

Nonorganic Vision Loss in Ophthalmic Practice: Diagnostic Frameworks, Differential Considerations, and Evidence-Based Management

Suleiman Abdu Alhunishi ⁽¹⁾, Bashayr Mousa Mohammed Ageeli ⁽²⁾, Maram Hussin Mohammed Banajiah ⁽³⁾, Mohammed Obaid A Alanazi ⁽⁴⁾, Ashwaq Rabea Alabeeri ⁽⁵⁾, Fahad Abdullah Alahmadi ⁽⁶⁾, Wafaa Mohammed Alharbi ⁽⁷⁾, Omar Nafel Alharbi ⁽⁸⁾, Shujaa Murdhi Alrasheedi ⁽⁹⁾, Khalid Khilil Galfan Kamli ⁽¹⁰⁾, Khard Riyadh Mohammed H ⁽¹¹⁾, Saleh Abdullah Alshaya ⁽¹²⁾, Waleed Saad Saeed Al Tawman ⁽¹³⁾

(1) Muhayl General Hospital, Ministry of Health, Saudi Arabia,

(2) Eradah Hospital for Mental Health – Jazan, Ministry of Health, Saudi Arabia,

(3) Irada Hospital for Mental Health, Ministry of Health, Saudi Arabia,

(4) King Khalid Hospital, Al-Kharj, Ministry of Health, Saudi Arabia,

(5) Jeddah Eye Hospital, Ministry of Health, Saudi Arabia,

(6) Almiqat Hospital, Ministry of Health, Saudi Arabia,

(7) Central Hospital of Hafr Al-Batin, Ministry of Health, Saudi Arabia,

(8) King Fahad Specialist Hospital in Qassim, Ministry of Health, Saudi Arabia,

(9) King Khalid General Hospital, Hafr Al-Batin, Ministry of Health, Saudi Arabia,

(10) Arada Hospital for Mental Health (Jazan Region), Ministry of Health, Saudi Arabia,

(11) Middle Sector, Jazan Health Cluster – Primary Health Care Center, Ministry of Health, Saudi Arabia,

(12) Prince Muhammad Bin Nasser Hospital, Ministry of Health, Saudi Arabia,

(13) Tathleeth General Hospital, Asir, Ministry of Health, Saudi Arabia

Abstract

Background: Nonorganic vision loss (NOVL), also termed functional or psychogenic vision loss, represents visual impairment without sufficient structural or physiological pathology to explain the reported deficit. It poses diagnostic and management challenges due to its heterogeneous presentation and overlap with organic and psychiatric conditions.

Aim: To review the diagnostic frameworks, differential considerations, and evidence-based management strategies for NOVL in ophthalmic practice.

Methods: A comprehensive literature-based synthesis was conducted, integrating ophthalmic, neuro-ophthalmic, and psychosocial perspectives. The review emphasizes systematic evaluation, exclusion of organic disease, and multidisciplinary management principles.

Results: NOVL accounts for a clinically significant proportion of vision loss presentations across age groups, with prevalence estimates ranging from 16% in adults with ocular motor disorders to nearly 50% in pediatric cohorts. Etiology is multifactorial, involving psychogenic mechanisms (conversion disorder), symptom amplification, trauma-related pathways, and sociocultural influences. Diagnostic hallmarks include discordance between subjective complaints and objective findings, preserved automatic visual responses, and physiologically implausible patterns on visual field testing. Management centers on empathetic reassurance, patient education, and psychological referral, with cognitive-behavioral therapy and structured follow-up improving outcomes. Prognosis is generally favorable when NOVL is recognized early and addressed through a biopsychosocial approach.

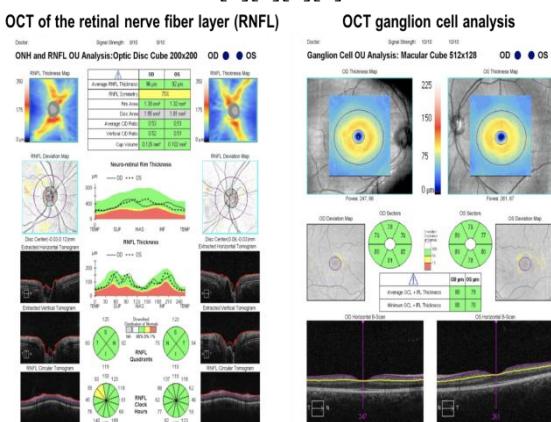
Conclusion: NOVL is a genuine and disabling condition requiring careful exclusion of organic pathology, sensitive communication, and integrated care. Early recognition and multidisciplinary intervention reduce unnecessary investigations, mitigate distress, and support functional recovery.

Keywords: Nonorganic vision loss, functional visual disorder, conversion disorder, psychogenic vision loss, ophthalmology, neuro-ophthalmology, cognitive-behavioral therapy

Introduction

Nonorganic vision loss (NOVL), frequently termed functional, psychogenic, or hysterical vision loss, denotes a distinctive category of visual impairment in which the severity and character of the visual complaint are incongruent with objective

clinical evidence. The defining feature of NOVL is the mismatch between a patient's self-reported symptoms and examination findings, such that the magnitude of functional limitation cannot be fully accounted for by identifiable structural or physiological pathology.^[1] Rather than representing


a single disease entity, NOVL encompasses a heterogeneous spectrum of presentations in which visual dysfunction is expressed in the absence of sufficient organic abnormalities to explain the reported deficit. This conceptualization requires clinicians to approach NOVL not as a diagnosis of exclusion reached hastily, but as a carefully reasoned conclusion grounded in systematic evaluation and a nuanced appreciation of the complexity of symptom generation. A rigorous understanding of NOVL is inseparable from a detailed grasp of the visual pathway and its multiple levels of organization. Visual perception depends on a coordinated network beginning with the optical and sensory apparatus of the eye—principally the cornea, crystalline lens, and retina—followed by the afferent neural conduit through the optic nerves, optic chiasm, and optic tracts. This pathway continues via relay within the lateral geniculate bodies of the thalamus and culminates in cortical processing within the occipital visual cortex.[2] Because dysfunction at any point along this continuum may produce genuine visual symptoms, the clinician's first obligation is to undertake a methodical assessment that interrogates ocular, neurologic, and systemic contributors to vision loss. A comprehensive examination and appropriate ancillary testing are therefore essential to exclude organic etiologies such as retinal disease, optic neuropathies, intracranial pathology, or systemic conditions with ocular manifestations.[3] Only after such causes have been considered and reasonably ruled out can the possibility of NOVL be responsibly entertained.

Importantly, NOVL should not be conflated with deliberate deception. Although the differential diagnosis includes malingering and factitious disorder, many patients with NOVL do not consciously fabricate symptoms and may be unaware that their visual experience is nonorganic in origin.[4] In such cases, the symptom is experienced as authentic and distressing, and the clinical encounter may be marked by anxiety, confusion, or fear of irreversible blindness. The clinical phenomenology of NOVL is variable, with the natural history differing substantially across individuals. Visual complaints may involve diminished acuity, abnormalities of visual fields, disturbances in color vision, or combinations thereof. The pattern may be monocular or binocular, and the onset may be abrupt or gradually progressive, sometimes mimicking the temporal profile of organic eye disease.[3][5] This variability underscores the diagnostic challenge, as NOVL can convincingly resemble conditions ranging from optic neuritis to retinal dystrophy, yet ultimately lacks corroborating objective abnormalities proportionate to the stated impairment. The clinical significance of NOVL extends beyond diagnostic categorization, as the condition can exert a substantial burden on patients' quality of life and functional independence. Even when structural integrity of the

visual system is preserved, the experience of perceived visual disability can restrict daily activities, reduce occupational or academic performance, and contribute to social withdrawal. Such impacts may be magnified by uncertainty regarding causation and by the fear that symptoms herald a serious or progressive neurologic disorder.[6] Consequently, prompt recognition—balanced with thorough exclusion of organic disease—is essential, not only to avoid unnecessary investigations and treatments, but also to initiate supportive interventions that address patient distress and restore function.

Contemporary understanding of NOVL is best framed through a biopsychosocial model, which emphasizes that symptom expression often arises from an interplay of physiological vulnerability, psychological processes, and social context. This approach does not imply that symptoms are trivial or "imagined," but rather acknowledges that visual experience and symptom reporting may be shaped by factors such as stress, trauma, affective disorders, interpersonal dynamics, and culturally mediated illness beliefs. Early identification of NOVL and timely, appropriately framed intervention can improve outcomes, reduce repetitive diagnostic testing, and mitigate the broader strain on healthcare resources associated with recurrent consultations and extensive workups. In some circumstances, NOVL may represent the most visible manifestation of underlying psychological distress, and sensitive inquiry during ophthalmic assessment—including questions regarding suicidal ideation—may be clinically lifesaving.[7] Recognizing this possibility requires clinicians to broaden their focus beyond ocular structures alone, while maintaining professionalism, empathy, and a commitment to patient-centered care. The distinction between NOVL, malingering, and factitious disorder has practical implications for evaluation and management and should be approached with care to avoid stigmatization. When an organic etiology has been excluded, behavioral patterns may offer contextual clues: malingering is often associated with external incentives and may correlate with avoidance of extensive testing once such incentives are threatened or once scrutiny increases, whereas patients with unconsciously mediated NOVL and those with factitious disorder may actively pursue additional investigations, consultations, or diagnostic procedures in a sincere effort to obtain an explanation for their perceived impairment.[8][9] These tendencies are not definitive diagnostic markers and should not replace clinical judgment; however, they can inform a clinician's approach to communication, documentation, and coordination of care. Most critically, the clinician should avoid premature attributions of intentional deception in the absence of compelling evidence, as such assumptions can fracture therapeutic alliance and exacerbate patient distress. Despite its clinical relevance, NOVL

remains underrecognized and comparatively underresearched within ophthalmology, in part because it lies at the intersection of visual science, neurology, psychiatry, and behavioral medicine. This disciplinary overlap can create uncertainty regarding responsibility for diagnosis and follow-up, particularly when ophthalmic findings are normal and the patient's symptoms persist. A structured review of NOVL—its manifestations, evaluation strategies, and management principles—therefore has practical value for clinicians across eye care settings. By equipping healthcare professionals with a coherent framework for recognizing NOVL, excluding organic disease, and engaging with psychosocial dimensions of illness, clinical care can become more effective, more efficient, and more humane for a population of patients whose symptoms are real, disabling, and often misunderstood.[1][3][5][6]

Fig. 1: Nonorganic Vision Loss.

