

Vitamin B2 (Riboflavin): Practical Clinical Insights for Nutritionists, Diabetes Specialists, and Pediatric Care

Fatemah Sami Khowisah ⁽¹⁾, Soad Mansour Ahmed Abbas ⁽²⁾, Khuloud Abdurhman Alamri ⁽³⁾, Wejdan Saleh Maniah ⁽⁴⁾, Abdulrahman Abdullah Dobaie ⁽⁵⁾, Abdullah Mohammed Al Amer ⁽⁶⁾, Aimn Mohammed Abdu Alsadi ⁽⁷⁾, Bandar Jahaz Alahmadi ⁽⁸⁾, Reem Fahad Aldosri ⁽⁹⁾, Abdulelah Awadh Alsuhaymi ⁽¹⁰⁾, Hassan Yahya Salem Khard ⁽¹¹⁾, Guoom Gazam Mohamad Alenezi ⁽¹²⁾, Abeer Sulaiman Sahrah ⁽¹³⁾

(1) Primary Healthcare in King Fahd (Al-Hofuf), Al-Ahsa Health Cluster, Ministry of Health, Saudi Arabia,

(2) Erada Mental Health Hospital in Jazan, Ministry of Health, Saudi Arabia,

(3) Imam Abdulrahman Al Faisal Hospital, Riyadh, Ministry of Health, Saudi Arabia,

(4) Primary Health Care (PHC), Eastern Province, Ministry of Health, Saudi Arabia,

(5) King Abdulaziz Hospital, Jeddah (First Settlement) – Ministry of Health, Saudi Arabia,

(6) Ministry of Health, Riyadh, Saudi Arabia,

(7) Alaradh Primary Health Care Center, Ministry of Health, Saudi Arabia,

(8) Ministry of Health Branch in Madinah, Ministry of Health, Saudi Arabia,

(9) Train Health Center, Ministry of Health, Saudi Arabia,

(10) General Meeqat Hospital, Ministry of Health, Saudi Arabia,

(11) Erada Mental Health Hospital, Jazan, Ministry of Health, Saudi Arabia,

(12) Central Hospital, Hafr Al-Batin / Ministry of Health, Saudi Arabia,

(13) King Abdulaziz Specialist Hospital, Taif, Ministry of Health, Saudi Arabia

Abstract

Background: Riboflavin (vitamin B2) is a water-soluble micronutrient essential for energy metabolism and redox reactions. While deficiency is rare in diverse diets, certain populations—pregnant women, infants, older adults, vegetarians, and individuals with malabsorption—remain at risk.

Aim: To provide a comprehensive clinical overview of riboflavin, including its physiological roles, pharmacokinetics, therapeutic applications, and safety considerations for healthcare professionals.

Methods: This review synthesizes evidence from regulatory guidelines, clinical studies, and nutritional recommendations to outline riboflavin's mechanisms, indications, administration strategies, and monitoring approaches.

Results: Riboflavin functions as a precursor for FAD and FMN, supporting oxidative phosphorylation and amino acid metabolism. FDA-approved use includes ophthalmic riboflavin 5'-phosphate for corneal ectasia and keratoconus. Off-label applications encompass migraine prophylaxis (400 mg/day), neonatal phototherapy support, and adjunctive therapy in antiretroviral-induced lactic acidosis. Recommended dietary allowances range from 0.3 mg/day in infants to 1.6 mg/day in lactating women, while therapeutic doses may reach 400 mg. Riboflavin demonstrates excellent safety, with minimal toxicity and rare hypersensitivity reactions. Functional assessment via erythrocyte glutathione reductase activity coefficient (EGRAC) remains the preferred monitoring method.

Conclusion: Riboflavin is indispensable for metabolic integrity and exhibits a favorable safety profile. Its clinical utility spans preventive nutrition and targeted therapy, emphasizing the need for individualized assessment in high-risk groups.

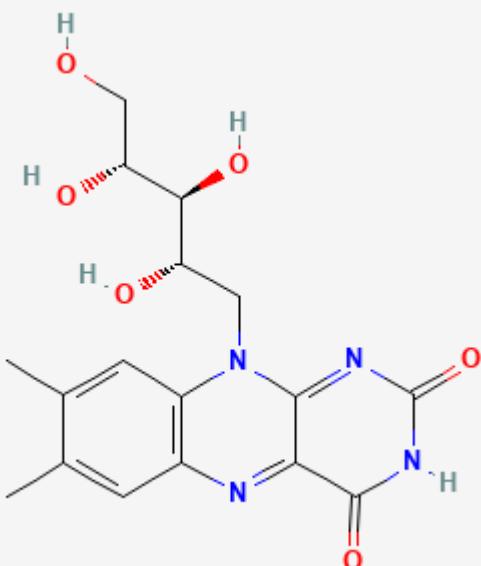
Keywords: Riboflavin, Vitamin B2, Flavocoenzymes, Nutritional Deficiency, Migraine Prophylaxis, Ophthalmic Therapy, Pharmacokinetics

Introduction

Riboflavin, commonly referred to as vitamin B2, is a water-soluble micronutrient that forms an essential component of the vitamin B complex. In clinical practice, riboflavin is frequently administered not as a standalone agent but within combined B-complex formulations, reflecting both the complementary physiological roles of B vitamins and

the pragmatic approach of providing broad prophylactic coverage in individuals at nutritional risk. Such preparations are commonly prescribed as preventive supplementation and as part of therapeutic strategies aimed at correcting or managing established vitamin B2 deficiency. Although clinically significant riboflavin deficiency is generally uncommon, its occurrence remains relevant

in specific dietary patterns and vulnerable populations. The relative rarity of deficiency is largely attributable to the widespread distribution of riboflavin across multiple food groups; nevertheless, individuals whose habitual dietary intake is low in meat and milk—recognized as among the most concentrated and bioavailable dietary sources of riboflavin—may be predisposed to suboptimal status. In addition, certain population subgroups exhibit heightened susceptibility due to nutritional limitations, age-related factors, or dietary exclusions, as noted in the literature.[1] Milk and dairy products represent particularly important contributors to riboflavin intake and are also notable for their content of vitamin D. In many Western dietary patterns, dairy consumption constitutes a principal source of vitamin D, underscoring the broader nutritional significance of this food category. The availability of riboflavin from dairy is one key reason riboflavin deficiency is less frequently observed when compared with deficiencies of other water-soluble vitamins. However, the riboflavin content of milk can be influenced by processing and handling conditions. For instance, a shift toward increased consumption of semi-skimmed milk in developed settings has been associated with reductions in the riboflavin content of the milk supply. Furthermore, although riboflavin is relatively stable under several storage conditions, it is notably photosensitive and may degrade with exposure to light. Consequently, milk stored in transparent glass bottles and subjected to illumination may contain diminished riboflavin concentrations, a consideration that has practical implications for dietary adequacy when dairy is relied upon as a principal source. Cereal grains naturally contain comparatively low concentrations of riboflavin; nonetheless, fortification policies have altered the nutritional profile of many grain-based foods. As a result, selected breads and breakfast cereals may provide meaningful amounts of riboflavin, thereby supporting population-level intake. Consistent with this, Morgan KJ et al reported higher riboflavin levels among individuals who consumed breakfast cereals, highlighting the contribution of fortified products to riboflavin status.[2] Beyond fortified grains and dairy, fatty fish constitutes an excellent dietary source, and several fruits and vegetables—particularly dark green varieties—contain appreciable riboflavin concentrations. With sufficient dietary variety, vegetarians can generally maintain adequate riboflavin intake through plant-based sources and fortified foods; however, average intake may remain lower than that of omnivorous populations, and older adults adhering to vegetarian diets appear to be at increased risk of inadequacy.[3]


