procalcitonin has emerged as a potentially more robust post-mortem marker of sepsis due to its greater in-vivo stability and rapid induction. However, study results remain controversial, with levels influenced by the post-mortem interval and observed elevations in some non-septic deaths, indicating it is an adjunct finding rather than a definitive diagnostic tool (Tattoli et al., 2019; Maiese et al., 2019).

Figure 1: Key Biochemical and Toxicological Markers in the Molecular Autopsy

Table 1: Key Post-Mortem Biochemical Markers in Surgical/Anesthetic Death Investigation

Analyte	Specimen	Target Indication	Interpretive Considerations & Caveats
Tryptase	Peripheral serum	Fatal anaphylaxis	perioperative Peak 1-2 hrs post-event; $>30-40 \mu\text{g/L}$ suggestive; false positives (trauma, cardiac death) and negatives possible.
Creatine Kinase (CK)	Peripheral serum	Malignant hyperthermia, rhabdomyolysis	hyperthermia, rhabdomyolysis Extreme elevation supports MH; moderate elevation common post-agony or with IM injections.
Myoglobin	Peripheral serum, Urine	Rhabdomyolysis (MH, NMS)	Corroborates CK findings; renal cast formation on histology supports.
Potassium (K⁺)	Vitreous humor, Periph. serum	Hyperkalemic arrest (e.g., succinylcholine in burns, renal failure)	Vitreous K ⁺ rises predictably with PMI; very high antemortem levels may be obscured.
Glucose & Lactate	Vitreous humor	Hypoglycemia, complications	diabetic Low vitreous glucose suggests antemortem hypoglycemia; high lactate is non-specific.
Procalcitonin	Peripheral serum	Iatrogenic or nosocomial sepsis	Emerging marker; requires validated PM cut-offs; levels may be elevated in non-septic deaths.
Specific Drug Levels	Peripheral blood, Liver, Gastric	Anesthetic overdose, drug interaction	Quantitative toxicology is essential; requires comparison to therapeutic/toxic ranges.

The Interprofessional Framework for Investigation

A successful molecular autopsy is not merely a set of laboratory orders; it is a structured, collaborative process initiated from the moment of the adverse event (Figure 2).

Operating Room Team & Surgical Staff

The OR team is the first link. Their role extends beyond clinical care to forensic evidence preservation. This includes securing all medication vials, syringes, and infusion bags used during the case for later analysis (Al-Khateeb et al., 2019). Most critically, they must obtain biological specimens immediately upon recognition of a catastrophic event (Sisodia, 2022). Drawing blood into appropriate tubes (serum separator, EDTA) from a peripheral site, labeling them accurately with patient details, time, and date, and initiating a formal chain-of-custody log is essential to withstand legal scrutiny. Documentation of the exact timing of drug administrations, vital sign changes, and interventions provides the necessary clinical context for interpreting laboratory results (Riazi et al., 2018).

Nursing Documentation

Pre- and post-operative nursing notes are invaluable. Documentation of pre-operative medications (e.g., beta-blockers, insulin), allergies, baseline vital signs, and the patient's condition upon arrival in the OR establishes a baseline. Intraoperative records from the circulator nurse and postoperative notes detail the emergence trajectory, providing clues to the onset of the fatal event—was it immediate upon induction, related to a specific drug bolus, or a delayed postoperative deterioration? (Nijkamp & Foran, 2021).

Pharmacy & Toxicology

The hospital pharmacist plays a key role in medication reconciliation, verifying the identities, concentrations, and expiration dates of all drugs administered. They can provide crucial data on pharmacokinetics, potential drug-drug interactions, and expected therapeutic ranges. The forensic toxicologist then performs quantitative analysis on post-mortem blood and tissues to measure drug and metabolite levels (Davies et al., 2019). This is vital for identifying overdose (e.g., of local anesthetics), toxicity from impaired metabolism (e.g., pseudocholinesterase deficiency prolonging succinylcholine), or the presence of unexpected substances. Pharmacogenetic testing, often sent to specialized labs, can identify mutations conferring susceptibility to MH (RYR1, CACNA1S genes) or altered drug metabolism (CYP450 variants) (Yang et al., 2020; Cohen et al., 2012).