Etiology

The etiology of nonorganic vision loss (NOVL) is best understood as multifactorial, reflecting an interdependent set of physiological, psychological, and social determinants that shape symptom perception, reporting, and functional impairment. Unlike organic visual disorders—where examination and investigations typically reveal structural abnormalities of the eye, optic nerve, retrochiasmal pathways, or visual cortex—NOVL is characterized by visual complaints that arise in the absence of observable pathology sufficient to account for the reported deficit.[1] This absence of a proportional anatomic correlate does not imply that symptoms are fabricated or trivial; rather, it highlights that the mechanisms driving functional impairment may lie in altered sensory processing, attention, and contextual interpretation of bodily sensations, often influenced by psychological states and environmental pressures. Psychogenic contributions occupy a prominent position within contemporary explanatory models of NOVL. In many presentations, symptoms may be conceptualized within the framework of conversion disorder, in which psychological distress is “converted” into somatic manifestations, producing genuine

experiences of sensory disruption without voluntary control. Patients with antecedent or comorbid psychiatric conditions—such as anxiety disorders, depressive disorders, posttraumatic stress disorder, or related affective and stress-spectrum syndromes—may exhibit increased susceptibility to developing functional sensory complaints, including vision loss. In these contexts, the visual disturbance can be understood as an expression of distress that is communicated through bodily symptoms rather than through consciously articulated emotional experience. This mechanism may be particularly salient when psychological distress is intense, chronic, stigmatized, or otherwise difficult for the individual to disclose, resulting in symptom expression through a pathway that is psychologically more permissible or socially legible. A related but distinct phenomenon involves symptom amplification, wherein an individual unconsciously magnifies mild, nonspecific, or intermittent visual sensations into a more severe or persistent complaint. This process may occur when heightened vigilance, catastrophic interpretation, or persistent worry about health shifts attention toward normal perceptual variability and frames it as evidence of significant disease. In NOVL, symptom amplification may develop when minor fluctuations in vision—such as transient blur, fatigue-related strain, or nonspecific ocular discomfort—are interpreted through a lens of heightened concern, leading to exaggerated functional impact and increased symptom reporting.[10] Such amplification is especially common among individuals with health anxiety or those who have recently been informed of an ocular diagnosis, in whom anticipatory fear of blindness or progression may increase monitoring of visual experience and reinforce subjective dysfunction. In this setting, concern about possible vision loss can foster a cycle in which attention intensifies symptoms, symptoms increase fear, and fear further amplifies attention to visual sensations, thereby sustaining the clinical presentation.[11]

Although NOVL most commonly occurs without conscious intent, the differential diagnosis also includes conditions in which visual complaints are produced deliberately. Factitious disorder and malingering represent intentional symptom production, yet they differ in motivation and clinical implications. In factitious disorder, symptoms are consciously generated to adopt the sick role, obtain attention, or satisfy psychological needs related to care-seeking, whereas malingering is driven by external incentives such as avoidance of responsibilities, legal advantage, or access to financial or disability benefits.[12] Importantly, these etiologies should be considered cautiously and only after comprehensive evaluation has excluded plausible organic causes of vision loss, given the ethical risks of mislabeling patients and the potential

harm to the therapeutic relationship.[4] Even when inconsistencies are observed, clinicians must recognize that variability, inconsistency, or disproportionate distress can also occur in unconscious functional disorders and is not, by itself, proof of deception. Trauma-related pathways are also frequently implicated in NOVL. In some cases, a history of trauma or abuse appears temporally or contextually linked to the onset of functional visual symptoms, with the visual complaint functioning as a somatic expression of psychological burden.[13] The association with trauma may be mediated by alterations in stress physiology, attentional networks, and emotional processing, which can shape perception and symptom expression. In pediatric and adolescent populations, the psychosocial context often assumes even greater etiologic significance. School-related pressures, academic expectations, bullying, family conflict, or broader disruptions in the home environment may precipitate or perpetuate NOVL, particularly in individuals who have limited coping resources or difficulty verbalizing distress.[14] In such scenarios, functional visual symptoms may inadvertently serve as a mechanism for communicating unmet needs, seeking safety, or negotiating overwhelming demands, again without conscious fabrication. Social and cultural influences further contribute to NOVL risk and expression. Individuals experiencing significant life stressors, limited social support, or socioeconomic adversity may be more vulnerable to functional symptom development, particularly when healthcare access is fragmented and when stressors are persistent rather than episodic.[13] Cultural beliefs about illness, disability, and acceptable expressions of distress can also shape symptom presentation, influencing whether psychological distress is articulated directly or expressed somatically. Additionally, the healthcare environment itself can affect symptom trajectories, as repeated testing, inconclusive results, and inconsistent messaging may heighten uncertainty and reinforce symptom-focused attention.

From a psychiatric classification perspective, functional vision loss is situated within the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) under "Somatic Symptom and Related Disorders," and is most closely aligned with "Conversion Disorder (Functional Neurological Symptom Disorder)." The DSM-5 conceptualizes conversion disorder as the presence of one or more symptoms affecting voluntary motor or sensory function that, after appropriate medical assessment, are found to be incompatible with recognized neurological or medical conditions.[3] This framework underscores the necessity of careful medical evaluation and supports the view that functional symptoms reflect a disorder of nervous system functioning rather than structural damage. In clinical practice, integrating this diagnostic perspective with a biopsychosocial

formulation allows clinicians to acknowledge the authenticity of patient experience, avoid premature attribution of intentional deception, and guide management toward supportive communication, targeted reassurance, and appropriate psychological or multidisciplinary referral when indicated.[1][3]

Etiology

The etiology of nonorganic vision loss (NOVL) is best understood as multifactorial, reflecting an interdependent set of physiological, psychological, and social determinants that shape symptom perception, reporting, and functional impairment. Unlike organic visual disorders—where examination and investigations typically reveal structural abnormalities of the eye, optic nerve, retrochiasmal pathways, or visual cortex—NOVL is characterized by visual complaints that arise in the absence of observable pathology sufficient to account for the reported deficit.[1] This absence of a proportional anatomic correlate does not imply that symptoms are fabricated or trivial; rather, it highlights that the mechanisms driving functional impairment may lie in altered sensory processing, attention, and contextual interpretation of bodily sensations, often influenced by psychological states and environmental pressures. Psychogenic contributions occupy a prominent position within contemporary explanatory models of NOVL. In many presentations, symptoms may be conceptualized within the framework of conversion disorder, in which psychological distress is "converted" into somatic manifestations, producing genuine experiences of sensory disruption without voluntary control. Patients with antecedent or comorbid psychiatric conditions—such as anxiety disorders, depressive disorders, posttraumatic stress disorder, or related affective and stress-spectrum syndromes—may exhibit increased susceptibility to developing functional sensory complaints, including vision loss. In these contexts, the visual disturbance can be understood as an expression of distress that is communicated through bodily symptoms rather than through consciously articulated emotional experience. This mechanism may be particularly salient when psychological distress is intense, chronic, stigmatized, or otherwise difficult for the individual to disclose, resulting in symptom expression through a pathway that is psychologically more permissible or socially legible.

A related but distinct phenomenon involves symptom amplification, wherein an individual unconsciously magnifies mild, nonspecific, or intermittent visual sensations into a more severe or persistent complaint. This process may occur when heightened vigilance, catastrophic interpretation, or persistent worry about health shifts attention toward normal perceptual variability and frames it as evidence of significant disease. In NOVL, symptom amplification may develop when minor fluctuations in vision—such as transient blur, fatigue-related

strain, or nonspecific ocular discomfort—are interpreted through a lens of heightened concern, leading to exaggerated functional impact and increased symptom reporting.[10] Such amplification is especially common among individuals with health anxiety or those who have recently been informed of an ocular diagnosis, in whom anticipatory fear of blindness or progression may increase monitoring of visual experience and reinforce subjective dysfunction. In this setting, concern about possible vision loss can foster a cycle in which attention intensifies symptoms, symptoms increase fear, and fear further amplifies attention to visual sensations, thereby sustaining the clinical presentation.[11] Although NOVL most commonly occurs without conscious intent, the differential diagnosis also includes conditions in which visual complaints are produced deliberately. Factitious disorder and malingering represent intentional symptom production, yet they differ in motivation and clinical implications. In factitious disorder, symptoms are consciously generated to adopt the sick role, obtain attention, or satisfy psychological needs related to care-seeking, whereas malingering is driven by external incentives such as avoidance of responsibilities, legal advantage, or access to financial or disability benefits.[12] Importantly, these etiologies should be considered cautiously and only after comprehensive evaluation has excluded plausible organic causes of vision loss, given the ethical risks of mislabeling patients and the potential harm to the therapeutic relationship.[4] Even when inconsistencies are observed, clinicians must recognize that variability, inconsistency, or disproportionate distress can also occur in unconscious functional disorders and is not, by itself, proof of deception.

Trauma-related pathways are also frequently implicated in NOVL. In some cases, a history of trauma or abuse appears temporally or contextually linked to the onset of functional visual symptoms, with the visual complaint functioning as a somatic expression of psychological burden.[13] The association with trauma may be mediated by alterations in stress physiology, attentional networks, and emotional processing, which can shape perception and symptom expression. In pediatric and adolescent populations, the psychosocial context often assumes even greater etiologic significance. School-related pressures, academic expectations, bullying, family conflict, or broader disruptions in the home environment may precipitate or perpetuate NOVL, particularly in individuals who have limited coping resources or difficulty verbalizing distress.[14] In such scenarios, functional visual symptoms may inadvertently serve as a mechanism for communicating unmet needs, seeking safety, or negotiating overwhelming demands, again without conscious fabrication. Social and cultural influences

further contribute to NOVL risk and expression. Individuals experiencing significant life stressors, limited social support, or socioeconomic adversity may be more vulnerable to functional symptom development, particularly when healthcare access is fragmented and when stressors are persistent rather than episodic.[13] Cultural beliefs about illness, disability, and acceptable expressions of distress can also shape symptom presentation, influencing whether psychological distress is articulated directly or expressed somatically. Additionally, the healthcare environment itself can affect symptom trajectories, as repeated testing, inconclusive results, and inconsistent messaging may heighten uncertainty and reinforce symptom-focused attention. From a psychiatric classification perspective, functional vision loss is situated within the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) under “Somatic Symptom and Related Disorders,” and is most closely aligned with “Conversion Disorder (Functional Neurological Symptom Disorder).” The DSM-5 conceptualizes conversion disorder as the presence of one or more symptoms affecting voluntary motor or sensory function that, after appropriate medical assessment, are found to be incompatible with recognized neurological or medical conditions.[3] This framework underscores the necessity of careful medical evaluation and supports the view that functional symptoms reflect a disorder of nervous system functioning rather than structural damage. In clinical practice, integrating this diagnostic perspective with a biopsychosocial formulation allows clinicians to acknowledge the authenticity of patient experience, avoid premature attribution of intentional deception, and guide management toward supportive communication, targeted reassurance, and appropriate psychological or multidisciplinary referral when indicated.[1][3]

Epidemiology

The epidemiology of nonorganic vision loss (NOVL) is heterogeneous and strongly influenced by the clinical context in which patients are evaluated, the referral pathway, and the diagnostic criteria applied by investigators. As a result, reported frequencies vary widely across studies and are best interpreted as setting-specific estimates rather than definitive population parameters. In general, NOVL is encountered in both general ophthalmology and subspecialty services, particularly where complex visual complaints prompt detailed neuro-ophthalmic assessment. Variation in prevalence figures also reflects differences in case definition, the threshold for labeling symptoms as functional, and the intensity of evaluation undertaken to exclude organic pathology. Evidence from adult clinical settings illustrates that functional visual symptoms can occur at a clinically meaningful rate even within cohorts defined by apparently “organic” or measurable ocular

motor disturbances. In a randomized trial involving 127 adult patients with convergence disorder, 16% were found to exhibit functional visual symptoms.[6] This finding is noteworthy for two reasons. First, it suggests that functional symptomatology may coexist with measurable ocular conditions, complicating attribution of symptoms to a single mechanism. Second, it highlights that in adults presenting with visual complaints, a substantial minority may report symptoms that exceed or diverge from what can be explained by objective findings alone. Such data reinforce the importance of comprehensive assessment strategies in adult patients, particularly when symptom narratives, disability claims, or reported severity appear disproportionate to examination results.