FDA-Approved Indication

The United States Food and Drug Administration (FDA) has approved an ophthalmic formulation of riboflavin 5'-phosphate for use in specific corneal disorders, reflecting an application of

riboflavin beyond its traditional classification as a dietary micronutrient. Specifically, this formulation is indicated for the treatment of corneal ectasia occurring after refractive surgery and for the management of progressive keratoconus, conditions characterized by progressive corneal thinning and biomechanical instability that may compromise visual acuity and corneal integrity.[4] The approval of this riboflavin derivative in ophthalmology underscores the clinical value of targeted formulations designed for localized therapeutic effect, particularly within corneal tissue, where treatment aims frequently include halting disease progression and preserving corneal architecture. In parallel with approved ophthalmic use, riboflavin is also employed in several contexts outside formally licensed indications. These applications are generally described as off-label when they involve oral riboflavin administered for clinical objectives not explicitly included in regulatory labeling. Among the most frequently cited off-label uses is migraine prophylaxis, an area in which riboflavin has been utilized with the intent of modifying mitochondrial energy metabolism and reducing headache frequency in selected patients.[5][6] Additional off-label contexts include use in neonates undergoing phototherapy and in the management of antiretroviral-induced lactic acidosis.[7][8] While these uses reflect evolving clinical practice and emerging evidence bases, they also highlight the need for careful patient selection, appropriate dosing strategies, and ongoing appraisal of the supporting literature, given that off-label utilization may rely on heterogeneous levels of evidence and may not be uniformly incorporated into guideline-based care.

Riboflavin inadequacy remains an important nutritional concern in defined populations, even though overt deficiency is relatively uncommon in settings with diverse dietary availability. Pregnant and lactating women, together with infants, represent a particularly vulnerable group due to physiological demands and dependence on maternal status. Pregnancy is associated with increased riboflavin requirements, and riboflavin readily crosses the placenta. Consequently, inadequate maternal riboflavin status during gestation may predispose the infant to deficiency, emphasizing the intergenerational implications of micronutrient sufficiency. In lactation, riboflavin concentrations in breast milk may reflect maternal intake, and supplementation can improve milk riboflavin content when maternal dietary intake is insufficient. These relationships reinforce the clinical importance of nutritional assessment and targeted supplementation during pregnancy and breastfeeding, especially in individuals with restricted diets or limited access to riboflavin-rich foods. Children constitute another group in whom riboflavin status may be compromised, particularly in regions where dietary patterns provide limited milk and meat intake.[1] In

such contexts, insufficient access to high-quality animal-source foods can contribute to persistent micronutrient gaps. Even in Western countries, riboflavin inadequacy may be seen among adolescents, especially girls, a pattern that has been linked to increased metabolic demands during growth and development in conjunction with dietary behaviors that may reduce intake. Older adults may also face increased risk, with advancing age associated with a greater requirement for riboflavin due to diminished absorptive efficiency at the level of the enterocyte.[9] This age-related decline in absorption suggests that dietary adequacy alone may not fully protect against suboptimal status and that clinicians should remain alert to risk factors such as reduced appetite, limited diet variety, polypharmacy, and comorbid gastrointestinal conditions.

Fig. 1: Riboflavin Structure.

High levels of physical activity may further influence riboflavin requirements. Evidence suggests that vigorous exercise can deplete riboflavin, potentially due to increased utilization of riboflavin-dependent pathways integral to energy metabolism.[10] Athletes and individuals engaged in sustained intense training may therefore be more susceptible to low riboflavin status when dietary intake does not rise commensurately with metabolic demand. Eating disorders and clinical conditions associated with impaired intake or absorption represent additional high-risk scenarios. Young women with anorexia nervosa, as well as patients with malignancies or malabsorption syndromes such as celiac disease and short bowel syndrome, have been reported to exhibit low riboflavin levels.[10] Furthermore, lactose intolerance may indirectly contribute to suboptimal intake when individuals avoid dairy products, which are among the most reliable dietary sources of riboflavin. Medication use can also affect riboflavin status. Long-term administration of phenobarbital and other barbiturates

has been associated with depletion of riboflavin, potentially through oxidative mechanisms.[11] This interaction highlights the broader principle that chronic pharmacotherapy may alter micronutrient metabolism, thereby warranting periodic nutritional evaluation in patients receiving long-term anticonvulsant or sedative regimens. Clinically, riboflavin deficiency may present with characteristic mucocutaneous and ocular findings, although symptoms can overlap with those of other nutrient deficiencies and may coexist in states of generalized malnutrition. Common manifestations include dry, erythematous, fissured, or ulcerated lips and angular cheilitis, reflecting epithelial vulnerability at the oral commissures. Changes of the tongue are also frequently described, including a dry, atrophic appearance and discoloration that may range from magenta-red to darkened or blackish tones. Dermatologic involvement can include seborrheic dermatitis affecting the face, and genital skin changes such as hyperpigmentation of the scrotum or vulva, which may resemble features observed in zinc deficiency. Ocular and systemic complaints may accompany these signs, including conjunctivitis, sore throat, and fatigue.[12][13] Recognizing these patterns in the context of dietary history, risk factors, and comorbidities can support timely diagnosis and appropriate nutritional intervention.

