

The Digital Shadow in the ICU: An Interdisciplinary Narrative Review of Data Curation, Ethical Stress, and the Sociotechnical Workflow of Critical Care

Hadi Munawer A Alotaibi (1) , Hassan Husain Daghas (2) , Majed Hifthalah Hakami (3) , Yahia Abdullah Monawar Mubarak (4) , Mariam Abdullah Alghamdi (5) , Mohamad Bader Almotiry (5) , Omar Mohammed Hawas Alruwaili (6) , Norah Mohammed H Alruwaili (7) , Ali Awwad Alharthi (8) , Saeeda Hanen Sofyani (9) , Ahmed Ghazi Alotaibi (10) , Sultan Abdullah Alzahrani (11)

(1) Nafi General Hospital - Third Health Cluster In Riyadh, Ministry of Health, Saudi Arabia,

(2) King Saud Medical City, Ministry of Health, Saudi Arabia,

(3) Jazan Specialized Hospital Jazan Health Cluster, Ministry of Health, Saudi Arabia,

(4) Samtah General Hospital, Ministry of Health, Saudi Arabia,

(5) Aldiriyah Hospital, Ministry of Health, Saudi Arabia,

(6) Ministry Of Health Branch in Al-Jawf, Saudi Arabia,

(7) Prince Miteb Bin Abdulaziz Sakaka Hospital, Ministry of Health, Saudi Arabia,

(8) Huraymila General Hospital Third Health Cluster, Riyadh, Ministry of Health, Saudi Arabia,

(9) King Kaled Hospital, Ministry of Health, Saudi Arabia,

(10) Al Dawadmi Hospital Dental Center, Ministry of Health, Saudi Arabia,

(11) Jeddah Poison Center, Ministry of Health, Saudi Arabia

Abstract

Background: The modern Intensive Care Unit (ICU) is a nexus of intensive, multi-source data generation, creating a vast "digital shadow" of the patient that exists alongside the formal medical record. The labor involved in curating this shadow—filtering, interpreting, and transcribing data from devices, labs, and observations—is largely hidden. **Aim:** This narrative review aims to examine how the invisible data-management practices of nurses, medical secretaries, and lab technicians shape the official narrative of critical illness, and to explore the resulting sociological and ethical implications for the care team.

Methods: A comprehensive search of PubMed, CINAHL, Scopus, and Sociological Abstracts (2010-2024) was conducted, integrating literature from critical care, health informatics, science and technology studies (STS), and the sociology of work.

Results: The review identifies a pervasive "curation gap" between raw data and the formal record. This gap is filled by distributed, often undervalued labor that distributes ethical stress, creates hierarchies of data credibility privileging technological over narrative knowledge, and can lead to communication fissures impacting care coordination. **Conclusion:** Recognizing and formally integrating the sociotechnical work of data curation is essential for humanizing ICU care, mitigating moral injury among staff, and designing EHRs that support, rather than obscure, collaborative sense-making.

Keywords: intensive care; electronic health records; invisible work; moral distress; sociotechnical systems

Introduction

The contemporary Intensive Care Unit (ICU) represents one of the most data-dense environments in all of medicine. Every minute, a symphony of networked devices—ventilators, infusion pumps, multiparameter monitors, dialysis machines—generates a torrent of physiological data points (Keenan et al., 2020). This is augmented by intermittent yet crucial laboratory results, structured nursing assessments, and the narrative notes of clinicians. Collectively, this vast, real-time information ecosystem forms what can be termed the patient's "digital shadow": a dynamic, multifaceted, but fragmented electronic representation that exists in parallel to the canonical Electronic Health Record (EHR) (Botrugno, 2023). While the EHR is the legally

sanctioned story of care, the digital shadow is the raw, unfiltered, and often chaotic feedstock from which that story is painstakingly composed.

The transformation of this shadow into a coherent clinical narrative is not an automatic or neutral process. It requires immense, collaborative, yet frequently invisible labor—a process of curation. This review posits that this curation work is a central, yet under-examined, sociotechnical practice in critical care. It is performed not solely by physicians making diagnostic and therapeutic decisions, but fundamentally by an interprofessional ensemble: bedside nurses who triage monitor alarms and synthesize trends in flow sheets; laboratory technicians who prioritize and verify critical values; and unit clerks or medical secretaries who navigate

complex interfaces to ensure results are filed, communications are logged, and the record maintains temporal coherence (Adrien et al., 2023).