In pediatric populations, NOVL may be encountered with even greater frequency in specialized services, where “vision loss” presentations often trigger urgent evaluation. A report from a pediatric ophthalmology department in Belgium described that, over the period from 2007 to 2014, approximately half of children presenting with complaints characterized as “vision loss” were ultimately diagnosed with NOVL.[14] The average age at diagnosis was 11 years, and a female predominance was observed, a pattern that aligns with broader clinical impressions that functional sensory symptoms may be more common in preadolescent and adolescent girls. Clinical manifestations in this cohort were diverse and included blurred vision, diplopia, nystagmus, visual field deficits, and even complete blindness, underscoring the wide phenotypic range through which NOVL may present and the extent to which it can mimic severe organic disease.[14] Importantly, the same report noted that 88% of affected children recovered within two weeks, suggesting that prognosis is often favorable when NOVL is recognized and managed appropriately. Nevertheless, recurrence occurred in 12.9% of cases, indicating that a subset of patients may experience symptom re-emergence and may benefit from longer-term follow-up and attention to underlying psychosocial drivers.[14] The finding that 25% of children required child psychiatric treatment further underscores the frequent comorbidity with psychological distress and the clinical value of integrated pathways that link ophthalmology with mental health services.[14]

Across age groups, NOVL has been described in both males and females; however, multiple studies suggest a modestly higher prevalence among women and adolescents.[13][14] This apparent demographic skew likely reflects a combination of biological, developmental, and psychosocial influences, including patterns of stress exposure, help-seeking behavior, and the developmental vulnerability of adolescence to functional symptom expression. Despite these

recurring observations, the true worldwide incidence and prevalence of NOVL remain poorly defined, largely because of inconsistent reporting, variability in terminology, and differences in diagnostic rigor between settings. The absence of standardized epidemiologic surveillance further limits the ability to generate reliable population-level estimates. Nonetheless, even without precise global rates, NOVL remains a clinically significant contributor to visual impairment presentations, particularly because of its psychosocial ramifications and its potential to drive extensive diagnostic workups, repeated consultations, and specialist referrals.[13][14] Accordingly, understanding its epidemiologic patterns is important not only for clinical recognition but also for planning efficient care pathways that reduce unnecessary investigations while ensuring that patients receive appropriate reassurance, functional assessment, and psychological support when indicated.

Pathophysiology

Nonorganic vision loss (NOVL) is most appropriately conceptualized as a disorder of visual perception and symptom expression rather than a disease defined by structural injury or demonstrable physiological failure within the ocular apparatus or the afferent visual pathway. In contrast to organic etiologies, in which retinal, optic nerve, or central visual pathway abnormalities can be identified and correlated with the clinical phenotype, NOVL is characterized by a discrepancy between subjective visual experience and objective findings. The precise pathogenic mechanisms remain incompletely elucidated, but prevailing models suggest that NOVL arises through a complex interplay of psychological influences and neurophysiological processes that shape how visual information is attended to, interpreted, and consciously experienced.[15] Importantly, the absence of a conventional structural lesion does not negate the authenticity of the symptom; the condition is experienced as real and often disabling by the patient, and its clinical impact is genuine even when routine testing fails to demonstrate proportional organic dysfunction.[3] A substantial body of clinical observation links NOVL with psychological states such as anxiety, depression, and heightened stress reactivity. In this framework, visual symptoms may function as an unconscious coping mechanism through which psychological distress, conflict, or trauma is expressed somatically.[16] This conceptualization aligns with the broader notion of conversion disorder, in which stress-related internal experiences are “converted” into neurological-type symptoms without deliberate intent.[17] Such an interpretation emphasizes that symptom production is not necessarily volitional and that patients may not be aware of the psychological processes contributing to their visual complaint. The symptom can, therefore, serve both as an expression of distress and as a means—often unintentional—of

communicating need, eliciting care, or temporarily escaping overwhelming demands. These dynamics are especially plausible when distress is chronic, stigmatized, or difficult to articulate, such that a physical symptom becomes the predominant mode of presentation.

At the neurophysiological level, proposed mechanisms focus on altered processing of visual input and disruptions in the integration between sensory signals and conscious perception. One hypothesis is that visual stimuli are processed at early or intermediate stages of the visual system but become functionally “decoupled” from conscious awareness due to abnormalities in attentional allocation, salience attribution, or higher-order interpretive networks.[18] Such models are consistent with the observation that patients may demonstrate intact reflexive or automatic visual behaviors while reporting profound conscious visual loss. Early adverse experiences may further shape these pathways by altering stress regulation, attentional biases, and threat perception, thereby influencing how sensory information is interpreted and whether it is experienced as reliable or distressing. Within this context, vision loss may emerge as a manifestation of disrupted sensory interpretation rather than as evidence of damaged sensory organs.[14] Clinically, the pathophysiology is inferred from the pattern of discordance between reported symptoms and objective performance. Some individuals demonstrate normal or near-normal visual acuity on formal testing yet describe phenomena such as “tunnel vision,” photophobia, or other subjective disturbances that suggest impaired visual function.[19] Conversely, some patients report dramatic loss of vision, yet objective assessments of retinal and visual pathway integrity—such as electroretinography or visual evoked potentials—remain within normal limits, indicating preserved physiological responsiveness despite the reported deficit.[20][21] These findings do not, by themselves, explain the precise mechanism but support the notion that the disturbance lies in symptom perception, attention, and conscious interpretation rather than in the absence of afferent signal generation. The variability in clinical presentations likewise suggests that NOVL is not driven by a single uniform mechanism; instead, multiple interacting pathways may converge on a final common outcome of perceived visual dysfunction.

A subset of cases is attributable to malingering, in which the presentation of visual loss is consciously produced. In such instances, the “pathophysiology” is not neurobiological in the traditional sense but rather rooted in intentional deception, with motivations that may include financial gain, avoidance of responsibilities, legal advantage, or attention-seeking.[22] Although malingering must be considered within the

differential diagnosis of unexplained vision loss, it should be approached cautiously and only after a careful assessment excludes plausible organic causes and evaluates the broader clinical context. Premature attribution of deception risks harming the therapeutic relationship and may overlook functional disorders that are involuntary. In children, developmental factors can meaningfully shape the emergence and maintenance of NOVL-like presentations. Children are often more suggestible and may have limited frameworks for interpreting bodily sensations and health states. As a result, visual experiences such as intermittent blur, eye strain, or transient discomfort can be misunderstood, magnified, or expressed dramatically, producing apparent discordance between self-reported impairment and objective measures.[23] Educational transitions, including the process of learning to read, may increase awareness of visual performance and provoke anxiety about perceived inadequacy, while school-related stressors can amplify symptom vigilance and reinforce functional complaints. In such settings, psychogenic visual symptoms may arise as a response to fear, confusion, or pressure, and may be unintentionally reinforced by heightened attention from caregivers or educators. Taken together, these considerations support a multifactorial pathophysiologic model in which psychological distress, attentional mechanisms, and sensory interpretation interact to produce authentic experiences of visual dysfunction in the absence of explanatory structural disease.[14][15][16][17][18][23]

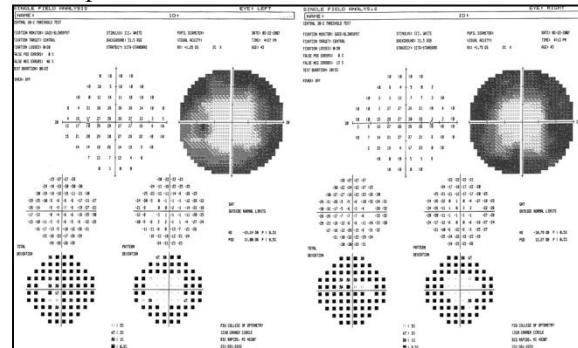
History and Physical

The clinical evaluation of nonorganic vision loss (NOVL) begins with the recognition that its presentation is highly variable and that the patient’s narrative may contain internal inconsistencies or fluctuations in symptom severity that do not align with known anatomical or physiological principles. Because NOVL is defined by a discrepancy between reported disability and objective findings, the history and physical examination serve a dual purpose: they must be sufficiently comprehensive to exclude organic disease while also eliciting contextual information that may explain why visual symptoms have emerged, persisted, or intensified. In practice, the history of present illness in NOVL is often marked by changes in the described visual deficit across time or situations, and these inconsistencies can be diagnostically informative when interpreted cautiously and without accusatory assumptions. A careful history should begin by documenting the onset, duration, and trajectory of the visual complaint, with explicit attention to whether the symptoms appeared suddenly or evolved gradually, and whether the perceived impairment is stable, progressive, intermittent, or episodic. Clinicians should clarify the specific nature of the complaint, including reports of blindness, blurred vision,

diplopia, photophobia, or apparent ocular manifestations such as ptosis or blepharospasm.[17] Sudden or otherwise inexplicable changes in visual acuity or visual fields merit detailed characterization, including the circumstances surrounding onset, the time course of recovery if intermittent, and whether symptoms are influenced by fatigue, stress, lighting, attention, or environmental context. Questions regarding exacerbating and relieving factors are essential, as are inquiries into associated symptoms that may suggest organic etiologies, such as headache, eye pain, neurologic symptoms, or systemic complaints. The presence or absence of these accompanying features helps structure the differential diagnosis, guiding targeted evaluation while maintaining an awareness that symptom clustering can also occur in functional disorders.

A common feature in NOVL is that the described visual disturbance does not conform to expected patterns of pathology. Patients may report complete monocular blindness yet demonstrate behavior inconsistent with profound impairment, such as navigating obstacles without hesitation or accurately orienting to stimuli in the allegedly blind field. Others may describe an abrupt and severe decline in vision while ophthalmoscopy and other components of the ocular examination remain normal. In addition, the phenomenology may include descriptions that are atypical for organic visual disease, including episodes characterized as “grey-out” or “white-out,” which do not map neatly onto retinal, optic nerve, or cortical syndromes.[17] Such descriptions are not diagnostic in isolation, but they can raise suspicion for NOVL when they are accompanied by normal objective findings and when the reported symptoms fluctuate in ways that are difficult to reconcile with a consistent anatomical lesion. Past ocular and medical history should be obtained systematically and documented carefully, as genuine ocular disease may coexist with functional symptoms or may have served as a trigger for heightened visual concern. Clinicians should review prior diagnoses, surgeries, and trauma, and should evaluate systemic conditions known to affect vision, including diabetes and neurological disorders. A detailed psychosocial history is often indispensable in suspected NOVL, because contextual stressors may illuminate why symptoms are occurring and may help direct supportive management. Information about occupation, hobbies, home environment, and recent life events can be particularly revealing, especially when symptom onset temporally follows academic pressures, interpersonal conflict, bereavement, financial stress, or other destabilizing experiences.[13] At the same time, the clinician should consider potential external incentives associated with visual loss, including litigation, compensation claims, or disability benefits, while maintaining a neutral, nonjudgmental stance. Documentation of psychiatric history is also relevant,

including anxiety, depression, trauma-related symptoms, and prior functional or somatic complaints, as these may increase vulnerability to functional sensory presentations. Importantly, these factors should be viewed as potential contributors rather than definitive explanations, and clinicians should avoid premature conclusions without adequate medical assessment.