Mechanism of Action

Riboflavin (vitamin B2) is a pivotal water-soluble micronutrient that supports fundamental biochemical processes central to cellular energy generation and biosynthetic metabolism. Its primary physiological relevance derives from its role as the precursor of two indispensable flavocoenzymes, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). These riboflavin-derived cofactors function as electron carriers and are integrated into a wide range of oxidoreductase enzymes, thereby enabling the transfer of reducing equivalents within multiple metabolic networks.[14] Through these flavocoenzymes, riboflavin participates in redox reactions that underlie the metabolism of carbohydrates, lipids, and proteins, and it also contributes to the endogenous production or functional activation of other members of the B-complex family. At the cellular level, a major locus of riboflavin activity is the electron transport chain, in which flavoproteins facilitate sequential electron transfer reactions essential for oxidative phosphorylation and adenosine triphosphate (ATP) synthesis.[15] Because the electron transport chain represents a final common pathway for the oxidation of macronutrient-derived substrates, insufficient riboflavin intake is expected to compromise metabolic efficiency and perturb intermediary metabolism. In practical terms, reduced availability of FAD and FMN may impair the catalytic capacity of flavin-dependent enzymes, limiting the

progression of oxidative reactions and diminishing the cell's ability to appropriately couple substrate oxidation to energy production. Such disturbances may have downstream functional consequences, particularly in tissues with high metabolic demand. Beyond its role in energy metabolism, riboflavin is required for specific enzymatic conversions that connect amino acid metabolism with vitamin synthesis and coenzyme activation. The biotransformation of tryptophan to niacin, for example, requires FAD-dependent enzymatic steps, illustrating a mechanistic link between riboflavin status and niacin availability.[16] In addition, riboflavin is necessary for the conversion of vitamin B6 (pyridoxine) into its biologically active coenzyme form, pyridoxal 5'-phosphate, a process that depends on FMN.[16] Through these interactions, riboflavin functions not merely as a discrete nutrient but as a metabolic enabler that helps maintain the functional integrity of broader micronutrient networks. Consequently, suboptimal riboflavin status may have indirect effects on pathways reliant on niacin and vitamin B6, thereby amplifying its physiological significance. Riboflavin also contributes to cellular defense mechanisms against oxidative stress. It is frequently characterized as having antioxidant relevance because flavin-dependent enzymes participate in the regeneration and maintenance of glutathione, a major intracellular free radical scavenger and redox buffer.[17] By supporting glutathione recycling, riboflavin helps preserve redox homeostasis, mitigates oxidative damage to cellular macromolecules, and sustains the functional environment required for normal enzyme activity and membrane stability. Finally, riboflavin is implicated in processes of growth and development, with particular importance during periods of rapid cellular proliferation and differentiation. These roles are especially salient during fetal life, as well as in reproduction and lactation, when metabolic demands increase and adequate riboflavin availability becomes integral to supporting maternal and infant physiological needs.

Pharmacokinetics

Dietary riboflavin exists in several chemical forms that influence its handling in the gastrointestinal tract and subsequent systemic availability. Only a relatively small fraction is present in foods as free riboflavin, whereas the predominant proportion is found as flavin adenine dinucleotide (FAD), with smaller amounts occurring as flavin mononucleotide (FMN). In addition to dietary intake, intestinal microbiota contribute a limited endogenous supply of riboflavin, although this is generally considered quantitatively minor relative to nutritional sources.[18] For riboflavin to be absorbed efficiently, the flavin coenzymes ingested in food must first be converted to free riboflavin. This prerequisite hydrolysis is mediated by phosphatases located at the intestinal mucosa and within enterocytes, enabling

the dephosphorylation of FMN and the breakdown of FAD to yield absorbable free riboflavin.[19] Thus, the intestinal processing of riboflavin is an essential preparatory step that determines how effectively riboflavin present in complex food matrices becomes available for uptake. Absorption takes place predominantly in the small intestine and relies primarily on a saturable, carrier-mediated transport mechanism rather than passive diffusion. A key transporter implicated in this process is RFVT3, which facilitates riboflavin entry across the intestinal epithelium.[20] Importantly, riboflavin absorption is enhanced in the presence of food, a feature consistent with improved solubilization, slower gastrointestinal transit, and potentially more favorable conditions for transporter activity and luminal processing. This food-dependent increase in uptake has practical implications for optimizing oral supplementation strategies, as co-administration with meals may improve bioavailability, particularly at physiologic or moderately supraphysiologic doses where transporter-mediated kinetics remain influential.

Following absorption, riboflavin is distributed broadly across tissues, reflecting its ubiquitous requirement for cellular redox reactions and flavoprotein function. Distribution occurs between central and peripheral compartments, and riboflavin is capable of crossing the blood–brain barrier, supporting its relevance for nervous system metabolism. Tissue uptake and intracellular delivery depend on dedicated transport systems, among which RFVT2 has a prominent role in mediating tissue distribution. This transporter is encoded by SLC52A2 (solute carrier family 52 member-2), emphasizing the genetic and molecular specificity underlying riboflavin homeostasis.[21] In addition, ABCG2 (ATP-binding cassette G2 transporter) contributes to riboflavin transport into specialized biological fluids and secretions, including breast milk, cerebrospinal fluid (CSF), semen, and bile, highlighting a mechanism by which riboflavin is directed into compartments relevant to infant nutrition, central nervous system exposure, reproductive physiology, and hepatobiliary processes.[15] At the tissue level, riboflavin undergoes intracellular metabolic activation to generate its functional coenzyme forms. Within the cytoplasm of many organs—including the liver, heart, and kidney—riboflavin is phosphorylated by flavokinase to form FMN, which can then be further converted to FAD by FMN adenyltransferase (FMNAT).[22] This sequential conversion is central to riboflavin's biological activity because FMN and FAD serve as the immediate cofactors for a wide array of flavoproteins involved in oxidative metabolism and redox balance. The efficiency of this metabolic activation helps determine functional riboflavin status at the cellular level, beyond what may be inferred from intake alone. Elimination of riboflavin is relatively rapid. The reported elimination half-life is approximately

one hour, reflecting brisk renal handling and limited long-term circulating retention.[6] Riboflavin is excreted primarily unchanged in the urine, consistent with its water-soluble properties and the body's tendency to eliminate excess amounts once transport and tissue requirements are saturated. Biliary elimination contributes minimally, accounting for less than one percent of total excretion.[6] Together, these pharmacokinetic characteristics underscore that maintaining adequate riboflavin status depends on regular intake, particularly in individuals with increased requirements, limited absorption, or conditions associated with heightened metabolic turnover.

Administration

Riboflavin (vitamin B2) is administered in clinical and public health contexts both as a nutritional supplement intended to prevent or correct inadequate intake and, in selected circumstances, as a therapeutic adjunct in specific disease states. Its clinical use is shaped by the dual reality that physiologic requirements are comparatively small—reflected in recommended dietary allowances measured in milligrams per day—while pharmacologic dosing in certain indications may involve substantially higher amounts. In routine practice, riboflavin may be provided as a single-ingredient preparation or as part of multi-ingredient formulations, particularly within B-complex or broader multivitamin products. This packaging approach reflects the frequent coexistence of multiple micronutrient gaps in at-risk individuals, as well as the metabolic interdependence among B vitamins within energy and redox pathways. From a pharmaceutical standpoint, riboflavin is available as oral tablets containing 25 mg, 50 mg, or 100 mg and as oral capsules at higher strength, including 400 mg, which is commonly used when riboflavin is prescribed for clinical purposes beyond routine supplementation. Riboflavin is also frequently incorporated into water-soluble multivitamin products, especially those intended for individuals with dietary restrictions, increased metabolic demand, or clinical conditions associated with malabsorption. In ophthalmology, a distinct formulation is employed: riboflavin 5'-phosphate is available as a 0.146% ophthalmic solution, which has specific relevance to corneal collagen cross-linking protocols.[4] The existence of both nutritional and topical ophthalmic products underscores that the term “riboflavin administration” encompasses a spectrum of routes and dosing strategies that depend on therapeutic intent.