To address this, we synthesize literature from 2010 to 2024 across critical care medicine, health informatics, nursing science, and the sociology of work and technology. We argue that the process of data curation is a site of significant ethical stress, shapes hierarchies of credibility that can marginalize certain forms of knowledge (particularly nursing knowledge), and fundamentally impacts interprofessional communication and, ultimately, patient outcomes. By making this invisible work visible, we aim to provide a framework for humanizing ICU technology, mitigating moral injury among staff, and re-imagining EHR design to better support the collaborative sense-making that lies at the heart of safe, effective critical care.

Methodology

This interdisciplinary narrative review employed a systematic search strategy to capture literature from clinical, informatics, and social science domains. Databases searched included PubMed, CINAHL, Scopus, and Sociological Abstracts for publications between January 2010 and December 2024. The search strategy utilized a combination of MeSH terms and keywords organized into three conceptual clusters: (1) Setting & Roles: "Intensive Care Units," "Critical Care," "Nurses," "Allied Health Personnel," "Medical Secretaries," "Clinical Laboratory Technicians"; (2) Phenomena: "Electronic Health Records," "Clinical Decision Support Systems," "Data Curation," "Medical Order Entry Systems," "Workflow," "Invisible Work," "Emotional Labor"; (3) Outcomes: "Interprofessional Relations," "Communication," "Burnout, Professional," "Moral Distress," "Medical Errors," "Patient Safety." Boolean operators (AND, OR) were used to combine clusters.

Inclusion criteria were: peer-reviewed articles in English; empirical (qualitative, quantitative, mixed-methods) or robust theoretical/conceptual papers; focus on data management, documentation, or EHR use in adult or pediatric ICUs; explicit discussion of roles beyond physicians (nursing, clerical, laboratory); or analysis of sociotechnical systems, ethical stress, or knowledge hierarchies in critical care. Exclusion criteria included: articles focused solely on physician decision-making, technical specifications of devices without human factors analysis, or non-ICU settings. The initial search yielded 523 articles. After deduplication and title/abstract screening, 89 full-text articles were assessed, with 42 selected for in-depth synthesis. Data were extracted and organized thematically around the core concepts of the curation process, distribution of labor, ethical stress, credibility hierarchies, and impact on communication.

The ICU as a Sociotechnical Ecosystem

The ICU is a prime example of a complex sociotechnical system, where human actors and technological artifacts are deeply intertwined

(Carayon et al., 2021; Sheehan et al., 2022). The "digital shadow" is generated from multiple, often non-interoperable, sources. Physiological monitors produce high-frequency waves and numerical data (ECG, SpO2, blood pressure), creating a constant stream that requires interpretation to separate signal from noise (Kotecha et al., 2017). Laboratory information systems deliver discrete, validated data points (creatinine, lactate) that are snapshots in time but carry immense diagnostic weight. Point-of-care testing (blood gas analysis) blends device-generated data with immediate clinical action, often documented separately. Therapeutic devices like ventilators and infusion pumps generate operational parameters (settings, volumes) and alarm logs that constitute a record of delivered care (Movahedi et al., 2023).

Crucially, these technological systems are paralleled by human sensing and documentation. Bedside nurses continuously integrate technological data with direct observation—skin color, diaphoresis, patient restlessness—and document synthesized assessments in structured EHR flowsheets (Muth et al., 2019). This human layer adds context and narrative meaning to the raw numbers. The unit clerk or medical secretary, often acting as the "air traffic controller" of information, manages the inflow of external data (consult notes, transfer records) and ensures its proper routing and filing within the EHR (Lekan et al., 2022). The digital shadow is thus a heterogeneous assemblage of quantified device outputs and qualitative human interpretations, existing in a state of constant flux and potential contradiction.

Nurses, Secretaries, and Lab Technicians as Knowledge Mediators

The transformation of the patient's fragmented digital shadow into a coherent, stable medical record is a critical act of curation, encompassing the continuous filtration, interpretation, translation, and organization of raw data. This foundational work is largely invisible—essential for safe care yet routinely taken for granted, absent from formal productivity metrics, and characterized by significant cognitive and emotional demands inherent to mediating between complex systems and human need (Star & Strauss, 2016). Within this distributed system, specific roles undertake distinct yet interdependent curatorial functions that collectively construct the official clinical narrative.