Medication and substance review is an additional cornerstone of evaluation, since numerous agents can induce visual changes through ocular surface effects, refractive shifts, retinal toxicity, optic neuropathy, or central nervous system mechanisms. A thorough review should include prescription medications, over-the-counter preparations, herbal products, supplements, and recreational substances.[24][25] This step not only helps identify reversible organic causes but also strengthens the credibility of the diagnostic process and reassures patients that their symptoms are being taken seriously and evaluated comprehensively. The physical examination in suspected NOVL must be meticulous and complete. A standard ophthalmic evaluation should include measurement of visual acuity, refraction, color vision assessment, visual field testing, ocular motility examination, pupillary evaluation (including assessment for relative afferent pupillary defect), and stereopsis testing when appropriate. Examination of the anterior segment with slit lamp, evaluation of the posterior segment with fundoscopy, and measurement of intraocular pressure are also required. When clinical suspicion warrants, additional neuro-ophthalmic assessment may be necessary to evaluate optic nerve function and to identify signs suggestive of neurologic disease. In many cases of NOVL, the physical examination is essentially normal. A hallmark observation is that performance on tests that rely less on subjective reporting may be better than expected given the stated severity of vision loss. For example, a patient may claim an inability to see the visual acuity chart yet accurately identify objects, gestures, or environmental features, or move confidently around the examination room. Pupillary responses are typically normal, ocular motility is full and symmetric, and both slit-lamp and ophthalmoscopic examinations often fail to reveal structural abnormalities. The convergence of a normal objective examination with symptom narratives that fluctuate or defy anatomical plausibility supports consideration of NOVL, provided that the clinician has adequately excluded organic disease and remains attentive to the possibility of coexisting pathology. Ultimately, the history and physical examination in NOVL must balance diagnostic rigor with empathic engagement, ensuring that patients feel heard and supported while the clinician systematically evaluates the full range of potential explanations for the reported visual impairment.[13][17][24][25]

Evaluation

The evaluation of nonorganic vision loss (NOVL) is anchored in meticulous clinical history-taking and a comprehensive ophthalmic examination, because NOVL is fundamentally defined by a discordance between reported visual disability and objective evidence of structural or physiological disease. In many cases, a carefully performed bedside assessment is sufficient to raise strong suspicion for NOVL while simultaneously reducing the likelihood that clinically significant organic pathology has been overlooked. Nevertheless, additional objective testing is sometimes warranted to corroborate the impression, to exclude coexisting organic conditions, and to provide a defensible diagnostic foundation—particularly when symptoms are severe, persist over time, or carry medicolegal implications. The clinician's primary task is not to “prove” deception, but to demonstrate internal inconsistency across subjective reports, functional behavior, and physiologic signs, while ensuring that the evaluation remains supportive and nonaccusatory. This stance is critical because many individuals with NOVL are not intentionally generating symptoms and may be experiencing substantial psychological distress that requires appropriate recognition and care. A central component of the assessment is the use of examination techniques that leverage automatic or unconscious visual responses—responses that are difficult to voluntarily suppress and therefore can reveal preserved visual function even in patients who describe profound impairment. These techniques include careful observation of patient behavior when attention is diverted or when the patient is unaware of being assessed; the optokinetic drum or strip; confrontation-based visual field examination; variable visual acuity strategies that incorporate misdirection; testing of stereopsis and binocular function; targeted evaluation of color perception; and the mirror test. The interpretive strength of these maneuvers lies in their convergence: while any single test may be limited by attention, comprehension, cooperation, or coexisting subtle pathology, a coherent pattern of preserved automatic responses alongside inconsistent subjective reporting supports the diagnosis of NOVL. At all times, the clinician should maintain a therapeutic approach that validates the patient's experience while explaining that the evaluation is designed to understand how vision is functioning across different tasks and conditions.

Behavioral observation can provide some of the most compelling functional evidence. When patients believe they are unobserved or when attention is directed elsewhere, their navigation within the room, ability to orient toward people or objects, avoidance of obstacles, or engagement with visually guided tasks may suggest preserved vision. A patient who reports complete blindness yet walks confidently without tactile exploration, reaches

accurately for objects, or reacts appropriately to visual cues provides behavioral data that is difficult to reconcile with total vision loss. Such observations should be documented carefully and interpreted in context, recognizing that environmental familiarity and compensatory strategies can sometimes mask true impairment.

Fig. 2: Electrophysiology of nonorganic vision loss.

Nonetheless, when such behavior stands in stark contrast to the stated complaint, it strengthens suspicion for a functional component. The optokinetic drum or strip is a classic tool that exploits the involuntary nature of optokinetic nystagmus—rhythmic eye movements elicited by viewing repetitive moving patterns such as alternating black-and-white stripes.[26] Because optokinetic responses are largely automatic and difficult to consciously inhibit, their presence in a patient claiming profound vision loss supports the inference that at least some motion perception and visual pathway integrity are preserved. During the test, the patient is asked to observe a rotating drum or moving strip; induction of optokinetic nystagmus indicates that the visual system is detecting movement, even if the patient denies being able to see it.[27] While not a substitute for a full neuro-ophthalmic assessment, this maneuver can be particularly useful as part of a battery of tests demonstrating preserved unconscious visual function.

Confrontational visual field testing remains a practical bedside method to detect patterns that are inconsistent with organic disease. In this examination, the clinician compares the patient's visual field to their own by presenting stimuli at various eccentricities and asking the patient to report detection. Patients with NOVL may demonstrate marked inconsistency across repetitions or may produce a tubular, “gun barrel,” or “tunnel” field pattern.[28] The defining feature of a tubular field is that the reported field border remains fixed at a constant angular diameter regardless of testing distance; in genuine constricted fields due to organic processes, the field should expand as the target is moved farther away because the visual angle subtended by the stimulus changes with distance.[29] Thus, a field that remains the same size at different testing distances is physiologically implausible and is strongly suggestive of a nonorganic etiology when

corroborated by other findings. Variable visual acuity testing provides another opportunity to identify incongruence by manipulating task demands and expectation. Approaches that incorporate misdirection can be diagnostically informative, not as "tricks," but as structured methods to assess performance when the patient is less constrained by the belief that they should fail. Examples include occluding one eye and presenting optotypes in unexpected orientations—such as upside down or sideways—where patients may read better than predicted if their visual function is intact and they do not recognize that the task is intended to test the claimed limitation.[8][30] The interpretive value again lies in consistency: repeated demonstrations of better-than-expected acuity across varying contexts, alongside a normal objective examination, support a functional component. Assessment of stereopsis can be particularly informative in cases of reported monocular blindness. Stereopsis reflects the brain's ability to integrate slightly disparate retinal images from both eyes to produce depth perception and three-dimensional awareness.[31] When a stereopsis test requires binocular input and a patient who reports complete loss of vision in one eye performs successfully, this indicates that both eyes are contributing functional information. While stereopsis can be limited by strabismus, amblyopia, or anisometropia, a normal stereopsis result in the setting of claimed monocular blindness is difficult to reconcile with true absence of vision in the affected eye and therefore supports NOVL when aligned with other findings.

Color testing can also aid evaluation, particularly through the red desaturation test. In organic optic nerve disease or advanced glaucomatous damage, the affected eye often perceives red stimuli as less saturated or dimmer relative to the fellow eye.[32][33] In NOVL, where an organic basis is lacking, patients typically report equal red brightness or saturation between eyes, even when claiming unilateral loss.[33] The rationale is that color perception, especially red perception, often remains intact until relatively late in many organic ocular conditions; therefore, inconsistent or physiologically implausible responses may suggest a nonorganic etiology.[33] Ishihara plates may be used for more formal assessment, but red desaturation is a rapid method that requires minimal equipment and is best interpreted as part of a broader evaluation rather than a standalone discriminator.[34] The mirror test represents a simple technique intended to assess claimed monocular blindness by reflecting an optotype or target into the allegedly blind eye. By positioning the mirror so that the image is presented in a way that favors input from the eye reported as nonfunctional, the clinician may identify unexpected recognition of the target, suggesting preserved vision. As with other methods, the clinical weight of this test depends on careful execution and integration with the

overall examination, including pupillary responses, ocular alignment, and observed behavior. Ancillary testing is not diagnostic of NOVL per se, but it may be essential to exclude organic disease in selected cases. There are no laboratory investigations that establish NOVL; however, targeted tests may be appropriate when systemic contributors are suspected, such as complete blood count, thyroid function testing, or autoimmune screening, chosen according to the clinical context rather than performed indiscriminately. Neuroimaging with magnetic resonance imaging or computed tomography may be indicated when symptoms suggest neurologic pathology, when examination findings are inconsistent in a way that cannot be confidently explained, or when red flags prompt concern for intracranial disease. In patients with NOVL, such imaging commonly reveals no explanatory abnormalities, but its value lies in excluding serious conditions that might otherwise be missed.

Optical coherence tomography (OCT) can provide structural corroboration by demonstrating normal retinal layers and optic nerve head anatomy despite severe reported vision loss, thereby strengthening the inference that there is no anatomic substrate proportional to the complaint.[35] Similarly, electrodiagnostic testing may be employed when retinal or optic nerve dysfunction is suspected. Electrotoretinography can help assess retinal function, and visual evoked potentials can evaluate the integrity of the visual pathway from retina to occipital cortex; in NOVL, these studies are typically normal and therefore support the absence of significant organic dysfunction.[20][21] These tests are particularly useful when the clinical picture is complex, when subtle disease cannot be excluded clinically, or when objective confirmation is required for documentation. Finally, psychological evaluation is often a critical component of comprehensive care given the strong association between NOVL and psychological contributors such as anxiety, depression, trauma-related distress, or maladaptive stress responses. Mental health professionals can identify relevant psychosocial stressors and diagnose treatable psychiatric conditions that may be sustaining symptoms, thereby facilitating interventions that address root contributors rather than repeatedly pursuing purely biomedical investigations.[36] Integrating psychological assessment does not imply that symptoms are fabricated; rather, it acknowledges that functional sensory symptoms can reflect genuine distress-mediated alterations in perception and attention. When coordinated thoughtfully within an interprofessional framework, this approach can improve outcomes, reduce unnecessary testing, and support patients in achieving meaningful functional recovery.[15][36]

Treatment / Management

The management of nonorganic vision loss (NOVL) is fundamentally centered on restoring function while maintaining diagnostic integrity, minimizing iatrogenic harm, and addressing the psychosocial context in which symptoms arise. Effective care requires an approach that balances reassurance with appropriate therapeutic referral and longitudinal follow-up, recognizing that NOVL is often sustained by complex interactions among stress, attention, symptom interpretation, and coping mechanisms. A cornerstone of successful management is the quality of the physician–patient relationship. Because patients frequently experience their visual symptoms as alarming and disabling, they may present with heightened anxiety and an urgent desire for definitive answers. Establishing trust is therefore essential, and clinicians must communicate with empathy, patience, and consistency. In many cases, treatment is not a single encounter but a process that unfolds over time, particularly when symptoms are entrenched or when underlying psychosocial stressors remain active. It is also common for patients with NOVL to seek multiple opinions, especially if they feel their symptoms have been dismissed or if prior explanations have been perceived as invalidating. For this reason, careful documentation, coherent messaging, and a nonconfrontational tone are critical to preventing escalation of distress and to reducing repeated cycles of investigation. Surgical or invasive intervention is generally not indicated for NOVL, since there is no structural lesion to correct. Procedures should be avoided unless a coexisting organic pathology has been clearly identified and is judged to warrant intervention based on standard indications. This principle is important both for patient safety and for avoiding reinforcement of illness beliefs through unnecessary medicalization. When coexisting ocular disease is present, clinicians must communicate clearly about what findings are clinically meaningful and what aspects of the patient’s reported impairment remain disproportionate to those findings, thereby preventing the misattribution of functional symptoms solely to minor or incidental abnormalities.