Physiologic dosing recommendations for riboflavin are established as recommended daily allowances and vary by age, sex, and reproductive status. For adults aged 19 to 70 years, recommended intake for women is generally within the range of 0.9 to 1.1 mg/day, whereas for men it is typically 1.1 to

1.3 mg/day. These recommendations are anchored to observations that sustained intakes below approximately 0.6 mg/day are associated with clinical or biochemical evidence of insufficiency, thereby informing minimum thresholds for adequacy. During pregnancy and lactation, requirements rise, and recommended intakes increase to approximately 1.4 to 1.6 mg/day, reflecting fetal transfer, maternal metabolic adaptation, and the nutrient content of breast milk. For adolescents aged 10 to 18 years, recommended intake spans roughly 0.9 to 1.3 mg/day, while children aged 1 to 9 years generally require approximately 0.5 to 0.6 mg/day. Infants from birth through 12 months have recommended intakes in the range of 0.3 to 0.4 mg/day.[15] In clinical supplementation—distinct from dietary replacement—oral riboflavin is frequently administered at higher doses, commonly 50 to 100 mg daily, which may be used to replete stores or mitigate risk in individuals with marginal intake or increased requirements.[23] Beyond correction of deficiency, riboflavin has defined roles in certain clinical situations where the dosing, route, and formulation are determined by the underlying condition. In corneal ectasia following refractive surgery and in progressive keratoconus, riboflavin is used topically as riboflavin 5'-phosphate ophthalmic solution (0.146%) and may also be formulated as riboflavin 5'-phosphate in 20% dextran solution (0.146%). These ophthalmic products serve as photoenhancers in corneal collagen cross-linking, a procedure intended to increase corneal biomechanical stability. Mechanistically, riboflavin 5'-phosphate facilitates the generation of singlet oxygen upon illumination, promoting covalent cross-link formation between collagen fibers. In practice, corneal cross-linking systems such as the KXL platform are designed to accelerate and standardize cross-link formation, thereby limiting corneal steepening and structural progression.[24][25][26] This use represents a localized, procedure-based application rather than systemic nutrient replacement and relies on controlled photochemical activation to achieve therapeutic effect.

Riboflavin is also used orally for migraine prophylaxis, where it has been supported by professional society guidance. The American Academy of Neurology (AAN) and the American Headache Society have endorsed riboflavin as an option for preventive management, aligning with the view that modulation of mitochondrial energy metabolism may reduce migraine frequency in some patients. The usual dose used for prophylaxis is 400 mg daily, a regimen that is substantially higher than nutritional requirements and reflects the intent to achieve pharmacologic rather than merely nutritive effects.[6][5] In neonatal care, riboflavin administration has been discussed in the context of phototherapy for hyperbilirubinemia. Phototherapy,

while clinically effective for bilirubin reduction, has been shown to degrade riboflavin, creating a plausible risk for deficiency in newborns. For this reason, prophylactic daily oral riboflavin has been proposed to prevent deficiency during treatment, emphasizing the need to anticipate nutrient losses induced by therapeutic light exposure in early life.[7] Another specialized context is antiretroviral-induced lactic acidosis, a rare but serious metabolic complication associated with certain antiretroviral agents, particularly within the group described as nonnucleoside reverse transcriptase inhibitors (NNRTI). In reported clinical approaches, discontinuation of the offending drug combined with riboflavin administration has been associated with reversal of the syndrome, suggesting a role for riboflavin as an adjunctive metabolic support strategy in this setting.[8] While such use remains uncommon, it illustrates how riboflavin may be deployed therapeutically when mitochondrial or redox dysfunction is implicated. Administration considerations also vary across patient populations. In hepatic impairment, no dose adjustment is generally required, reflecting the lack of evidence that standard dosing requires modification based solely on hepatic dysfunction. Similarly, no routine dose adjustment is considered necessary in renal impairment.[27] Nevertheless, given that riboflavin is predominantly eliminated renally, clinicians may still consider the broader nutritional context, comorbidities, and concurrent supplementation when determining appropriateness and monitoring. During pregnancy, riboflavin requirements increase, and low dairy consumption has been associated with deficiency, underscoring the importance of dietary assessment and supplementation when intake is inadequate.[28] Riboflavin deficiency has also been discussed as a potential risk factor for preeclampsia, reinforcing the clinical rationale for maintaining adequate status during gestation.[29] In lactation, requirements remain elevated, and maternal deficiency may predispose the breastfed infant to deficiency, highlighting the dependence of infant riboflavin exposure on maternal intake and milk composition.[30] In this context, ensuring sufficient consumption of riboflavin-rich foods such as dairy products and meat is emphasized to support adequacy for both mother and infant.[30]

In pediatrics, riboflavin's role extends beyond routine nutrition in the setting of rare genetic disorders. Certain inborn errors of metabolism—such as glutaric aciduria type 1 and multiple acyl-coenzyme A (CoA) dehydrogenase deficiency (MADD)—involve impaired function of riboflavin-dependent enzymes and may respond to high-dose riboflavin therapy. Likewise, Brown-Vialetto-Van Laere syndrome, which involves defects in riboflavin transport, may demonstrate responsiveness to high-dose riboflavin, reflecting a therapeutic strategy aimed at overcoming transporter limitations or

enhancing residual transport activity.[31] In older adults, riboflavin status may be compromised during acute illness, and supplementation with riboflavin alongside other nutrients is commonly recommended to address suboptimal status and support metabolic resilience during recovery.[32] Collectively, these administration principles demonstrate that riboflavin dosing spans nutritional replacement, preventive supplementation, and targeted therapeutic applications, each requiring careful alignment of formulation, route, and dose with the patient's clinical context and risk profile.