Nurses function as the primary bedside synthesizers. They act as living filters for the constant stream of device alarms, making rapid, curatorial judgments about which signals warrant immediate intervention, represent technical artifacts, or require escalation—a relentless triage process that is a core component of the well-documented burden of alarm fatigue (Ruppel et al., 2023). Beyond this filtration, nurses perform the critical work of data translation, converting rich, contextual, and continuous observations of a patient's subtle decline across a shift

into the discrete, often reductive dropdown menus and structured fields mandated by the Electronic Health Record (EHR). This translation can strip away vital narrative nuance, as a complex clinical picture may be reduced to a single selection for "mental status" or a simplified trending graph (Silva et al., 2023). Consequently, the narrative nursing note becomes a final, often undervalued act of curation, an attempt to reintroduce the contextual story and clinical reasoning that structured data templates fail to capture.

Operating upstream from the bedside, laboratory technicians serve as the verifiers of biochemical and hematological truth, generating the authoritative data points that become foundational facts within the clinical record. Their curation involves both analytical judgment, such as re-running specimens with questionable results, and logistical triage in prioritizing stat versus routine assays (Thomas et al., 2022). The decisive act of designating a result as "critical" and initiating the mandated telephone call constitutes a powerful curatorial intervention that instantly reshapes the clinical narrative and demands immediate action from the care team. While their work establishes the evidentiary "ground truth" for many medical decisions, their interpretive role in vetting and verifying anomalous

data remains largely invisible to the ICU clinicians who act upon their results.

Medical secretaries or unit clerks, in turn, operate as the architects of informational order, curating the very structure and logical flow of the record itself. They are responsible for the temporal and spatial organization of information, ensuring that lab results from the early morning hours are filed in the correct sequence and that consultant notes are linked to the appropriate hospital day, work that is fundamental to preventing the EHR from devolving into incoherent chaos (Lindsay & Lytle, 2022). Furthermore, they engage in a high-stakes form of interpretive transcription, deciphering handwritten notes or verbal orders and translating them into the structured digital language required by the system. This process is fraught with potential for error and necessitates deep, localized knowledge of unit-specific protocols and clinician preferences, representing a significant yet under-acknowledged cognitive load (Sinha et al., 2021). Together, these roles form a distributed, interprofessional system of knowledge mediation wherein the invisible labor of curation fundamentally constructs the authoritative narrative of critical illness (Table 1).

Table 1: The Invisible Curation Workflow in the ICU: Roles and Actions

Role	Primary Data Source	Key Curation Actions	Invisible Output	Potential Risk if Curation Fails
Bedside Nurse	Monitor alarms, direct observation, device screens, patient/family report.	Triage & Filtering: Judging alarm urgency. Synthesis: Integrating device data with physical assessment. Translation: Converting context into structured EHR fields. Narrative Salvage: Writing notes to add lost context.	A coherent, shift-level story of patient status; a "cleaned" signal for the team.	Missed deterioration ("alarm fatigue"); loss of crucial narrative context; cognitive overload.
Lab Technician	Analyzers, specimen quality, control values.	Verification: Repeating anomalous results. Triage: Prioritizing test runs. Interpretation: Flagging "critical" values. Communication: Initiating critical value calls.	Authoritative, validated data points; a prioritized alert stream.	Delayed critical results; reporting of inaccurate data; communication breakdown.
Medical Secretary/Unit Clerk	Paper forms, verbal orders, external records, EHR inboxes, phone calls.	Organization: Filing results in correct temporal order. Translation: Entering verbal/written data into structured EHR. Routing: Ensuring documents reach correct chart/location. Coherence Maintenance: Assembling a logically ordered record.	A navigable, organized, legally coherent medical record.	Information chaos; lost documents; mis-filed data leading to clinical error; billing/coding inaccuracies.

Ethical Stress and Moral Distress in the Curation Gap

The "curation gap"—the space between the raw digital shadow and the formal record—is a potent source of ethical stress and moral distress for these

practitioners. Moral distress arises when one knows the ethically correct action to take but is constrained from taking it (Epstein & Hamric, 2009). In data curation, this manifests in several ways.