Infection Prevention & Control

Unexplained postoperative collapse can sometimes be due to overwhelming sepsis from a contaminated infusion, surgical site, or invasive line. Infection control specialists assist by reviewing

sterilization records, culture reports from the patient and any implicated devices, and epidemiological data. While blood cultures taken post-mortem are of limited value due to rapid bacterial translocation, positive ante-mortem cultures or the identification of a breach in sterile technique can be pivotal (Unuma et al., 2019).

Figure 2: Interprofessional Framework for the Molecular Autopsy in Unexplained Surgical and Anesthetic Mortality

The Integrative Role of the Forensic Pathologist and Clinical Biochemist

The forensic pathologist directs the investigation, integrating gross/histological findings with the biochemical and toxicological reports. The clinical biochemist advises on appropriate tests, validates assays for post-mortem matrices, and helps interpret complex results within the context of post-mortem artifact (Hernández-Romero et al., 2021). This collaborative dialogue is essential to avoid diagnostic errors, such as misinterpreting a post-mortem rise in potassium as antemortem hyperkalemia.

Molecular Elucidation of Specific Syndromes Malignant Hyperthermia (MH)

The molecular autopsy for MH is multifaceted. Biochemically, it seeks evidence of explosive hypermetabolism: severely elevated serum CK and myoglobin, metabolic acidosis (low vitreous bicarbonate, high lactate), and potentially hyperkalemia (Rosenberg et al., 2015). Toxicology confirms exposure to triggering agents. The definitive molecular component is genetic testing of post-mortem blood or tissue for pathogenic variants in the RYR1 gene, present in ~50-70% of cases (Hopkins et al., 2021). This provides a conclusive diagnosis for the family and enables cascade testing of relatives.

Perioperative Anaphylaxis

Investigation hinges on tryptase levels. Paired samples—one drawn at the time of arrest/immediate post-mortem and a second 1-2 hours later (if logistically possible)—can demonstrate a rising level, which is more specific than a single value

(Zheng et al., 2021). The investigation must be coupled with a thorough review of the temporal sequence of drug administration to identify the likely culprit. Immunological tests (e.g., specific IgE, skin testing on proxies, or basophil activation tests) are antemortem procedures and not part of the post-mortem workup, but the findings can guide future safety.

Toxic Overdose and Idiosyncratic Reactions

This requires comprehensive toxicological screening, not just for the drugs documented on the

anesthesia record, but also for contaminants or medications the patient may have taken preoperatively (Peters, 2021). Quantitative results are compared to known therapeutic, toxic, and fatal ranges. Examples include local anesthetic systemic toxicity (LAST) from bupivacaine, opioid-induced respiratory depression, or propofol infusion syndrome, the latter suggested by elevated triglycerides, fatty liver, and metabolic acidosis (Hemphill et al., 2019; Van et al., 2023).

Table 2: Interprofessional Roles in the Molecular Autopsy Protocol

Professional Role	Key Responsibilities	Critical Contribution to Investigation
Surgeon/Anesthesiologist	Clinical event documentation; immediate notification of pathology.	Provides a detailed procedural and physiological timeline; identifies a sentinel event.
Perioperative Nursing	Secure medication vials/syringes; draw & label initial blood specimens; maintain chain-of-custody.	Preserves physical evidence; ensures specimen integrity for legal defensibility.
Hospital Pharmacy	Reconcile all administered medications; provide lot numbers and pharmacokinetic data.	Rules out medication error; provides context for toxicological interpretation.
Infection Control	Review sterile technique records; analyze any ante-mortem culture data.	Investigates potential iatrogenic sepsis as a cause of collapse.
Clinical Biochemistry Lab	Perform thanatochemistry assays; advise on sample suitability/interpretation.	Generates quantitative data on metabolic status (tryptase, CK, electrolytes).
Forensic Toxicology Lab	Perform qualitative & quantitative drug analysis in post-mortem specimens.	Identifies overdose, toxicity, or presence of unexpected substances.
Forensic Pathologist	Perform autopsy; integrate all clinical, anatomical, and laboratory data; determine cause of death.	Serves as the lead investigator, synthesizing the interprofessional findings into a coherent medico-legal opinion.
Genetic Counselor/Lab	Conduct post-mortem genetic testing upon request (e.g., RYR1 for MH).	Provides definitive molecular diagnosis for pharmacogenetic syndromes.