Reassurance and patient education represent the primary therapeutic modalities in NOVL and are frequently the most challenging elements of management. Reassurance must be delivered in a manner that validates the patient’s lived experience while also providing a clear explanation of the clinical conclusion. A productive framing emphasizes that the ocular examination and, where applicable, objective testing indicate that the eyes and visual pathways are functioning normally and that no organic disease has been identified to explain the severity of the reported vision loss. At the same time, it is essential to affirm that the symptoms are real to the patient and that functional visual disturbances can occur even in the absence of structural damage. This

distinction helps prevent the patient from feeling accused of fabrication and reduces the likelihood of defensive responses or disengagement from care. Education may include a discussion of how stress, anxiety, trauma, or psychological burden can influence perception and symptom intensity, and how the brain’s processing of sensory information can be disrupted without permanent injury.[37] When delivered skillfully, such explanations can reduce fear, shift attention away from catastrophic interpretations, and create openness to supportive interventions. The clinician’s tone should be collaborative and forward-looking, focusing on recovery and functional improvement rather than on proving that symptoms are “not real.” For many patients, referral to mental and behavioral health professionals constitutes an important component of comprehensive care. Given the well-established association between NOVL and psychological stressors, anxiety, depression, and trauma-related experiences, psychological evaluation can identify treatable contributors that may be sustaining symptoms. Referral should be presented not as a dismissal but as an evidence-informed extension of care, analogous to involving subspecialists for complex conditions. Cognitive-behavioral therapy has been described as potentially beneficial, particularly insofar as it targets maladaptive beliefs, catastrophic thinking, avoidance behaviors, and heightened symptom monitoring that can perpetuate functional impairment.[38] Psychologists and psychiatrists can also help patients develop coping strategies, address comorbid psychiatric diagnoses, and manage psychosocial stressors that may be precipitating or reinforcing visual complaints. In some cases, pharmacotherapy directed at comorbid anxiety or depressive disorders may also be appropriate under psychiatric supervision, with the goal of reducing symptom burden and improving overall functioning.

Continuity of care is critical because NOVL often improves gradually and may fluctuate in response to stress, life events, or changes in support systems. Patients benefit from structured follow-up that communicates ongoing engagement, reinforces the diagnostic formulation, and monitors for the emergence of any organic pathology that may have been occult at initial presentation. Frequent monitoring can also reduce the patient’s perceived need to seek repeated external opinions, which may otherwise lead to fragmented care and repeated investigations. The timing of follow-up should be individualized based on symptom severity, functional impact, and the level of patient distress, with the understanding that reassessment provides an opportunity to reinforce education, evaluate adherence to psychological interventions, and adjust the care plan as needed.[38] Over time, consistent messaging across encounters and across clinicians

helps consolidate the patient's understanding, reduces uncertainty, and supports rehabilitation of visual confidence. Ultimately, management is most effective when it combines empathic reassurance, clear education, appropriate mental health referral, and longitudinal support aimed at restoring function and improving quality of life.[37][38]

Differential Diagnosis

Nonorganic vision loss (NOVL) is, by definition, characterized by visual complaints that cannot be adequately explained by demonstrable structural disease of the eye or by identifiable pathology along the afferent visual pathway. This definitional feature, however, should never be used as a rationale for prematurely labeling symptoms as functional. A diagnosis of NOVL is clinically legitimate only after a systematic evaluation has excluded organic causes of vision disturbance, including those that may be subtle at onset, intermittent, retrobulbar, or otherwise difficult to detect on routine examination. The differential diagnosis therefore requires the clinician to maintain two parallel commitments: first, to identify potentially treatable or time-sensitive organic conditions that may present with minimal early signs; and second, to recognize, once organic explanations have been reasonably excluded, that functional disorders and related psychiatric or behavioral phenomena can produce genuine disability and warrant appropriate management. A wide array of commonly encountered ocular diseases can produce changes in vision that, in early or atypical forms, may appear disproportionate to obvious clinical findings. Cataract, glaucoma, age-related macular degeneration, retinal detachment, and optic neuritis are among the most frequent organic causes of vision loss and visual disturbance. In established disease, slit-lamp examination, funduscopy, intraocular pressure assessment, perimetry, optical coherence tomography, or ancillary testing usually reveal abnormalities that align with the patient's complaints. Nevertheless, early or mild disease can present symptoms that are subjectively severe yet accompanied by subtle examination findings, particularly when the pathology affects contrast sensitivity, glare disability, or higher-order visual processing rather than central acuity alone. Consequently, clinicians must be cautious not to dismiss symptoms solely because the initial examination appears "normal," and should instead consider whether specialized testing is necessary to disclose early organic pathology.

Some organic retinal disorders illustrate this diagnostic pitfall particularly well. Stargardt disease, a hereditary juvenile macular dystrophy, is often presented during childhood or adolescence with progressive central vision loss. While ophthalmoscopy may reveal characteristic yellow-white flecks at the level of the retinal pigment epithelium, these findings can be absent or

inconspicuous early in the disease course.[39] In such cases, diagnosis may depend on fluorescein angiography, which can demonstrate the classic "dark choroid" or "silent choroid," often accompanied by additional features such as perifoveal hyperfluorescence.[40] These examples underscore that the absence of striking fundoscopic findings does not exclude retinal dystrophy, and that reliance on advanced imaging is sometimes essential to avoid misclassifying a patient's complaint as functional. Neuro-ophthalmic disorders similarly can present with subtle or initially occult signs. Optic neuritis and ischemic optic neuropathy may manifest early with minimal disc changes or may be retrobulbar, such that the optic nerve head appears normal despite significant symptoms.[41][42] Retinitis pigmentosa can also be difficult to recognize in early stages, before classic pigmentary changes emerge and while night vision complaints may be vague.[43] Even glaucoma may masquerade as NOVL when intraocular pressure is within the normal range, as in normal-tension glaucoma, where optic nerve damage and visual field loss occur without elevated pressure and may be missed if optic nerve evaluation and perimetry are not carefully pursued.[44] These conditions demonstrate why the "normal exam" in suspected NOVL must be interpreted with caution and why careful optic nerve assessment, perimetry, OCT imaging, and—when indicated—electrophysiology or neuroimaging may be necessary to confidently exclude organic disease.

Beyond these common disorders, several organic conditions are particularly prone to misdiagnosis as functional vision loss because their early clinical signs are minimal, their symptoms can be atypical, or their examination findings may not match the patient's subjective experience. Big blind spot syndrome, also called enlarged blind spot syndrome, is characterized by idiopathic expansion of the physiological blind spot and is often associated with photopsias, scotomas, and visual field abnormalities. Because the optic nerve head typically appears normal, clinicians may incorrectly infer a functional etiology if perimetric patterns are not appreciated or if symptoms are dismissed.[45] The pathophysiology remains incompletely understood, and management often involves monitoring for the evolution of related disorders such as multiple evanescent white dot syndrome (MEWDS) or acute idiopathic blind spot enlargement (AIBSE).[46][47] In addition, big blind spot syndrome has been described as a possible paraneoplastic phenomenon, which further elevates the importance of accurate recognition and appropriate systemic evaluation when suggested by the clinical context.[48] Acute zonal occult outer retinopathy (AZOOR) represents another high-risk diagnostic trap. This condition tends to affect young, myopic women and presents with acute photopsia and expanding scotomas. Fundus examination may initially appear normal, yet

electrophysiologic testing commonly demonstrates substantial abnormalities. Over time, atrophic changes in the retinal pigment epithelium may become evident, and visual field defects often stabilize but do not significantly improve.[49] AZOOR is therefore a quintessential example of retinal dysfunction that can appear “invisible” on early examination, making electrodiagnostic testing and careful longitudinal assessment crucial in differentiating it from NOVL.

Central nervous system disease can also be mistaken for functional loss, particularly when visual field defects are misinterpreted by patient or clinician. Bilateral retrochiasmal lesions—such as occipital strokes or tumors—may cause homonymous field defects that, if not mapped accurately, can be misconstrued as inconsistent or nonanatomical. An important diagnostic clue is the congruity of the visual field defect, which tends to increase with more posterior lesions.[50][51] Because these disorders can have serious implications and may require urgent intervention, neuroimaging is commonly recommended and often essential when retrochiasmal disease is suspected.[52] Similarly, chiasmal lesions such as pituitary adenomas or craniopharyngiomas may produce subtle bitemporal hemianopsia even before optic atrophy develops, and these defects may be overlooked unless formal perimetry is performed. When chiasmal disease is possible, detailed field testing and neuroimaging are mandatory to avoid missing a compressive lesion.[53] Inherited retinal dystrophies further expand the differential and can resemble functional complaints, especially when early symptoms are nonspecific. Cone–rod dystrophy comprises a group of hereditary disorders in which progressive photoreceptor degeneration causes reduced central vision, photophobia, color vision impairment, and eventual peripheral field loss.[54] Because early examination may be nondiagnostic, OCT, fundus autofluorescence, and electroretinography may be required to confirm the diagnosis. Likewise, retinitis pigmentosa sine pigmento represents a variant in which classic bone spicule pigmentation is absent early, yet patients experience night blindness and peripheral field loss; an electroretinogram is frequently required to establish retinal dysfunction before ophthalmoscopic signs emerge.[60] Leber hereditary optic neuropathy (LHON) is another disorder that may initially present with substantial central vision loss while the optic nerve appears relatively normal; diagnosis requires genetic testing and is especially important because the typical demographic profile and subacute course can be mistaken for functional symptoms if the optic nerve looks deceptively unremarkable.[57] Retrobulbar optic neuropathy, often associated with demyelinating disease such as multiple sclerosis, similarly may produce rapid visual decline, pain with eye movement, and an afferent pupillary defect while

the optic disc remains normal, requiring a neuro-ophthalmic evaluation and, often, neuroimaging to confirm the underlying etiology.[61]

Several anterior segment and refractive conditions can also create symptoms that appear disproportionate to routine findings. Early keratoconus and irregular astigmatism can cause distortion, ghosting, and fluctuating acuity; in early stages, spectacle-corrected acuity may remain near normal, yet patients report disabling visual quality issues, sometimes improving with rigid contact lenses.[55] Early posterior subcapsular cataracts can cause disproportionate glare and reduced acuity in bright conditions, and the opacity may be subtle and easily missed without careful slit-lamp technique; brightness acuity testing can help identify glare disability attributable to these cataracts and is particularly valuable when symptoms are prominent but lens changes appear mild.[56] Macular disorders such as subtle central serous chorioretinopathy, macular edema, and epiretinal membrane may also distort central vision with relatively modest ophthalmoscopic changes; OCT may be required to confirm the diagnosis and to correlate symptoms with microstructural macular alteration.[58] Paraneoplastic retinopathies, including cancer-associated and melanoma-associated retinopathy, represent another critical organic category, often presenting with rapid, painless vision loss due to retinal injury mediated by autoantibodies associated with systemic malignancy.[59] Because these conditions can progress quickly and may serve as an early clue to occult cancer, they must be considered when clinical features and testing suggest diffuse retinal dysfunction. Not all conditions in the differential are strictly ocular; episodic neurologic phenomena can produce transient visual symptoms that mimic NOVL. Migraine, for example, frequently involves visual disturbances during attacks, often described as transient, evolving, and self-limited, and commonly accompanied by headache, nausea, photophobia, or phonophobia, with variable duration across patients.[62] When migraine phenomena are not recognized, patients may present with concerning descriptions of scotomas, blur, or transient blindness, prompting evaluation for functional loss. Careful temporal characterization, identification of associated migraineous features, and appropriate neurological assessment help distinguish migraine-related visual symptoms from NOVL and from structural neuro-ophthalmic disease.