Adverse Effects

Riboflavin (vitamin B2) is generally regarded as safe when administered at nutritional or supplemental doses, a profile largely attributable to its water-soluble nature and the body's limited capacity to absorb and retain quantities beyond physiologic needs. Although riboflavin is classified as a water-soluble vitamin, it exhibits limited solubility in aqueous environments, and intestinal uptake is mediated by transporter-dependent mechanisms that become saturated at higher intakes. Consequently, when riboflavin is consumed in excess, enterocytes do not continue to absorb proportionally larger amounts, and any unabsorbed fraction is eliminated through the gastrointestinal tract. This saturable absorption contributes to the low toxicity potential observed in clinical practice and supports its frequent inclusion in multivitamin and B-complex formulations. Nevertheless, prudent clinical judgment remains appropriate in special populations and circumstances, particularly when considering high-dose regimens that markedly exceed dietary requirements. In pregnancy, for example, riboflavin requirements do increase; however, caution is still advised when administering very large doses, especially in the absence of a clear indication and established benefit-risk justification. This caution reflects standard principles of maternal-fetal pharmacologic stewardship, whereby unnecessary exposure to supraphysiologic dosing is avoided when safety data are limited or when potential downstream effects are not fully characterized. In most cases, riboflavin given within recommended dietary allowance ranges or conventional supplementation doses is well tolerated, and clinically meaningful adverse reactions are uncommon.

A frequently encountered and clinically benign effect of riboflavin administration is discoloration of the urine, typically producing a bright yellow or yellow-orange hue. This finding results from renal excretion of riboflavin and its metabolites and does not indicate renal injury or pathologic hematuria. From a patient counseling perspective, anticipatory guidance regarding this harmless color change is useful, as it can prevent unnecessary concern and reduce the likelihood of unwarranted discontinuation. Drug-drug interactions are also relevant to safe and effective administration.

Certain medications may reduce riboflavin availability or interfere with its utilization. Tricyclic antidepressants and tetracyclines have been reported to disrupt riboflavin utilization, which may be clinically pertinent in individuals with marginal dietary intake or in those receiving prolonged therapy.[15] In addition, chronic alcohol exposure is associated with impaired intestinal absorption and reduced renal reabsorption of riboflavin, mechanisms that can contribute to suboptimal riboflavin status over time.[33] For patients with alcohol use disorder or sustained heavy alcohol intake, these effects strengthen the rationale for nutritional assessment and, when appropriate, targeted supplementation to prevent deficiency and its associated clinical manifestations.

Contraindications

Riboflavin (vitamin B2) is widely considered a low-risk nutrient when consumed at physiologic levels through diet or standard supplementation, and there are no widely recognized absolute contraindications to its intake in the general population. This favorable profile is largely explained by its water-soluble nature, saturable intestinal absorption, and efficient renal clearance of excess amounts. Consequently, riboflavin is commonly incorporated into multivitamin products and B-complex preparations without substantial safety concerns, and it is frequently used in clinical settings where nutritional repletion is desired. In most individuals, even doses substantially exceeding the recommended daily allowance are well tolerated, and clinically significant adverse outcomes attributable solely to riboflavin are uncommon. Despite this broad tolerability, a clinically meaningful exception relates to hypersensitivity. In patients with a documented prior allergic reaction to riboflavin or to a riboflavin-containing preparation, riboflavin should be avoided because of the potential for recurrent hypersensitivity reactions, including anaphylaxis.[34] Although such reactions are rare, they carry disproportionate clinical importance given their potential severity and rapid onset. In practice, the risk assessment should include careful attention not only to riboflavin itself but also to excipients, dyes, preservatives, or formulation components that may be present in commercial products, as hypersensitivity may sometimes be attributable to non-active ingredients. This consideration is particularly relevant when transitioning between brands or dosage forms, or when riboflavin is administered in specialized formulations such as ophthalmic preparations, where preservatives may contribute to intolerance in susceptible individuals. When riboflavin is used topically in ophthalmology, additional caution may be warranted in patients with a history of hypersensitivity reactions to ophthalmic solutions, though the overarching contraindication remains prior confirmed hypersensitivity to riboflavin or its

formulations. In routine clinical decision-making, an appropriate contraindication screen includes eliciting prior reactions, clarifying the nature and severity of symptoms, and documenting the specific product involved. Where the clinical need for riboflavin is compelling, referral for allergy evaluation may be considered, but in general, avoidance remains the safest approach in patients with a credible history of severe hypersensitivity. Accordingly, while riboflavin is broadly safe and lacks absolute contraindications for most individuals, prior hypersensitivity represents a clear and clinically justified basis for withholding administration.[34]

Monitoring

Monitoring riboflavin status presents practical challenges, as conventional measures such as plasma concentrations and urinary excretion do not reliably reflect tissue adequacy and are not sufficiently sensitive markers for diagnosing deficiency. These limitations arise from riboflavin's dynamic distribution, its rapid renal clearance of excess, and the influence of recent intake on circulating and urinary measurements. For these reasons, functional assessment methods are preferred when clinically meaningful evaluation of riboflavin status is required. The most widely accepted approach is the measurement of FAD-dependent erythrocyte glutathione reductase activity with and without exogenous FAD stimulation, which yields the erythrocyte glutathione reductase activity coefficient (EGRAC). This test captures the functional availability of riboflavin-derived cofactors in red blood cells and serves as a proxy for systemic riboflavin sufficiency.[9] The interpretation of EGRAC is conceptually straightforward: poorer riboflavin status is associated with a higher activation coefficient because the enzyme's activity increases more substantially when FAD is added *in vitro*, indicating that endogenous cofactor availability was insufficient. In clinical and research contexts, an EGRAC value above 1.3 is generally considered indicative of riboflavin deficiency.[27] This threshold provides a practical criterion for identifying individuals who may benefit from dietary intervention or supplementation, particularly when symptoms are nonspecific or when multiple micronutrient deficiencies may coexist. Nevertheless, EGRAC results should be interpreted in the context of the broader clinical picture, including dietary history, risk factors for inadequate intake or absorption, and the presence of compatible mucocutaneous or ocular findings. In addition to systemic monitoring considerations, the use of riboflavin in ophthalmic formulations warrants indication-specific monitoring. When riboflavin is administered as part of corneal procedures, the recommended monitoring focus is the clinical assessment of epithelial integrity and the healing of epithelial defects.[35] This approach reflects the

localized nature of therapy and the relevance of corneal epithelial status to safety and procedural outcomes. Monitoring is therefore primarily clinical rather than laboratory-based and typically includes follow-up examinations aimed at confirming appropriate re-epithelialization, excluding complications, and documenting therapeutic response where relevant. Taken together, effective monitoring of riboflavin use requires aligning the assessment method with the intended purpose of therapy, relying on functional biochemical testing for systemic deficiency evaluation while prioritizing targeted clinical endpoints in ophthalmic applications.[9][27][35]