Protocols, Standardization, and Ethical Considerations

A major barrier to the consistent application of the molecular autopsy is the lack of standardized protocols. There is significant variation between jurisdictions and institutions regarding which tests are routinely performed, the sampling protocols, and the interpretive criteria used (Palmiere et al., 2016). Efforts are needed to establish evidence-based guidelines, similar to those for the biochemical diagnosis of MH in living patients, but adapted for the post-mortem setting. This includes defining optimal sample types, standardized collection kits for ORs, and consensus-based reference values/cut-offs for post-mortem analytes like tryptase (Tejedor-Alonso et al., 2020).

Ethical and legal considerations are paramount. Consent for post-mortem genetic testing (pharmacogenetics) raises issues of family privacy and the potential for genetic discrimination. Clear policies are needed regarding who can authorize such testing,

how results are communicated to relatives, and how genetic information is stored (Banner et al., 2021). Furthermore, all procedures must adhere to the chain-of-custody requirements to ensure the evidence is admissible in legal proceedings.

Conclusion and Future Directions

The molecular autopsy, grounded in the synergistic integration of post-mortem biochemistry and laboratory forensics, has fundamentally transformed the investigation of unexplained surgical and anesthetic mortality. By probing the chemical and molecular aftermath of death, it reveals causes that elude the scalpel and microscope. However, its power is inextricably linked to the quality of interprofessional collaboration. From the OR nurse who draws the first blood sample to the biochemist who measures a critical analyte, and from the pharmacist who audits the drug list to the pathologist who weaves all data into a final narrative, each role is indispensable.

Future progress depends on several key developments: the creation and widespread adoption

of standardized national and international protocols for sample collection and analysis; continued research to validate and refine interpretive criteria for post-mortem biomarkers; and the development of rapid, point-of-care assays that could potentially be used in the OR to guide immediate treatment and investigation. Furthermore, the integration of "omics" technologies—such as post-mortem metabolomics or proteomics—may uncover novel signatures of specific fatal syndromes. Ultimately, the goal of this interdisciplinary endeavor is twofold: to provide answers and accountability in the face of tragedy, and to generate knowledge that enhances systems-based safety, preventing future deaths on the operating table.