The differential diagnosis must also include psychiatric and behavioral conditions that overlap conceptually with NOVL. Functional neurological disorder, historically termed conversion disorder, is characterized by neurological symptoms—including sensory loss—without a recognized organic basis. The symptoms are not intentionally produced and can result in significant distress and impairment in social

and occupational functioning.[63] Somatic symptom disorder involves excessive preoccupation with physical symptoms and persistent health anxiety, where the central issue is the disproportionate concern and behavioral response rather than the presence or absence of a medical condition; vision loss complaints may occur within this broader symptom-focused pattern.[64] These conditions may coexist with or provide an explanatory framework for functional visual symptoms, and they often require coordinated management that includes psychological assessment and intervention. Finally, malingering must be addressed explicitly because it can present with visual complaints and, by convention, is often grouped under the umbrella of nonorganic visual loss when the symptom presentation is not explained by organic disease. Malingering refers to the intentional production or gross exaggeration of symptoms motivated by external incentives such as avoiding work, evading legal consequences, obtaining medication, or securing financial or disability benefits.[12] Unlike conversion disorder and many cases of functional symptoms, malingering is fully conscious and goal-directed. Recognizing malingering has practical importance because it can prevent unnecessary investigations and interventions; however, it must be approached with caution to avoid mislabeling patients whose symptoms are unconsciously mediated or whose organic disease is subtle. Clinically, suspicion may arise when the history is inconsistent, cooperation is selective, and the presentation is tightly coupled to external incentives, but a definitive determination often requires careful longitudinal observation, objective testing, and, in some contexts, medicolegal evaluation. Importantly, even when malingering is suspected, the clinician's immediate responsibility remains the same: to exclude significant organic pathology, to document findings precisely, and to manage the clinical encounter in a professional, nonconfrontational manner that maintains patient safety while safeguarding healthcare resources. In sum, the differential diagnosis of NOVL is expansive and demands a structured, evidence-informed approach. Many organic ocular, retinal, optic nerve, chiasmal, and retrochiasmal disorders can initially present with minimal clinical signs and may be misinterpreted as functional without appropriate specialized testing [53][54][55][56][57][58][59][60][61][62]. At the same time, functional neurological disorder, somatic symptom disorder, and malingering represent nonorganic explanations with distinct mechanisms and implications for management.[12][63][64] The clinician's task is therefore to integrate detailed history, careful examination, targeted ancillary testing, and thoughtful psychosocial assessment to ensure that NOVL is diagnosed accurately and managed in a way that is both clinically rigorous and therapeutically constructive.

Prognosis

The prognosis of nonorganic vision loss (NOVL) is inherently variable and is best predicted by the underlying driver of symptom production, the duration of symptoms before recognition, the clarity and consistency of diagnostic communication, and the degree to which management addresses contributing psychosocial factors. In many patients, outcomes are favorable when NOVL is identified accurately and managed with a structured, patient-centered approach that combines reassurance, appropriate referral, and longitudinal follow-up. With proper identification and targeted management of the precipitating or perpetuating factors, most individuals experience marked improvement and, in a substantial proportion, complete resolution of symptoms.[37] Timely diagnosis is particularly important because prolonged diagnostic uncertainty can reinforce symptom-focused attention, drive repeated consultations, and contribute to entrenchment of functional impairment. Conversely, prompt recognition and an organized plan that aligns with the patient's concerns can reduce fear, improve engagement, and accelerate functional recovery. Accordingly, prognosis is strongly influenced not only by "what" the diagnosis is, but also by "how" and "when" it is communicated and managed, with close monitoring and individualized care planning supporting better outcomes.[65] When NOVL is associated with functional neurological symptom disorder (conversion disorder) or somatic symptom disorder, the trajectory is often positive when psychological interventions are integrated into care.[17] Patients in these categories typically experience symptoms involuntarily and may be highly distressed by the perceived visual deficit; therefore, a therapeutic strategy that validates the experience while addressing maladaptive symptom processing can be transformative. Cognitive-behavioral therapy, in particular, may facilitate improvement by reducing catastrophic interpretations, decreasing avoidance behaviors, and reshaping attentional patterns that amplify perceived dysfunction. Clinical experience and published observations indicate that outcomes improve substantially when the treating team establishes a strong therapeutic alliance, as trust reduces defensiveness, improves adherence to behavioral recommendations, and increases willingness to engage with mental health support.[6] The quality of clinician–patient communication can therefore function as a prognostic factor in its own right, mediating acceptance of the diagnosis and enabling the patient to shift focus from fear of irreversible disease to active strategies for recovery.

In cases where the presentation reflects malingering, the prognosis for the visual disturbance itself is, in a narrow physiological sense, intrinsically good because there is no underlying ocular pathology causing true loss of visual function. However, the

broader prognosis may be complicated by the persistence of external incentives and by barriers to engagement in care, since the symptom is produced deliberately and is not motivated by a desire for symptom relief in the usual sense. Addressing malingering often requires attention to the contextual drivers, which may include socioeconomic pressures, legal matters, occupational conflict, or psychosocial instability. This can necessitate a multifaceted response that may involve mental health professionals, social services, or, in certain contexts, legal or law enforcement systems, depending on the circumstances and the stakes involved.[22] Clinicians must also recognize that labeling and confrontation can be counterproductive, and that careful documentation and objective assessment are often the most appropriate clinical responses. In pediatric patients, the prognosis is frequently particularly favorable, especially when symptoms are linked to identifiable stressors, school pressures, family conflict, or attention-seeking dynamics. When these underlying issues are acknowledged and addressed, many children improve rapidly, and reassurance combined with time and supportive follow-up can be sufficient for symptom resolution.[14] Nevertheless, recurrence can occur, and children may benefit from a coordinated approach involving caregivers, educators, and mental health professionals when stressors are persistent or when broader psychological needs are evident. Overall, the prognostic outlook for NOVL is generally optimistic, but it is contingent on early recognition, careful exclusion of organic disease, and management strategies that address both symptom experience and the psychosocial context in which symptoms arise.[37][65]

Complications

Although NOVL does not typically produce direct structural injury to ocular tissues or the visual pathway, it can generate significant secondary morbidity through its effects on mental health, daily functioning, and social participation. The experience of perceived visual disability often provokes substantial anxiety, frustration, and distress, which can exacerbate preexisting psychiatric vulnerabilities or contribute to the development of new depressive and anxiety symptoms.[66] For many patients, the uncertainty associated with unexplained vision loss and the fear of blindness can be particularly destabilizing, and this emotional burden may intensify symptom vigilance and perpetuate functional impairment. The resulting cycle of distress and symptom amplification can produce a self-reinforcing pattern in which fear worsens perceived dysfunction and perceived dysfunction fuels further fear, complicating recovery. Functional limitations represent a second major complication domain. Individuals with NOVL may struggle with reading, driving, mobility, and work or academic performance, even when objective testing indicates

preserved visual capacity. Such impairment can diminish quality of life, reduce independence, and increase reliance on family members or caregivers for assistance with daily tasks.[3] In addition, stigmatization and misunderstanding can compound these functional consequences. Because functional disorders are often poorly understood by the public and sometimes by clinicians, patients may feel dismissed or accused of exaggeration, which can increase isolation, reduce willingness to seek help, and intensify psychological distress. This interpersonal dimension can be clinically significant, as perceived invalidation may drive “doctor shopping,” fragmented care, and further escalation of symptom-related anxiety. A substantial complication of NOVL also arises from diagnostic mismanagement. When the functional nature of symptoms is not recognized, patients may undergo repeated consultations, extensive investigations, and at times invasive procedures or unnecessary treatments, leading to avoidable physical discomfort, psychological strain, and financial burden.[67] These iatrogenic effects can be considerable, particularly when repeated negative tests reinforce uncertainty rather than relief. Conversely, a different risk exists at the opposite extreme: an exclusive focus on nonorganic explanations can overshadow a concurrent organic disorder, delaying accurate diagnosis and appropriate treatment. Because subtle organic diseases can coexist with functional symptoms, clinicians must remain vigilant and ensure that their diagnostic certainty is appropriately calibrated. Failure to recognize organic pathology may result in avoidable vision loss or progression of disease that could have been mitigated with timely intervention. Therefore, the major “complications” of NOVL are often not ocular damage per se, but the downstream psychological, functional, and systems-level consequences of distress, stigma, and misdirected medical care.[3][66][67]

Patient Education

Patient education in NOVL must be approached as a therapeutic intervention rather than a mere transfer of information. Because NOVL is frequently rooted in psychogenic or functional mechanisms, educational conversations have a direct influence on symptom trajectory by shaping illness beliefs, reducing fear, and promoting engagement with appropriate care pathways. The initial educational approach should be explicitly empathetic, patient-centered, and nonjudgmental, since trust is a prerequisite for acceptance of the diagnosis and willingness to pursue recommended interventions. Reducing feelings of guilt, self-doubt, or perceived blame can minimize conflict and help prevent the development of communication barriers that derail care.[37] Accusatory language or suggestions that symptoms are fabricated can damage the therapeutic relationship and impede progress, especially when

symptoms are involuntary and experienced as real.[3] A clinically effective explanation of NOVL should be straightforward yet tactful, emphasizing the observed disconnect between intact ocular structures and disturbances in the interpretation or experience of visual stimuli. This framing helps patients understand that the absence of structural disease does not invalidate their symptoms; rather, it suggests that the problem lies in functional processing rather than irreversible damage. Education should explicitly clarify that NOVL is not synonymous with malingering and that many patients do not consciously control symptom expression. Patients should also be reassured that the prognosis is generally favorable and that full recovery is often possible, particularly when contributing stressors are addressed and appropriate support is engaged.[37] Such reassurance should be paired with a concrete plan, since reassurance without guidance may be interpreted as dismissal. Clinicians should attempt to identify potential psychological, environmental, or situational triggers, and acknowledging these factors can support self-management by helping patients recognize links between stress and symptom intensity.[6] Communication should be transparent about the associations between NOVL and stress, anxiety, depression, conversion disorder, and somatic symptom disorder, while avoiding overly psychiatric labeling that may feel stigmatizing.[3] Encouraging engagement with mental health professionals can help patients understand the mind–body relationship and develop tools to manage distress that may be manifesting as visual symptoms. Evidence-informed interventions such as cognitive-behavioral therapy, mindfulness-based techniques, and counseling can provide practical strategies to reduce symptom-focused attention and improve coping, thereby supporting recovery.[37] In addition, lifestyle counseling regarding sleep, regular physical activity, and balanced nutrition can promote overall well-being and resilience, indirectly supporting symptom improvement. Regular follow-up appointments serve both clinical and therapeutic functions. They allow monitoring for any evolving organic findings, enable reinforcement of educational messages, and communicate to patients that their symptoms are being taken seriously. Patterns of follow-up engagement may also provide contextual clues: individuals whose symptoms are consciously produced for external gain may be less willing to participate in ongoing care, whereas patients with conversion-related NOVL commonly return because they are sincerely seeking an explanation and relief.[5] Regardless of motivation, a consistent, respectful follow-up strategy helps reduce fragmented care and supports safe, effective management over time.[3][5][6][37]