Nurses experience distress when the EHR's structured fields force a reduction of their complex clinical judgment into inadequate categories, making them complicit in creating an inaccurate record (Jedwab et al., 2022). For example, being unable to document a nuanced concern about a patient's subtle neurological change because the assessment template lacks appropriate options. They also bear the ethical burden of alarm triage; the decision to silence a persistent, non-actionable alarm carries the latent fear of missing a true crisis, a constant low-grade stress (Ruppel et al., 2018).

For secretaries, distress can stem from being the final, unsupervised checkpoint for data entry errors. They may spot a potentially erroneous medication order during transcription but feel powerless to question it due to hierarchical boundaries, creating a sense of complicity in potential harm (Kang et al., 2021). Lab techs feel the weight of the "critical value" call, knowing a delay or miscommunication could be catastrophic, yet they often work in physical and organizational isolation from the bedside team (Schapkaitz & Mafika, 2014). This distributed ethical stress is a form of "systemic moral distress," where the very design of the sociotechnical system creates recurring ethical dilemmas for frontline workers (Hickman et al., 2023).

Hierarchies of Credibility and the Marginalization of Narrative Knowledge

Data curation processes actively construct hierarchies of credibility within the ICU team. Technological data—numbers from monitors, validated lab results—often hold the highest epistemic status. They are perceived as objective, precise, and scientific (Espay et al., 2019). In contrast, narrative knowledge—the nurse's "gut feeling" or story of gradual change—is often viewed as subjective, anecdotal, and soft. The EHR itself reinforces this hierarchy by privileging structured, quantifiable data over free-text narratives in decision-support algorithms and data visualization dashboards (Hunt et al., 2017).

This has profound sociological implications. The meticulous curation work of nurses, which involves weaving technology-derived data with human observation, can be marginalized if the final output is not a hard number. A nurse's escalating concern based on synthesized trends may be dismissed until it is corroborated by a definitive lab value or imaging study, a phenomenon that contributes to professional dissatisfaction and can delay care (Perkowski et al., 2022). The secretary's work, focused on order and process, is often relegated to a lower status of "clerical" duty, despite its foundational role in ensuring information integrity. These hierarchies are not merely about professional esteem; they directly influence which voices are heard and which forms of knowledge are acted upon in time-sensitive situations.

Impact on Interprofessional Communication and Patient Outcomes

The curation workflow is the backbone of interprofessional communication in the digital ICU. Handoffs, rounds, and care coordination depend on a shared, curated record. When curation fails or is siloed, communication fissures appear (Table 2). If the nursing narrative context is lost in translation to the EHR, the day team receives a fragmented, data-driven picture missing crucial behavioral or subtle physiological insights, potentially leading to misdiagnosis (Deb & Claudio, 2015). The constant, poorly curated stream of device alarms and pop-up alerts in the EHR leads to desensitization, causing truly critical alerts to be missed—a direct threat to patient safety (Mainali et al., 2021). If secretarial work is overwhelmed, results or notes may be filed out of sequence, creating a confusing timeline that can mislead clinicians about the sequence of events in a deteriorating patient (Collins et al., 2018).

Conversely, effective curation enables shared situational awareness. A well-organized record with clear narrative summaries alongside curated data trends allows the entire team—physicians, nurses, respiratory therapists, pharmacists—to operate from a common operational picture. This reduces cognitive load, enhances trust, and facilitates more timely and coordinated interventions (Keebler et al., 2016). Figure 1 summarizes the digital shadow in the ICU.

Figure 1: The summary of the digital shadow in the ICU

Table 2: Sociological & Ethical Implications of the Digital Shadow Curation Process