References

1. Al-Khateeb, H., Epiphaniou, G., & Daly, H. (2019). Blockchain for modern digital forensics: The chain-of-custody as a distributed ledger. In *Blockchain and clinical trial: securing patient data* (pp. 149-168). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-11289-9_7
2. Banner, J., Basso, C., Tolkien, Z., Kholova, I., Michaud, K., & Gallagher, P. J. (2021). Autopsy examination in sudden cardiac death: a current perspective on behalf of the Association for European Cardiovascular Pathology. *Virchows Archiv*, 478(4), 687-693. <https://doi.org/10.1007/s00428-020-02949-8>
3. Carlson, K. J., Sun, S. A., Swan, C., Koenig, M., & Derkay, C. S. (2022). Management of patients susceptible to malignant hyperthermia: A surgeon's perspective. *International Journal of Pediatric Otorhinolaryngology*, 159, 111187. <https://doi.org/10.1016/j.ijporl.2022.111187>
4. Chen, J. H., Inamori-Kawamoto, O., Michiue, T., Ikeda, S., Ishikawa, T., & Maeda, H. (2015). Cardiac biomarkers in blood, and pericardial and cerebrospinal fluids of forensic autopsy cases: A reassessment with special regard to postmortem interval. *Legal medicine*, 17(5), 343-350. <https://doi.org/10.1016/j/legalmed.2015.03.007>
5. Cohen, M., Sadhasivam, S., & Vinks, A. A. (2012). Pharmacogenetics in perioperative medicine. *Current Opinion in Anesthesiology*, 25(4), 419-427. DOI: 10.1097/ACO.0b013e3283556129
6. Davies, S., Johnston, A., & Holt, D. (Eds.). (2019). *Forensic toxicology: drug use and Misuse*. Royal Society of Chemistry.
7. Dawidowska, J., Krzyżanowska, M., Markuszewski, M. J., & Kalisz, M. (2021). The application of metabolomics in forensic science with focus on forensic toxicology and time-of-death estimation. *Metabolites*, 11(12), 801. <https://doi.org/10.3390/metabolites11120801>
8. Edston, E., & van Hage-Hamsten, M. (2005). Postmortem diagnosis of anaphylaxis. In *Forensic pathology reviews* (pp. 267-281). Totowa, NJ: Humana Press.
9. Ferrara, S. D., Cecchetto, G., Cecchi, R., Favretto, D., Grabherr, S., Ishikawa, T., ... & Bajanowski, T. (2017). Back to the Future-Part 2. Post-mortem assessment and evolutionary role of the biomedico-legal sciences. *International journal of legal medicine*, 131(4), 1085-1101. <https://doi.org/10.1007/s00414-017-1585-7>
10. Grassi, S., Martínez-Barrios, E., Cazzato, F., Cesar, S., Ortega-Sánchez, M. L., Barberia, E., ... & Campuzano, O. (2023). Samples Used in Molecular Autopsy: An Update. In *Unlocking the Mysteries of Death-New Perspectives for Post-Mortem Examination*. IntechOpen. DOI: 10.5772/intechopen.1002204
11. Hemphill, S., McMenamin, L., Bellamy, M. C., & Hopkins, P. M. (2019). Propofol infusion syndrome: a structured literature review and analysis of published case reports. *British journal of anaesthesia*, 122(4), 448-459. <https://doi.org/10.1016/j.bja.2018.12.025>
12. Hernández-Romero, D., Valverde-Vázquez, M. D. R., Hernandez del Rincon, J. P., Noguera-Velasco, J. A., Pérez-Cárceles, M. D., & Osuna, E. (2021). Diagnostic Application of Postmortem Cardiac Troponin I Pericardial Fluid/Serum Ratio in Sudden Cardiac Death. *Diagnostics*, 11(4), 614. <https://doi.org/10.3390/diagnostics11040614>
13. Hopkins, P. M., Girard, T., Dalay, S., Jenkins, B., Thacker, A., Patteril, M., & McGrady, E. (2021). Malignant hyperthermia 2020: Guideline from the Association of Anaesthetists. *Anaesthesia*, 76(5), 655-664. <https://doi.org/10.1111/anae.15317>
14. Laurenza, C., Ansart, L., & Portier, K. (2020). Risk factors of anesthesia-related mortality and morbidity in one equine hospital: a retrospective study on 1,161 cases undergoing elective or emergency surgeries. *Frontiers in Veterinary Science*, 6, 514. <https://doi.org/10.3389/fvets.2019.00514>
15. Madea, B. (2022). Duties of Forensic Medicine and the Forensic Medicine Practitioner. *Handbook of Forensic Medicine*, 1, 19-25. <https://doi.org/10.1002/9781119648628.ch2>
16. Mondello, C., Baldino, G., Cianci, V., Forzese, E., Asmundo, A., Ieni, A., & Ventura Spagnolo, E. (2023). Postmortem biochemistry and immunohistochemistry in anaphylactic death due to hymenoptera sting: a forensic case report. *International Journal of Environmental Research and Public Health*, 20(9), 5640. <https://doi.org/10.3390/ijerph20095640>
17. Mullins, M. F. (2018). Malignant hyperthermia: a review. *Journal of Perianesthesia Nursing*, 33(5), 582-589. <https://doi.org/10.1016/j.jopan.2017.04.008>

18. Nijkamp, N., & Foran, P. (2021). The effects of staffing practices on safety and quality of perioperative nursing care—an integrative review. *Journal of Perioperative Nursing*, 34(1), 15-22. <https://search.informit.org/doi/10.3316/informit.999137202967991>

19. Palmiere, C., & Mangin, P. (2012). Postmortem chemistry update part I. *International journal of legal medicine*, 126(2), 187-198. <https://doi.org/10.1007/s00414-011-0625-y>

20. Palmiere, C., Bardy, D., Mangin, P., & Werner, D. (2013). Postmortem diagnosis of unsuspected diabetes mellitus. *Forensic science international*, 226(1-3), 160-167. <https://doi.org/10.1016/j.forsciint.2013.01.004>

21. Palmiere, C., Tettamanti, C., Augsburger, M., Burkhardt, S., Sabatasso, S., Lardi, C., & Werner, D. (2016). Postmortem biochemistry in suspected starvation-induced ketoacidosis. *Journal of forensic and legal medicine*, 42, 51-55. <https://doi.org/10.1016/j.jflm.2016.04.013>

22. Peters, F. T. (2021). Principles of Forensic Toxicology, (2020). <https://doi.org/10.1093/jat/bkab020>

23. Poovaragavan, V., Vidua, R. K., Kumar, A., Ponmani, P., Keche, A. S., Sahoo, N., & Agarwal, P. K. (2023). Estimation of time since death using biochemical markers in synovial fluid. *The American Journal of Forensic Medicine and Pathology*, 44(3), 183-187. DOI: 10.1097/PAF.0000000000000861