Enhancing Healthcare Team Outcomes

Optimizing outcomes in NOVL requires a coordinated interprofessional approach that integrates

ophthalmic evaluation with psychological assessment and supportive longitudinal care. Because NOVL exists at the interface of sensory function, neurology, and mental health, no single clinician can address all dimensions effectively without collaboration. Clear, respectful, and timely communication among team members—including the primary care practitioner, ophthalmologist, optometrist, ophthalmic electrophysiologist, psychologist, psychiatrist, and nursing staff—is essential to coordinate diagnostic efforts, prevent duplication of testing, and deliver coherent messaging to the patient. Given the distressing nature of NOVL, all providers should maintain a compassionate, nonjudgmental stance that supports therapeutic alliance and reduces stigma, as negative interactions can exacerbate symptoms and undermine adherence. Diagnostic evaluation benefits from multidisciplinary input. The ophthalmologist or optometrist is responsible for a thorough ocular and neuro-ophthalmic examination to exclude structural causes of vision loss, with escalation to advanced imaging or electrophysiology when indicated. Ophthalmic electrophysiologists and imaging specialists can contribute objective confirmation of retinal and optic nerve integrity, strengthening diagnostic confidence and providing data that can be communicated to the patient in reassuring terms. Meanwhile, mental health professionals play a crucial role in identifying psychological triggers, diagnosing comorbid psychiatric conditions, and delivering evidence-informed therapies that target mechanisms sustaining functional symptoms. Primary care clinicians can coordinate care across specialties, address comorbid medical issues, and provide continuity that reduces fragmented care-seeking. Nursing staff contribute critical educational reinforcement, triage, and monitoring, ensuring that patients understand recommendations and feel supported throughout the course of care. Once NOVL is established, collaborative planning should produce an individualized treatment strategy addressing both visual symptoms and underlying psychosocial contributors. This plan often includes structured reassurance and education from eye care providers, referral for counseling or psychotherapy from mental health specialists, and ongoing monitoring and supportive follow-up coordinated by primary care and nursing teams. Consistent interprofessional messaging reduces confusion and prevents contradictory explanations that may intensify health anxiety. Over time, a unified approach can improve patient-centered outcomes by promoting functional recovery, reducing unnecessary investigations, and ensuring that potential organic disease is not missed through appropriate surveillance. In this way, interprofessional collaboration does not merely enhance efficiency; it directly improves clinical effectiveness, patient satisfaction, and the quality and safety of care delivered to individuals with NOVL.

Conclusion:

Nonorganic vision loss (NOVL) remains a clinically significant yet underrecognized entity within ophthalmology, demanding a nuanced and systematic approach to diagnosis and management. Its presentation often mimics severe organic disease, creating risk for both over-investigation and misdiagnosis. The cornerstone of effective care lies in balancing diagnostic rigor with empathetic communication, ensuring that patients feel validated while organic pathology is confidently excluded. NOVL should not be equated with malingering; most cases reflect involuntary symptom generation mediated by psychological distress, attentional mechanisms, and sociocultural factors. Management strategies prioritize reassurance, education, and psychological support rather than invasive interventions. Explaining the functional nature of symptoms in a nonjudgmental manner fosters trust and reduces health-related anxiety. Referral for cognitive-behavioral therapy and structured follow-up enhances recovery and prevents recurrence, particularly in pediatric and trauma-associated cases. Prognosis is generally favorable when NOVL is identified early and addressed through an interprofessional framework that integrates ophthalmic and mental health expertise. Ultimately, NOVL underscores the importance of a biopsychosocial model in eye care, highlighting that visual symptoms can be authentic and disabling even in the absence of structural disease. By adopting collaborative, patient-centered strategies, clinicians can improve outcomes, reduce unnecessary resource utilization, and restore quality of life for affected individuals.

References:

1. Broderick KM, Ableman TB, Weber ED, Enzenauer RW, Wain HJ, Wroblewski KJ. Non-organic Vision Loss in the Afghanistan and Iraq Conflicts. *Neuro-ophthalmology* (Aeolus Press). 2017 Aug;41(4):175-181. doi: 10.1080/01658107.2017.1295998.
2. Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. *International journal of molecular sciences*. 2019 Jul 4;20(13):. doi: 10.3390/ijms20133282.
3. Raviskanthan S, Wendt S, Ugoh PM, Mortensen PW, Moss HE, Lee AG. Functional vision disorders in adults: a paradigm and nomenclature shift for ophthalmology. *Survey of ophthalmology*. 2022 Jan-Feb;67(1):8-18. doi: 10.1016/j.survophthal.2021.03.002.
4. Edwards MJ, Yogarajah M, Stone J. Author Correction: Why functional neurological disorder is not feigning or malingering. *Nature reviews. Neurology*. 2023 Jun;19(6):384. doi: 10.1038/s41582-023-00821-2
5. Chen CS, Lee AW, Karagiannis A, Crompton JL, Selva D. Practical clinical approaches to functional visual loss. *Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia*. 2007 Jan;14(1):1-7
6. Sharpe M, Walker J, Williams C, Stone J, Cavanagh J, Murray G, Butcher I, Duncan R, Smith S, Carson A. Guided self-help for functional (psychogenic) symptoms: a randomized controlled efficacy trial. *Neurology*. 2011 Aug 9;77(6):564-72. doi: 10.1212/WNL.0b013e318228c0c7.
7. Daniel MC, Coughtrey A, Heyman I, Dahlmann-Noor AH. Medically unexplained visual loss in children and young people: an observational single site study of incidence and outcomes. *Eye (London, England)*. 2017 Jul;31(7):1068-1073. doi: 10.1038/eye.2017.37.
8. Mursch-Edlmayr AS, Mojon D, Bolz M. [Testing and approach when non-organic visual loss is suspected]. *Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft*. 2018 Jan;115(1):77-87. doi: 10.1007/s00347-017-0628-2.
9. van Impelen A, Merckelbach H, Jelicic M, Niesten IJM, Campo JÀ. Differentiating Factitious from Malingered Symptomatology: the Development of a Psychometric Approach. *Psychological injury and law*. 2017;10(4):341-357. doi: 10.1007/s12207-017-9301-y.
10. Duddu V, Isaac MK, Chaturvedi SK. Somatization, somatosensory amplification, attribution styles and illness behaviour: a review. *International review of psychiatry* (Abingdon, England). 2006 Feb;18(1):25-33
11. Köteles F, Witthöft M. Somatosensory amplification - An old construct from a new perspective. *Journal of psychosomatic research*. 2017 Oct;101():1-9. doi: 10.1016/j.jpsychores.2017.07.011.
12. Bass C, Wade DT. Malingering and factitious disorder. *Practical neurology*. 2019 Apr;19(2):96-105. doi: 10.1136/practneuro-2018-001950.
13. Takahashi M, Kunikata H, Kato K, Kawakami A, Nakazawa T. Familial Background Factors And Their Association With Non-Organic Visual Loss. *Clinical ophthalmology* (Auckland, N.Z.). 2019;13():2059-2061. doi: 10.2147/OPTH.S212365.
14. Somers A, Casteels K, Van Roie E, Spileers W, Casteels I. Non-organic visual loss in children: prospective and retrospective

analysis of associated psychosocial problems and stress factors. *Acta ophthalmologica*. 2016 Aug;94(5):e312-6. doi: 10.1111/aos.12848.

15. Scarpina F, Melzi L, Castelnovo G, Mauro A, Marzoli SB, Molinari E. Explicit and Implicit Components of the Emotional Processing in Non-organic Vision Loss: Behavioral Evidence About the Role of Fear in Functional Blindness. *Frontiers in psychology*. 2018;9():494. doi: 10.3389/fpsyg.2018.00494.
16. Bennett K, Diamond C, Hoeritzauer I, Gardiner P, McWhirter L, Carson A, Stone J. A practical review of functional neurological disorder (FND) for the general physician. *Clinical medicine (London, England)*. 2021 Jan;21(1):28-36. doi: 10.7861/clinmed.2020-0987.
17. Egan RA, LaFrance WC Jr. Functional Vision Disorder. *Seminars in neurology*. 2015 Oct;35(5):557-63. doi: 10.1055/s-0035-1563580.
18. Hallett M, Aybek S, Dworetzky BA, McWhirter L, Staab JP, Stone J. Functional neurological disorder: new subtypes and shared mechanisms. *The Lancet. Neurology*. 2022 Jun;21(6):537-550. doi: 10.1016/S1474-4422(21)00422-1.
19. Dhanji S, Lawlor M. Functional visual loss. *Current opinion in neurology*. 2017 Apr;30(2):200-205. doi: 10.1097/WCO.0000000000000423.
20. Hamilton R, Bach M, Heinrich SP, Hoffmann MB, Odom JV, McCulloch DL, Thompson DA. VEP estimation of visual acuity: a systematic review. *Documenta ophthalmologica. Advances in ophthalmology*. 2021 Feb;142(1):25-74. doi: 10.1007/s10633-020-09770-3.
21. McBain VA, Robson AG, Hogg CR, Holder GE. Assessment of patients with suspected non-organic visual loss using pattern appearance visual evoked potentials. *Graefes archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie*. 2007 Apr;245(4):502-10.
22. Orrù G, Ordali E, Monaro M, Scarpazza C, Conversano C, Pietrini P, Gemignani A, Sartori G. Reconstructing individual responses to direct questions: a new method for reconstructing malingered responses. *Frontiers in psychology*. 2023;14():1093854. doi: 10.3389/fpsyg.2023.1093854.
23. Grattan-Smith PJ, Dale RC. Pediatric functional neurologic symptoms. *Handbook of clinical neurology*. 2016;139():489-498. doi: 10.1016/B978-0-12-801772-2.00040-0.
24. Mechrgui M, Kanani S. The Ophthalmic Side Effects of Topiramate: A Review. *Cureus*. 2022 Aug;14(8):e28513. doi: 10.7759/cureus.28513.
25. Williams R, Hui A. Common systemic medications that every optometrist should know. *Clinical & experimental optometry*. 2022 Mar;105(2):149-156. doi: 10.1080/08164622.2021.1945409.
26. Schwarzbach M, Schwartz P. [Induction of optokinetic nystagmus in infants and young children by a horizontally, diagonally or vertically moving striped pattern]. *Padiatrie und Grenzgebiete*. 1991;30(3):167-82.
27. Robinson DA. Neurophysiology of the optokinetic system. *Progress in brain research*. 2022;267(1):251-269. doi: 10.1016/bs.pbr.2021.10.012.
28. Anderson AJ, Shuey NH, Wall M. Rapid confrontation screening for peripheral visual field defects and extinction. *Clinical & experimental optometry*. 2009 Jan;92(1):45-8. doi: 10.1111/j.1444-0938.2008.00280.x.
29. Frisén L. Identification of functional visual field loss by automated static perimetry. *Acta ophthalmologica*. 2014 Dec;92(8):805-9. doi: 10.1111/aos.12405.
30. Levy AH, McCulley TJ, Lam BL, Feuer WJ. Estimating visual acuity by character counting using the Snellen visual acuity chart. *Eye (London, England)*. 2005 Jun;19(6):622-4.
31. O'Connor AR, Tidbury LP. Stereopsis: are we assessing it in enough depth? *Clinical & experimental optometry*. 2018 Jul;101(4):485-494. doi: 10.1111/cxo.12655. E
32. Fanlo Zarazaga A, Gutiérrez Vásquez J, Pueyo Royo V. Review of the main colour vision clinical assessment tests. *Archivos de la Sociedad Espanola de Oftalmologia*. 2019 Jan;94(1):25-32. doi: 10.1016/j.oftal.2018.08.006.
33. Bennett JL, Costello F, Chen JJ, Petzold A, Bioussse V, Newman NJ, Galetta SL. Optic neuritis and autoimmune optic neuropathies: advances in diagnosis and treatment. *The Lancet. Neurology*. 2023 Jan;22(1):89-100. doi: 10.1016/S1474-4422(22)00187-9.
34. Somers LP, Boston JM. Screening for mild anomalous trichromacy using the Ishihara plates test. *Journal of the Optical Society of America. A, Optics, image science, and vision*. 2023 Mar 1;40(3):A208-A219. doi: 10.1364/JOSAA.476536.
35. Invernizzi A, Cozzi M, Staurenghi G. Optical coherence tomography and optical coherence tomography angiography in uveitis: A review. *Clinical & experimental*

ophthalmology. 2019 Apr;47(3):357-371. doi: 10.1111/ceo.13470.