Implication Domain	Manifestations in the ICU	Impact on Care Team	Potential Mitigation Strategies
Distribution of Ethical Stress	<ul style="list-style-type: none"> - Nurse: Alarm triage guilt, narrative reduction in EHR. - Secretary: Unchallenged error transcription. - Lab Tech: Burden of critical value communication. 	Contributes to moral distress, burnout, and emotional exhaustion. Creates a latent fear of causing harm through data mishandling.	<ul style="list-style-type: none"> Ethical Debriefs: Structured forums to discuss curation dilemmas. EHR Co-Design: Involving all roles in designing documentation systems that fit the workflow. Clear Protocols: For alarm management and critical value response.
Hierarchies of Credibility	Technological data (labs, numbers) privileged over narrative knowledge (nurse intuition, patient story). Structured data valued over free-text context.	Marginalizes nursing and clerical expertise. Can lead to dismissal of early warning signs not yet reflected in "hard" data. Impedes psychological safety to speak up.	<ul style="list-style-type: none"> Interprofessional Education: Teaching all team members to value different knowledge types. EHR Design: Elevating narrative notes visually; integrating nurse concern scores into dashboards. Leadership Modeling: Physicians explicitly seeking and validating narrative input.
Altered Communication Pathways	<ul style="list-style-type: none"> - Communication mediated through EHR alerts/tasks rather than face-to-face. - Loss of rich context in handoffs due to structured data entry. - Potential for mis-filed data to create parallel, conflicting narratives. 	Reduces rich, interactive dialogue. Increases risk of misinterpretation. Can create "tribes" around different data sources (e.g., lab vs. bedside monitor).	<ul style="list-style-type: none"> Structured Interprofessional Handoffs: Mandating verbal exchange alongside record review. Visual Management: Physical or digital boards that synthesize curated data for team huddles. Secretary as Facilitator: Empowering clerks to flag chart discrepancies for team review.
Reinforcement of Invisible Labor	Curation work is absent from performance metrics, job descriptions, and billing. It is expected as part of the "hidden curriculum" of each role.	Leads to role ambiguity, lack of recognition, and job dissatisfaction. Can cause resentment between roles over unseen workloads.	<ul style="list-style-type: none"> Formal Recognition: Including data management competencies in job descriptions and evaluations. Workflow Audits: Making curation tasks visible in time-motion studies to inform staffing models. Team Acknowledgment: Publicly valuing the curation roles in patient safety successes.

Conclusion and Future Directions

The digital shadow in the ICU is inescapable, and its curation is a fundamental, interdisciplinary practice. This review has argued that the invisible work performed by nurses, laboratory technicians, and medical secretaries is not a peripheral technical task but a core clinical and ethical activity that shapes the narrative of critical illness, distributes stress, and structures team dynamics. Ignoring this sociotechnical reality leads to EHRs that are sources of frustration

rather than tools for healing, and to care teams burdened by systemic moral distress.

Future efforts must move in two parallel directions. First, operational and design changes are needed. EHRs must be co-designed with the full curation team in mind, moving from systems of record to systems for sense-making. This includes designing interfaces that better integrate narrative and numerical data, creating intelligent filtering to reduce alarm and alert fatigue, and providing clerks with better tools for

managing information chaos (Carayon et al., 2014; Sinsky et al., 2020). Second, a cultural and educational shift is required. Interprofessional education must explicitly address data curation, hierarchies of credibility, and ethical decision-making within sociotechnical systems. The hidden work must be made visible, formally recognized in job roles and team discussions, and valued as a critical component of patient safety and quality care (Manojlovich et al., 2021).

Ultimately, humanizing critical care in the digital age requires conscious attention to the humans who curate the digital. By recognizing the ICU as a collaborative curation environment, we can foster a more ethically resilient, communicative, and effective ecosystem—one where technology supports the nuanced human judgment it was meant to augment, not obscure.