Toxicity

Riboflavin has a strong safety record, and observable toxicity from dietary sources is not expected even when intake substantially exceeds the recommended daily allowance. This absence of toxicity is consistent with riboflavin's pharmacologic characteristics: it is a water-soluble compound with limited intestinal absorption due to saturable transport mechanisms, and excess amounts that are absorbed are efficiently eliminated via the kidneys. As a result, homeostatic processes constrain tissue accumulation, and the body primarily disposes of surplus riboflavin through urinary excretion. This physiological handling explains why riboflavin is generally considered one of the least toxic vitamins and why concerns about overdose are uncommon in standard clinical practice. Evidence summarized in nutritional safety assessments indicates that no adverse effects have been demonstrated from high riboflavin intakes derived from foods or from supplemental dosing up to 400 mg daily for at least three months.[36] This observation is particularly relevant because 400 mg daily is a commonly used regimen in certain clinical contexts, such as migraine prophylaxis, and therefore represents a real-world exposure level rather than a theoretical extreme. Consistent with this favorable evidence base, the Food and Nutrition Board has not established a tolerable upper intake level for riboflavin, reflecting the conclusion that available data do not support a defined threshold at which toxicity reliably emerges.[36] The lack of an upper limit does not imply that unlimited dosing is advisable; rather, it indicates that typical supplemental exposures have not been associated with clinically meaningful harm and that risk appears low when riboflavin is used appropriately. Mechanistically, high-dose riboflavin is unlikely to cause toxicity because the fraction that is not absorbed remains within the intestinal lumen, while the absorbed excess is rapidly excreted unchanged or as metabolites in the urine.[36] This elimination pattern further supports the observation that the most noticeable effect of high intake is often urine discoloration rather than organ toxicity. In clinical terms, the safety profile enables riboflavin to be used flexibly for supplementation and for selected

therapeutic purposes, provided that dosing decisions remain indication-driven and that clinicians account for patient-specific factors such as rare hypersensitivity. Overall, current evidence supports the conclusion that riboflavin has minimal toxicity potential under customary dietary and supplemental conditions, with renal excretion serving as an effective protective mechanism against accumulation and adverse outcomes.[36]

Enhancing Healthcare Team Outcomes

Riboflavin (vitamin B2) is not stored in substantial quantities within the human body, and only limited reserves are maintained in organs such as the liver, heart, and kidneys. This constrained storage capacity has direct clinical implications: adequate riboflavin status depends on regular intake, primarily through diet, and any sustained reduction in intake or impairment in absorption may lead to biochemical insufficiency and, in vulnerable circumstances, symptomatic deficiency. For most individuals, habitual dietary consumption is sufficient to meet physiologic requirements; however, people following restricted dietary patterns and those who do not consume dairy products are at increased risk of developing low riboflavin intake and subsequent deficiency. In addition, several social, physiologic, and clinical factors can heighten vulnerability, including pregnancy, poverty, older age, depression, breastfeeding, exposure to neonatal phototherapy, and cognitive impairment that may compromise dietary quality or adherence to supplementation. Because riboflavin participates broadly in energy metabolism and epithelial maintenance, deficiency can manifest with diverse clinical features that may impair daily functioning and diminish quality of life, particularly when symptoms involve mucocutaneous irritation, ocular complaints, or generalized fatigue. These characteristics make riboflavin deficiency an archetypal condition in which outcomes are improved when prevention and management are approached as a coordinated, interprofessional effort. An effective team commonly includes clinicians, pharmacists, nurses, and dietitians or nutritionists, each contributing discipline-specific expertise to identify risk, implement preventive strategies, and monitor response to intervention. Clinicians play a central role in recognizing at-risk individuals, eliciting dietary histories, considering the differential diagnosis for mucocutaneous and systemic complaints, and initiating appropriate supplementation regimens. Pharmacists contribute substantially to patient safety and adherence by providing medication counseling, clarifying product selection, and educating patients about expected benign effects such as urine discoloration, thereby reducing anxiety-driven discontinuation. Because pharmacists are frequently the most accessible healthcare professionals, they may encounter patients early in the course of deficiency-related symptoms and can prompt timely referral or recommend appropriate over-the-counter

dosing consistent with the clinical indication. In parallel, pharmacists can support prescribers by advising on formulation choice, dosing ranges, and potential interactions that may impair riboflavin utilization, reinforcing safe and effective implementation of supplementation.

Dietitians and nutritionists are essential for addressing the upstream determinants of riboflavin status—namely dietary adequacy and food access. Their role extends beyond listing nutrient sources; it includes translating nutritional requirements into culturally appropriate meal planning, identifying barriers such as cost or food intolerance, and framing riboflavin intake within broader dietary patterns that support metabolic health. This is particularly relevant for individuals on restricted diets or those who avoid dairy, where tailored strategies may include fortified foods, alternative dietary sources, or supplementation plans that realistically match patient preferences and constraints. In addition, nutrition professionals can integrate counseling on physical activity, healthy weight, and overall diet quality, recognizing that micronutrient adequacy often coexists with broader lifestyle factors and socioeconomic realities. Within outpatient care, education becomes a core mechanism for prevention, and nurse educators and dietitians are especially well positioned to deliver practical guidance. Structured counseling can help patients identify riboflavin-rich foods, understand the consequences of persistent low intake, and build routines that support consistent consumption. Nurses also provide continuity between visits and can reinforce adherence to supplements, address misconceptions, and triage emerging symptoms. In maternal and child health, nursing involvement is particularly influential. Pregnant and postpartum individuals require education on increased riboflavin needs, the implications of maternal status for breast milk riboflavin content, and the importance of supplementation when dietary intake is inadequate. Guidance delivered by nurses during prenatal visits, postnatal checkups, or community health encounters can prevent avoidable deficiency in both mother and infant, especially when dietary access is limited or when nausea, food aversions, or restricted diets reduce intake.

Certain clinical contexts require additional specialist coordination. Inborn errors of metabolism, including disorders such as Brown-Vialetto-Van Laere syndrome, require integrated management that typically involves pediatricians working closely with clinical geneticists and, when relevant, neurologists and metabolic specialists. The team-based nature of these conditions reflects diagnostic complexity, the need for prompt recognition, and the role of high-dose riboflavin as a targeted therapy in transporter-related or enzyme-related riboflavin responsiveness. Coordinated care supports timely initiation of treatment, monitoring of neurologic and systemic

outcomes, and family counseling regarding prognosis and long-term management. In such cases, interprofessional collaboration is not merely beneficial but often central to preventing irreversible complications and optimizing developmental trajectories. Ophthalmic applications of riboflavin similarly highlight the necessity of appropriate specialty involvement. The use of riboflavin 5'-phosphate in keratoconus and corneal ectasia is procedure-based and must be implemented within established corneal cross-linking protocols under ophthalmologist supervision. Interprofessional support in this setting includes nursing staff and clinical technicians who assist with procedural preparation, patient education, post-procedure care, and monitoring of epithelial healing. Clear communication within the care team enhances patient safety by ensuring adherence to postoperative instructions and prompt recognition of complications such as delayed epithelial recovery. This coordination is particularly important because the therapeutic effect depends on correct formulation use and controlled procedural parameters rather than routine nutritional replacement. Neonatal care provides another setting in which team-based awareness directly prevents deficiency. Nurses caring for newborns undergoing phototherapy for hyperbilirubinemia should understand that phototherapy can degrade riboflavin and potentially contribute to deficiency. This awareness enables proactive strategies such as monitoring nutritional status, communicating risk to the neonatal team, and ensuring supplementation is considered when indicated. In this environment, effective outcomes depend on collaboration between neonatologists or pediatricians, nursing staff, and pharmacists who can support appropriate dosing and product selection, especially given the sensitivity of dosing decisions in newborn populations. When such coordination is absent, riboflavin depletion may be overlooked, and preventable deficiency-related complications may occur.