36. Onofri M, Ajdinaj P, Digiovanni A, Malek N, Martinotti G, Ferro FM, Russo M, Thomas A, Sensi SL. Functional Neurologic Disorders, disorders to be managed by neurologists, or are neurologists wandering in a dangerous field with inadequate resources? *Frontiers in psychiatry*. 2023;14():1120981. doi: 10.3389/fpsyg.2023.1120981.

37. Phansalkar R, Lockman AJ, Bansal S, Moss HE. Management of Functional Vision Disorders. *Current neurology and neuroscience reports*. 2022 Apr;22(4):265-273. doi: 10.1007/s11910-022-01191-w.

38. Gilmour GS, Nielsen G, Teodoro T, Yogarajah M, Coebergh JA, Dilley MD, Martino D, Edwards MJ. Management of functional neurological disorder. *Journal of neurology*. 2020 Jul;267(7):2164-2172. doi: 10.1007/s00415-020-09772-w.

39. Ricca AM, Han IC, Sohn EH. Stargardt disease masquerades. *Current opinion in ophthalmology*. 2021 May 1;32(3):214-224. doi: 10.1097/ICU.0000000000000750.

40. Tsang SH, Sharma T. Stargardt Disease. *Advances in experimental medicine and biology*. 2018;1085():139-151. doi: 10.1007/978-3-319-95046-4_27.

41. Petzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alvarenga R, Andris C, Asgari N, Barnett Y, Battistella R, Behbehani R, Berger T, Bikbov MM, Biotti D, Biousse V, Boschi A, Brazdil M, Brezhnev A, Calabresi PA, Cordonnier M, Costello F, Cruz FM, Cunha LP, Daoudi S, Deschamps R, de Seze J, Diem R, Etemadifar M, Flores-Rivera J, Fonseca P, Frederiksen J, Frohman E, Frohman T, Tilikete CF, Fujihara K, Gálvez A, Gouider R, Gracia F, Grigoriadis N, Guajardo JM, Habek M, Hawlina M, Martínez-Lapiscina EH, Hooker J, Hor JY, Howlett W, Huang-Link Y, Idrissova Z, Illes Z, Jancic J, Jindahra P, Karussis D, Kerty E, Kim HJ, Lagrèze W, Leocani L, Levin N, Liskova P, Liu Y, Maiga Y, Marignier R, McGuigan C, Meira D, Merle H, Monteiro MLR, Moodley A, Moura F, Muñoz S, Mustafa S, Nakashima I, Noval S, Oehninger C, Ogun O, Omoti A, Pandit L, Paul F, Rebolleda G, Reddel S, Rejdak K, Rejdak R, Rodriguez-Morales AJ, Rougier MB, Sa MJ, Sanchez-Dalmau B, Saylor D, Shatriah I, Siva A, Stiebel-Kalish H, Szatmary G, Ta L, Tenembaum S, Tran H, Trufanov Y, van Pesch V, Wang AG, Wattjes MP, Willoughby E, Zakaria M, Zvornicanin J, Balcer L, Plant GT. Diagnosis and classification of optic neuritis. *The Lancet. Neurology*. 2022 Dec;21(12):1120-1134. doi: 10.1016/S1474-4422(22)00200-9.

42. Patel HR, Margo CE. Pathology of Ischemic Optic Neuropathy. *Archives of pathology & laboratory medicine*. 2017 Jan;141(1):162-166. doi: 10.5858/arpa.2016-0027-RS.

43. Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutic Strategies. *International journal of molecular sciences*. 2022 Apr 28;23(9):. doi: 10.3390/ijms23094883.

44. Leung DYL, Tham CC. Normal-tension glaucoma: Current concepts and approaches-A review. *Clinical & experimental ophthalmology*. 2022 Mar;50(2):247-259. doi: 10.1111/ceo.14043.

45. Volpe NJ, Rizzo JF 3rd, Lessell S. Acute idiopathic blind spot enlargement syndrome: a review of 27 new cases. *Archives of ophthalmology* (Chicago, Ill. : 1960). 2001 Jan;119(1):59-63

46. Hamed LM, Glaser JS, Gass JD, Schatz NJ. Protracted enlargement of the blind spot in multiple evanescent white dot syndrome. *Archives of ophthalmology* (Chicago, Ill. : 1960). 1989 Feb;107(2):194-8

47. Newcomb RD. Acute, idiopathic blind spot enlargement syndrome. *Optometry and vision science : official publication of the American Academy of Optometry*. 2000 Apr;77(4):178-87

48. Volpe NJ, Rizzo JF 3rd. Retinal disease in neuro-ophthalmology: paraneoplastic retinopathy and the big blind spot syndrome. *Seminars in ophthalmology*. 1995 Sep;10(3):234-41

49. Tsang SH, Sharma T. Acute Zonal Occult Outer Retinopathy (AZOOR) and Related Diseases. *Advances in experimental medicine and biology*. 2018;1085():233-237. doi: 10.1007/978-3-319-95046-4_49.

50. Agarwal N, Garg G, Pal AK, Dubey P, Garg A, Dewan P. Sudden-Onset Bilateral Blindness in a Young Girl Receiving Parenteral Nutrition: Case Report and Review of Literature. *JPEN. Journal of parenteral and enteral nutrition*. 2017 Sep;41(7):1240-1244. doi: 10.1177/0148607115601997.

51. Chen JJ, Chang HF, Hsu YC, Chen DL. Anton-Babinski syndrome in an old patient: a case report and literature review. *Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society*. 2015 Mar;15(1):58-61. doi: 10.1111/psyg.12064.

52. Pula JH, Yuen CA. Eyes and stroke: the visual aspects of cerebrovascular disease. *Stroke and vascular neurology*. 2017 Dec;2(4):210-220. doi: 10.1136/svn-2017-000079.

53. Dermarkarian CR, Kini AT, Al Othman BA, Lee AG. Neuro-Ophthalmic Manifestations of Intracranial Malignancies. *Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society*. 2020 Sep;40(3):e31-e48. doi: 10.1097/WNO.0000000000000950.

54. Tsang SH, Sharma T. Progressive Cone Dystrophy and Cone-Rod Dystrophy (XL, AD, and AR). *Advances in experimental medicine and biology*. 2018;1085():53-60. doi: 10.1007/978-3-319-95046-4_12.

55. Santodomingo-Rubido J, Carracedo G, Suzuki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: An updated review. *Contact lens & anterior eye : the journal of the British Contact Lens Association*. 2022 Jun;45(3):101559. doi: 10.1016/j.clae.2021.101559.

56. Paz Filgueira C, Sánchez RF, Issolio LA, Colombo EM. Straylight and Visual Quality on Early Nuclear and Posterior Subcapsular Cataracts. *Current eye research*. 2016 Sep;41(9):1209-15. doi: 10.3109/02713683.2015.1101139.

57. Stramkauskaitė A, Povilaityė I, Glebauskienė B, Liutkevičienė R. Clinical Overview of Leber Hereditary Optic Neuropathy. *Acta medica Lituanica*. 2022;29(1):9-18. doi: 10.15388/amed.2022.29.1.19.

58. Dysli M, Rückert R, Munk MR. Differentiation of Underlying Pathologies of Macular Edema Using Spectral Domain Optical Coherence Tomography (SD-OCT). *Ocular immunology and inflammation*. 2019;27(3):474-483. doi: 10.1080/09273948.2019.1603313.

59. Rahimy E, Sarraf D. Paraneoplastic and non-paraneoplastic retinopathy and optic neuropathy: evaluation and management. *Survey of ophthalmology*. 2013 Sep-Oct;58(5):430-58. doi: 10.1016/j.survophthal.2012.09.001.

60. Lee EK, Lee SY, Ma DJ, Yoon CK, Park UC, Yu HG. RETINITIS PIGMENTOSA SINE PIGMENTO: Clinical Spectrum and Pigment Development. *Retina (Philadelphia, Pa.)*. 2022 Apr 1;42(4):807-815. doi: 10.1097/IAE.0000000000003367.

61. Vaphiades MS, Kline LB. Optic neuritis. *Comprehensive ophthalmology update*. 2007 Mar-Apr;8(2):67-75; discussion 77-8

62. Chiang MC, Dumitrascu OM, Chhabra N, Chiang CC. Migraine with Visual aura and the Risk of Stroke- a Narrative Review. *Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association*. 2021 Nov;30(11):106067. doi: 10.1016/j.jstrokecerebrovasdis.2021.106067.

63. Feinstein A. Conversion Disorder. *Continuum (Minneapolis, Minn.)*. 2018 Jun;24(3, BEHAVIORAL NEUROLOGY AND PSYCHIATRY):861-872. doi: 10.1212/CON.0000000000000601.

64. Löwe B, Levenson J, Depping M, Hüsing P, Kohlmann S, Lehmann M, Shedd-Mora M, Toussaint A, Uhlenbusch N, Weigel A. Somatic symptom disorder: a scoping review on the empirical evidence of a new diagnosis. *Psychological medicine*. 2022 Mar;52(4):632-648. doi: 10.1017/S0033291721004177.

65. van Genderen MM, de Wit GC, Riemsdag FC. [Functional vision disorder: timely examination pays off]. *Nederlands tijdschrift voor geneeskunde*. 2016;160():A9656

66. Aybek S, Perez DL. Diagnosis and management of functional neurological disorder. *BMJ (Clinical research ed.)*. 2022 Jan 24;376():o64. doi: 10.1136/bmj.o64.

67. Espay AJ, Aybek S, Carson A, Edwards MJ, Goldstein LH, Hallett M, LaFaver K, LaFrance WC Jr, Lang AE, Nicholson T, Nielsen G, Reuber M, Voon V, Stone J, Morgante F. Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. *JAMA neurology*. 2018 Sep 1;75(9):1132-1141. doi: 10.1001/jamaneurol.2018.1264..