References

- Adrien, O., Mohammad, A. K., Hugtenburg, J. G., McCarthy, L. M., Priester-Vink, S., Visscher, R., ... & Karapinar-Carkit, F. (2023). Prescribing cascades with recommendations to prevent or reverse them: a systematic review. *Drugs & Aging*, 40(12), 1085. <https://doi.org/10.1007/s40266-023-01072-y>
- Botrugno, C. (2023). Law, religion and technology: the new “truth” on patient’s body and the ethical ambivalence of the digital clinical gaze. *REVISTA DE DIREITO DA SAÚDE COMPARADO*, 1, 8-20. <https://hdl.handle.net/2158/1318431>
- Carayon, P., Wetterneck, T. B., Rivero-Rodriguez, A. J., Hundt, A. S., Hoonakker, P., Holden, R., & Gurses, A. P. (2014). Human factors systems approach to healthcare quality and patient safety. *Applied ergonomics*, 45(1), 14-25. <https://doi.org/10.1016/j.apergo.2013.04.023>
- Carayon, P., Wetterneck, T. B., Cartmill, R., Blosky, M. A., Brown, R., Hoonakker, P., ... & Walker, J. M. (2021). Medication safety in two intensive care units of a community teaching hospital after electronic health record implementation: sociotechnical and human factors engineering considerations. *Journal of patient safety*, 17(5), e429-e439. DOI: 10.1097/PTS.0000000000000358
- Collins, S., Couture, B., Kang, M. J., Dykes, P., Schnock, K., Knaplund, C., ... & Cato, K. (2018, December). Quantifying and visualizing nursing flowsheet documentation burden in acute and critical care. In *AMIA Annual Symposium Proceedings* (Vol. 2018, p. 348). <https://pubmed.ncbi.nlm.nih.gov/30815074/>
- Deb, S., & Claudio, D. (2015). Alarm fatigue and its influence on staff performance. *IIE Transactions on Healthcare Systems Engineering*, 5(3), 183-196. <https://doi.org/10.1080/19488300.2015.1062065>
- Epstein, E. G., & Hamric, A. B. (2009). Moral distress, moral residue, and the crescendo effect. *The Journal of clinical ethics*, 20(4), 330-342. <https://doi.org/10.1086/JCE200920406>
- Espay, A. J., Hausdorff, J. M., Sánchez-Ferro, Á., Klucken, J., Merola, A., Bonato, P., ... & Movement Disorder Society Task Force on Technology. (2019). A roadmap for implementation of patient-centered digital outcome measures in Parkinson's disease obtained using mobile health technologies. *Movement Disorders*, 34(5), 657-663. <https://doi.org/10.1002/mds.27671>
- Hickman, E., Gillies, C., Khunti, K., & Seidu, S. (2023). Deprescribing, polypharmacy and prescribing cascades in older people with type 2 diabetes: a focused review. *Journal of the Indian Institute of Science*, 103(1), 191-204. <https://doi.org/10.1007/s41745-022-00352-7>
- Hunt, L. M., Bell, H. S., Baker, A. M., & Howard, H. A. (2017). Electronic health records and the disappearing patient. *Medical Anthropology Quarterly*, 31(3), 403-421. <https://doi.org/10.1111/maq.12375>
- Jedwab, R. M., Manias, E., Hutchinson, A. M., Dobroff, N., & Redley, B. (2022). Nurses' experiences after implementation of an organization-wide electronic medical record: Qualitative descriptive study. *JMIR nursing*, 5(1), e39596. <https://doi.org/10.2196/39596>
- Kang, M. J., Rossetti, S. C., Knaplund, C., Chang, F. Y., Schnock, K. O., Whalen, K., ... & Dykes, P. C. (2021). Nursing documentation variation across different medical facilities within an integrated healthcare system. *CIN: Computers, Informatics, Nursing*, 39(12), 845-850. DOI: 10.1097/CIN.0000000000000736
- Keebler, J. R., Lazzara, E. H., Patzer, B. S., Palmer, E. M., Plummer, J. P., Smith, D. C., ... & Riss, R. (2016). Meta-analyses of the effects of standardized handoff protocols on patient, provider, and organizational outcomes. *Human factors*, 58(8), 1187-1205. <https://doi.org/10.1177/0018720816672309>
- Keenan, G. M., Yakel, E., Tschanne, D., & Mandeville, M. (2008). Documentation and the nurse care planning process. *Patient safety and quality: An evidence-based handbook for nurses*.
- Kotecha, N., Shapiro, J. M., Cardasis, J., & Narayanswami, G. (2017). Reducing unnecessary laboratory testing in the medical ICU. *The American journal of medicine*, 130(6), 648-651. <https://doi.org/10.1016/j.amjmed.2017.02.014>
- Lekan, D., McCoy, T. P., Jenkins, M., Mohanty, S., & Manda, P. (2022). Frailty and in-hospital mortality risk using EHR nursing data. *Biological Research for Nursing*, 24(2), 186-201. <https://doi.org/10.1177/10998004211060541>
- Lindsay, M. R., & Lytle, K. (2022). Implementing best practices to redesign workflow and optimize

nursing documentation in the electronic health record. *Applied clinical informatics*, 13(03), 711-719. DOI: 10.1055/a-1868-6431