From a systems perspective, most cases of riboflavin deficiency are preventable when healthcare teams adopt proactive screening, education, and nutritional support for at-risk populations. Integrating clinicians, nutritionists, specialists, pharmacists, and dietitians into a coherent care pathway can improve patient outcomes by reducing delays in recognition, improving adherence, and addressing dietary determinants rather than relying solely on episodic supplementation. This approach can also reduce healthcare utilization by preventing recurrent visits for nonspecific symptoms, limiting complications, and improving overall nutritional status, thereby decreasing costs and enhancing quality of care.[15][37][38] Importantly, interprofessional collaboration fosters consistent messaging across disciplines, which strengthens patient trust and

improves the likelihood that dietary and supplement recommendations are implemented correctly over time. When riboflavin deficiency is identified and treated appropriately, outcomes are generally favorable. Many symptoms improve within weeks to months as epithelial integrity and metabolic function recover. However, prognosis may be less complete when deficiency has progressed to neurological involvement, where residual deficits may persist for extended periods despite correction of the nutritional deficiency.[39] This distinction underscores the central value of early recognition and prevention: timely intervention not only improves short-term symptom resolution but also reduces the risk of long-term sequelae. Accordingly, a sustained interprofessional focus on risk identification, patient education, appropriate supplementation, and targeted specialist involvement represents the most effective strategy for enhancing healthcare team outcomes in the prevention and management of vitamin B2 deficiency and its clinical consequences.[15][37][38][39]

Conclusion:

Riboflavin occupies a central role in human metabolism, acting as a precursor for flavocoenzymes that drive oxidative and biosynthetic pathways. Despite its broad dietary availability, specific populations—including pregnant and lactating women, infants, older adults, and individuals with restricted diets—remain vulnerable to inadequacy. Clinical manifestations of deficiency, though uncommon, can significantly impact mucocutaneous and ocular health, underscoring the importance of proactive nutritional assessment. Beyond its nutritional role, riboflavin demonstrates therapeutic versatility, with FDA-approved ophthalmic formulations for corneal disorders and off-label applications in migraine prevention and metabolic complications. Pharmacokinetic properties, including saturable absorption and rapid renal clearance, explain its low toxicity and reinforce the necessity for regular intake rather than reliance on tissue storage. Monitoring strategies such as EGRAC provide functional insights into riboflavin status, guiding supplementation decisions in ambiguous clinical scenarios. Overall, riboflavin exemplifies a nutrient with dual relevance: foundational for health maintenance and adaptable for targeted interventions. Ensuring adequate intake through diet or supplementation remains a cornerstone of preventive care, while emerging therapeutic applications highlight its evolving role in clinical practice.

References:

- Oppenheimer SJ, Bull R, Thurnham DI. Riboflavin deficiency in Madang infants. Papua and New Guinea medical journal. 1983 Mar;26(1):17-20
- Morgan KJ, Zabik ME, Leveille GA. The role of breakfast in nutrient intake of 5- to 12-year-old children. The American journal of clinical nutrition. 1981 Jul;34(7):1418-27
- Woo J, Kwok T, Ho SC, Sham A, Lau E. Nutritional status of elderly Chinese vegetarians. Age and ageing. 1998 Jul;27(4):455-61
- Belin MW, Lim L, Rajpal RK, Hafezi F, Gomes JAP, Cochener B. Corneal Cross-Linking: Current USA Status: Report From the Cornea Society. Cornea. 2018 Oct;37(10):1218-1225. doi: 10.1097/ICO.0000000000001707.
- Holland S, Silberstein SD, Freitag F, Dodick DW, Argoff C, Ashman E, Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Evidence-based guideline update: NSAIDs and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012 Apr 24;78(17):1346-53. doi: 10.1212/WNL.0b013e3182535d0c.
- Thompson DF, Saluja HS. Prophylaxis of migraine headaches with riboflavin: A systematic review. Journal of clinical pharmacy and therapeutics. 2017 Aug;42(4):394-403. doi: 10.1111/jcpt.12548.
- Tan KL, Chow MT, Karim SM. Effect of phototherapy on neonatal riboflavin status. The Journal of pediatrics. 1978 Sep;93(3):494-7
- Posteraro AF 3rd, Mauriello M, Winter SM. Riboflavin treatment of antiretroviral induced lactic acidosis and hepatic steatosis. Connecticut medicine. 2001 Jul;65(7):387-90
- Boisvert WA, Mendoza I, Castañeda C, De Portocarrero L, Solomons NW, Gershoff SN, Russell RM. Riboflavin requirement of healthy elderly humans and its relationship to macronutrient composition of the diet. The Journal of nutrition. 1993 May;123(5):915-25
- Belko AZ, Obarzanek E, Roach R, Rotter M, Urban G, Weinberg S, Roe DA. Effects of aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally deficient young women. The American journal of clinical nutrition. 1984 Sep;40(3):553-61
- Husebye ESN, Riedel B, Bjørke-Monsen AL, Spigset O, Daltveit AK, Gilhus NE, Bjørk MH. Vitamin B status and association with antiseizure medication in pregnant women with epilepsy. Epilepsia. 2021 Dec;62(12):2968-2980. doi: 10.1111/epi.17076.
- Barthelemy H, Chouvet B, Cambazard F. Skin and mucosal manifestations in vitamin deficiency. Journal of the American Academy of Dermatology. 1986 Dec;15(6):1263-74
- Blanck HM, Bowman BA, Serdula MK, Khan LK, Kohn W, Woodruff BA, Bhutanese Refugee Investigation Group. Angular stomatitis and riboflavin status among adolescent Bhutanese

refugees living in southeastern Nepal. *The American journal of clinical nutrition.* 2002 Aug;76(2):430-5