24. Ramanathan, R., Suman, S. P., & Faustman, C. (2020). Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: A review. *Journal of Agricultural and Food Chemistry*, 68(46), 12779-12787. <https://doi.org/10.1021/acs.jafc.9b08098>

25. Riazi, S., Kraeva, N., & Hopkins, P. M. (2018). Updated guide for the management of malignant hyperthermia. *Canadian Journal of Anesthesia/Journal canadien d'anesthésie*, 65(6), 709-721. <https://doi.org/10.1007/s12630-018-1108-0>

26. Rosenberg, H., Pollock, N., Schiemann, A., Bulger, T., & Stowell, K. (2015). Malignant hyperthermia: a review. *Orphanet journal of rare diseases*, 10(1), 93. <https://doi.org/10.1186/s13023-015-0310-1>

27. Rousseau, G., Reynier, P., Jousset, N., Rougé-Maillart, C., & Palmiere, C. (2018). Updated review of postmortem biochemical exploration of hypothermia with a presentation of standard strategy of sampling and analyses. *Clinical Chemistry and Laboratory Medicine (CCLM)*, 56(11), 1819-1827. <https://doi.org/10.1515/cclm-2018-0153>

28. Saukko, P., & Knight, B. (2015). *Knight's forensic pathology*. CRC press.

29. Sisodia, U. (2022). Chain of custody: scaling the investigation to the event. In *Crime Scene Management within Forensic Science: Forensic Techniques for Criminal Investigations* (pp. 407-418). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-6683-4_16

30. Tanno, L. K., Simons, F. E. R., Annesi-Maesano, I., Calderon, M. A., Aymé, S., Demoly, P., & Joint Allergy Academies. (2017). Fatal anaphylaxis registries data support changes in the WHO anaphylaxis mortality coding rules. *Orphanet journal of rare diseases*, 12(1), 8. <https://doi.org/10.1186/s13023-016-0554-4>

31. Tattoli, L., Dell'Erba, A., Ferorelli, D., Gasbarro, A., & Solarino, B. (2019). Sepsis and nosocomial infections: the role of medico-legal experts in Italy. *Antibiotics*, 8(4), 199. <https://doi.org/10.3390/antibiotics8040199>

32. Tejedor-Alonso, M. A., Vallejo-de-Torres, G., Escayola, E. N., Martínez-Fernandez, P., Moro-Moro, M., & Masgrau, N. A. (2020). Postmortem tryptase cutoff points and main causes of fatal anaphylaxis. *The Journal of Allergy and Clinical Immunology: In Practice*, 8(2), 761-763.

33. Unuma, K., Makino, Y., Sasaki, Y., Iwase, H., & Uemura, K. (2019). Presepsin: A potential superior diagnostic biomarker for the postmortem differentiation of sepsis based on the Sepsis-3 criteria. *Forensic Science International*, 299, 17-20. <https://doi.org/10.1016/j.forsciint.2019.03.034>

34. Van, S., Lam, V., Patel, K., Humphries, A., Siddiqi, J., Van, S. V., & Lam, V. T. (2023). Propofol-related infusion syndrome: a bibliometric analysis of the 100 most-cited articles. *Cureus*, 15(10). DOI 10.7759/cureus.46497

35. Yang, L., Tautz, T., Zhang, S., Fomina, A., & Liu, H. (2020). The current status of malignant hyperthermia. *Journal of biomedical research*, 34(2), 75. <https://doi.org/10.7555/JBR.33.20180089>

36. Zheng, Z., Zhao, C., Xiong, H., Zhang, L., Wang, Q., Li, Y., & Li, J. (2021). Significance of detecting postmortem serum IgE in frozen corpses for the diagnosis of anaphylaxis in forensic. *Legal Medicine*, 53, 101930. <https://doi.org/10.1016/j.legalmed.2021.101930>

37. Zribi, M., Ennouri, H., Turki, M., Amar, W. B., Grati, M. A., Hammami, Z., ... & Maatoug, S. (2021). Diagnostic value of high-sensitivity troponin T in postmortem diagnosis of sudden cardiac death. *Journal of Forensic and Legal Medicine*, 78, 102127. <https://doi.org/10.1016/j.jflm.2021.102127>