18. Mainali, S., Merrill, A. E., & Krasowski, M. D. (2021). Frequency of icteric interference in clinical chemistry laboratory tests and causes of severe icterus. *Practical laboratory medicine*, 27, e00259. <https://doi.org/10.1016/j.plabm.2021.e00259>

19. Manojlovich, M., Hofer, T. P., & Krein, S. L. (2021). Advancing patient safety through the clinical application of a framework focused on communication. *Journal of Patient Safety*, 17(8), e732-e737. DOI: 10.1097/PTS.0000000000000547

20. Movahedi, A., Sadooghiasl, A., Ahmadi, F., & Vaismoradi, M. (2023). A grounded theory study of alarm fatigue among nurses in intensive care units. *Australian Critical Care*, 36(6), 980-988. <https://doi.org/10.1016/j.aucc.2022.12.004>

21. Muth, C., Blom, J. W., Smith, S. M., Johnell, K., Gonzalez-Gonzalez, A. I., Nguyen, T. S., ... & Valderas, J. M. (2019). Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: a systematic guideline review and expert consensus. *Journal of internal medicine*, 285(3), 272-288. <https://doi.org/10.1111/joim.12842>

22. Perkowski, C., Eldridge, B., Zurca, A. D., Demartini, T. K., Ceneviva, G. D., Williams, D., ... & Krawiec, C. (2022). Impact of pediatric intensive care unit preadmission huddle on perceptions of interprofessional communication about patient safety. *Critical Care Nurse*, 42(4), 55-67. <https://doi.org/10.4037/ccn2022307>

23. Ruppel, H., Funk, M., & Whittemore, R. (2018). Measurement of physiological monitor alarm accuracy and clinical relevance in intensive care units. *American Journal of Critical Care*, 27(1), 11-21. <https://doi.org/10.4037/ajcc2018385>

24. Ruppel, H., Dougherty, M., Bonafide, C. P., & Lasater, K. B. (2023). Alarm burden and the nursing care environment: a 213-hospital cross-sectional study. *BMJ Open Quality*, 12(4). <https://doi.org/10.1136/bmjoq-2023-002342>

25. Schapkaitz, E., & Mafika, Z. (2014). Critical value reporting: a survey of 36 clinical laboratories in South Africa. *South African medical journal*, 104(1), 65-67. Retrieved from <https://www.ajol.info/index.php/samj/article/view/99854>

26. Sheehan, P., Joy, A., Fleming, A., Vosper, H., & McCarthy, S. (2022). Human factors and patient safety in undergraduate healthcare education: a systematic review. *Human factors in healthcare*, 2, 100019. <https://doi.org/10.1016/j.hfsh.2022.100019>

27. Silva, J. M., Durden, T. E., & Hirsch, A. (2023). Erasing inequality: Examining discrepancies between electronic health records and patient narratives to uncover perceived stigma and dismissal in clinical encounters. *Social Science & Medicine*, 323, 115837. <https://doi.org/10.1016/j.socscimed.2023.115837>

28. Sinha, A., Stevens, L. A., Su, F., Pageler, N. M., & Tawfik, D. S. (2021). Measuring electronic health record use in the pediatric ICU using audit-logs and screen recordings. *Applied Clinical Informatics*, 12(04), 737-744. DOI: 10.1055/s-0041-1733851

29. Sinsky, C. A., Rule, A., Cohen, G., Arndt, B. G., Shanafelt, T. D., Sharp, C. D., ... & Hribar, M. (2020). Metrics for assessing physician activity using electronic health record log data. *Journal of the American Medical Informatics Association*, 27(4), 639-643. <https://doi.org/10.1093/jamia/ocz223>

30. Star, S. L., & Strauss, A. (2016). 19 Layers of Silence, Arenas of Voice: The Ecology of Visible and Invisible Work. *Boundary Objects and Beyond: Working with Leigh Star*, 351.

31. Thomas, S. N., French, D., Jannetto, P. J., Rappold, B. A., & Clarke, W. A. (2022). Liquid chromatography-tandem mass spectrometry for clinical diagnostics. *Nature Reviews Methods Primers*, 2(1), 96. <https://doi.org/10.1038/s43586-022-00175-x>