14. Prentice AM, Bates CJ. A biochemical evaluation of the erythrocyte glutathione reductase (EC 1.6.4.2) test for riboflavin status. 1. Rate and specificity of response in acute deficiency. *The British journal of nutrition.* 1981 Jan;45(1):37-52
15. Pinto JT, Zempleni J. Riboflavin. *Advances in nutrition (Bethesda, Md.).* 2016 Sep;7(5):973-5. doi: 10.3945/an.116.012716.
16. Jarrett H, McNulty H, Hughes CF, Pentieva K, Strain JJ, McCann A, McAnena L, Cunningham C, Molloy AM, Flynn A, Hopkins SM, Horigan G, O'Connor C, Walton J, McNulty BA, Gibney MJ, Lamers Y, Ward M. Vitamin B-6 and riboflavin, their metabolic interaction, and relationship with MTHFR genotype in adults aged 18-102 years. *The American journal of clinical nutrition.* 2022 Dec 19;116(6):1767-1778. doi: 10.1093/ajcn/nqac240.
17. Ashoori M, Saedisomeolia A. Riboflavin (vitamin B₂) and oxidative stress: a review. *The British journal of nutrition.* 2014 Jun 14;111(11):1985-91. doi: 10.1017/S0007114514000178.
18. IINUMA S. Synthesis of riboflavin by intestinal bacteria. *The Journal of vitaminology.* 1955 Feb 10;1(2):6-13
19. Daniel H, Binninger E, Rehner G. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane. *International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsorschung. Journal international de vitaminologie et de nutrition.* 1983;53(1):109-14
20. Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. *Pharmacology & therapeutics.* 2022 May;233():108023. doi: 10.1016/j.pharmthera.2021.108023.
21. Zhang L, Li M, Cui Z, Chai D, Guan Y, Chen C, Wang W. Systematic analysis of the role of SLC52A2 in multiple human cancers. *Cancer cell international.* 2022 Jan 6;22(1):8. doi: 10.1186/s12935-021-02432-7.
22. Hirano G, Izumi H, Yasuniwa Y, Shimajiri S, Ke-Yong W, Sasaguri Y, Kusaba H, Matsumoto K, Hasegawa T, Akimoto M, Akashi K, Kohno K. Involvement of riboflavin kinase expression in cellular sensitivity against cisplatin. *International journal of oncology.* 2011 Apr;38(4):893-902. doi: 10.3892/ijo.2011.938.
23. Bourgonje AR, Otten AT, Sadaghian Sadabad M, von Martels JZH, Bulthuis MLC, Faber KN, van Goor H, Dijkstra G, Harmsen HJM. The effect of riboflavin supplementation on the systemic redox status in healthy volunteers: A post-hoc analysis of the RIBOGUT trial. *Free radical biology & medicine.* 2022 Sep;190():169-178. doi: 10.1016/j.freeradbiomed.2022.08.008.
24. Gore DM, Leucci MT, Koay SY, Kopsachilis N, Nicolae MN, Malandrakis MI, Anand V, Allan BD. Accelerated Pulsed High-Fluence Corneal Cross-Linking for Progressive Keratoconus. *American journal of ophthalmology.* 2021 Jan;221():9-16. doi: 10.1016/j.ajo.2020.08.021.
25. Ostacolo C, Caruso C, Tronino D, Troisi S, Laneri S, Pacente L, Del Prete A, Sacchi A. Enhancement of corneal permeation of riboflavin-5'-phosphate through vitamin E TPGS: a promising approach in corneal trans-epithelial cross linking treatment. *International journal of pharmaceuticals.* 2013 Jan 20;440(2):148-53. doi: 10.1016/j.ijpharm.2012.09.051.
26. Woo JH, Iyer JV, Lim L, Hla MH, Mehta JS, Chan CM, Tan DT. Conventional Versus Accelerated Collagen Cross-Linking for Keratoconus: A Comparison of Visual, Refractive, Topographic and Biomechanical Outcomes. *The open ophthalmology journal.* 2017;11():262-272. doi: 10.2174/1874364101711010262.
27. Clase CM, Ki V, Holden RM. Water-soluble vitamins in people with low glomerular filtration rate or on dialysis: a review. *Seminars in dialysis.* 2013 Sep-Oct;26(5):546-67. doi: 10.1111/sdi.12099.
28. Higgins KA, Bi X, Davis BJ, Barraj LM, Scrafford CG, Murphy MM. Adequacy of total usual micronutrient intakes among pregnant women in the United States by level of dairy consumption, NHANES 2003-2016. *Nutrition and health.* 2022 Dec;28(4):621-631. doi: 10.1177/02601060211072325.
29. Wacker J, Frühauf J, Schulz M, Chiwora FM, Volz J, Becker K. Riboflavin deficiency and preeclampsia. *Obstetrics and gynecology.* 2000 Jul;96(1):38-44
30. Allen LH. B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. *Advances in nutrition (Bethesda, Md.).* 2012 May 1;3(3):362-9. doi: 10.3945/an.111.001172.
31. Chaya S, Zampoli M, Gray D, Booth J, Riordan G, Ndondo A, Fieggen K, Rusch J, van der Watt G, Pillay K, van der Westhuizen F, Menezes M, Wilmshurst J. The First Case of Riboflavin Transporter Deficiency in sub-Saharan Africa. *Seminars in pediatric neurology.* 2018 Jul;26():10-14. doi: 10.1016/j.spen.2017.03.002.
32. Gariballa S, Forster S, Powers H. Riboflavin status in acutely ill patients and response to dietary supplements. *JPEN. Journal of parenteral*

and enteral nutrition. 2009 Nov-Dec;33(6):656-61. doi: 10.1177/0148607109336602.

33. Subramanian VS, Subramanya SB, Ghosal A, Said HM. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport. *American journal of physiology. Cell physiology*. 2013 Sep;305(5):C539-46. doi: 10.1152/ajpcell.00089.2013.

34. Ou LS, Kuo ML, Huang JL. Anaphylaxis to riboflavin (vitamin B2). *Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology*. 2001 Nov;87(5):430-3.

35. Beckman KA. Epithelium-on Corneal Collagen Cross-Linking with Hypotonic Riboflavin Solution in Progressive Keratoconus. *Clinical ophthalmology* (Auckland, N.Z.). 2021;15():2921-2932. doi: 10.2147/OPTH.S318317.

36. Suwannasom N, Kao I, Prüß A, Georgieva R, Bäumler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. *International journal of molecular sciences*. 2020 Jan 31;21(3):. doi: 10.3390/ijms21030950.

37. Chan M, Kelly J, Batterham M, Tapsell L. A high prevalence of abnormal nutrition parameters found in predialysis end-stage kidney disease: is it a result of uremia or poor eating habits? *Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation*. 2014 Sep;24(5):292-302. doi: 10.1053/j.jrn.2014.03.008.

38. Barile M, Giancaspero TA, Brizio C, Panebianco C, Indiveri C, Galluccio M, Vergani L, Eberini I, Gianazza E. Biosynthesis of flavin cofactors in man: implications in health and disease. *Current pharmaceutical design*. 2013;19(14):2649-75

Dror DK, Allen LH. Dairy product intake in children and adolescents in developed countries: trends, nutritional contribution, and a review of association with health outcomes. *Nutrition reviews*. 2014 Feb;72(2):68-81. doi: 10.1111/nure.12078.