

A Narrative Review on Preoperative Antibiotic Prophylaxis Combined with Enhanced Sterile Processing Workflows for Surgical Site Infection Prevention

Abdulhadi Eid Salem Alalwani ⁽¹⁾, Abdullah Eid Salem Alalwani ⁽¹⁾, Hamoud Tunaydhib Awad Aljohani ⁽¹⁾, Abdullah Hamad Sleem Alarawi ⁽¹⁾, Yaser Abdulhadi Alhazmi ⁽¹⁾, Rakan Abdullah Saleh Alfawzan ⁽¹⁾, Hani Salamah Faris Alsharif ⁽¹⁾, Majed Hamad Alsaleemi ⁽¹⁾, Abdullah Alitha Al-Hajili ⁽¹⁾, Mohammed Faisal Al-Obaidan ⁽¹⁾

⁽¹⁾ Ministry Of Health, Saudi Arabia

Abstract

Background: Surgical site infections (SSIs) remain a leading cause of postoperative morbidity, mortality, and increased healthcare costs, despite being largely preventable. Two cornerstone strategies for SSI prevention are the timely administration of preoperative antibiotic prophylaxis (PAP) and the rigorous sterile processing of surgical instruments. However, persistent gaps in compliance with optimal PAP protocols and lapses in sterile processing workflows (SPW) continue to challenge patient safety.

Aim: This narrative review synthesizes the current evidence on the synergistic impact of combining optimized PAP protocols with enhanced, standardized sterile processing workflows to reduce SSI rates across surgical specialties.

Methods: A literature search of PubMed, CINAHL, Scopus, and Cochrane Library databases was conducted. Peer-reviewed articles, systematic reviews, meta-analyses, and clinical guidelines published between 2012-2025 were analyzed to examine the individual and combined efficacy of these interventions, along with key implementation strategies.

Results: Guideline-concordant PAP and technologically advanced SPWs independently reduce SSI risk. Their integration creates a potent, multi-layered defense, yielding superior outcomes. Successful implementation depends on standardized protocols, multidisciplinary collaboration (surgery, anesthesia, nursing, sterile processing), continuous education, and auditing technologies.

Conclusion: The interdependent combination of meticulous PAP and robust SPWs is a highly effective strategy. Sustaining success requires technological integration, bundled quality initiatives, and cultivating a pervasive, shared safety culture across the entire perioperative continuum.

Keywords: Surgical Site Infection, Preoperative Antibiotic Prophylaxis, Sterile Processing, Infection Prevention, Quality Improvement.

Introduction

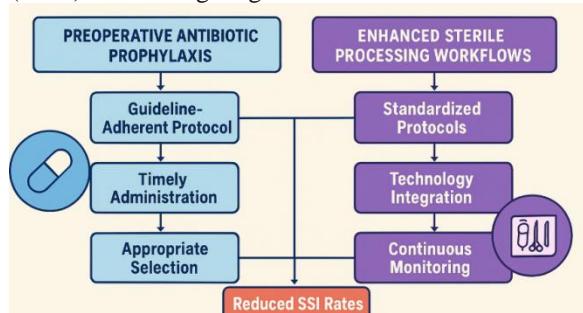
Surgical site infections (SSIs) represent a formidable challenge in modern healthcare, constituting a major source of postoperative complications. As one of the most common healthcare-associated infections (HAIs), SSIs are associated with significant patient morbidity, increased mortality rates, prolonged hospital stays, frequent readmissions, and a substantial financial burden on healthcare systems (Ban et al., 2017; Zhu et al., 2024). Despite being classified as largely preventable events, SSI rates have proven stubbornly resistant to elimination, underscoring the complexity of their etiology, which involves patient, surgical, and environmental factors (Anderson et al., 2014). This persistent threat has galvanized global efforts to develop and implement evidence-based prevention bundles, among which preoperative antibiotic prophylaxis (PAP) and sterile processing of surgical

instruments are considered foundational pillars (Calderwood et al., 2023).

PAP aims to establish adequate bactericidal tissue concentrations at the time of incision, thereby reducing the microbial inoculum from the patient's own flora or the surgical environment (Bratzler et al., 2013). Its efficacy is heavily dependent on the "Five Rights": the right drug, right dose, right timing, right duration, and right patient. Deviations from these principles, such as administration outside the optimal 60-minute window before incision or failure to redose during prolonged procedures, are well-documented risk factors for SSI (De Jonge et al., 2021). Concurrently, the sterile processing workflow (SPW)—the critical pathway from decontamination of used instruments to their sterile storage—serves as the primary defense against exogenous sources of infection. Lapses in any SPW phase, including point-of-use cleaning, disassembly, cleaning verification, sterilization, and storage, can lead to the introduction

of pathogens directly into the surgical site, rendering even perfect PAP ineffective (Asiri et al., 2025).

Traditionally, PAP and SPW have been managed and studied within distinct professional silos: PAP within anesthesiology and surgical disciplines, and SPW within sterile processing departments (SPD). However, emerging evidence and quality improvement frameworks emphasize that patient safety is maximized when these strategies are viewed as interdependent components of a unified defense system (WHO, 2024). This narrative review synthesizes the contemporary literature (2012-2025) to examine the individual evidence for optimized PAP and enhanced SPWs, explore their synergistic relationship, analyze implementation facilitators and barriers, and propose future directions for integrated, multi-modal SSI prevention programs.


The Rationale and Evidence for Preoperative Antibiotic Prophylaxis

The rationale for PAP is rooted in the fundamental surgical principle of reducing the bacterial burden at the operative site. By achieving therapeutic tissue levels of an appropriate antimicrobial agent at the moment of incision and throughout the procedure, the risk of microorganisms establishing an infection is significantly diminished (Karapetyan et al., 2023). The evidence base for PAP is extensive and has been codified in guidelines from leading organizations worldwide, including the Surgical Care Improvement Project (SCIP) metrics, the Centers for Disease Control and Prevention (CDC), and the World Health Organization (WHO) (Berrios-Torres et al., 2017; WHO, 2024).

The efficacy of preoperative antibiotic prophylaxis (PAP) is governed by adherence to several evidence-based principles, often summarized as the “Five Rights.” First, agent selection is paramount, requiring an antibiotic with a spectrum covering the most likely pathogens for the specific surgical procedure. For most clean and clean-contaminated operations, first- or second-generation cephalosporins, such as cefazolin or cefuroxime, are recommended due to their effectiveness against common skin flora, with appropriate alternatives mandated for patients with beta-lactam allergies or procedures requiring gram-negative or anaerobic coverage (Bratzler et al., 2013). Second, the precise timing of administration is critical; infusion must be completed within a 60-minute window before surgical incision (extended to 120 minutes for vancomycin or fluoroquinolones) to ensure adequate bactericidal tissue concentrations at the moment of incision. Administration outside this window, either too early or after the incision is made, significantly compromises prophylactic efficacy (Hawn et al., 2013). Third, intraoperative re-dosing is necessary to maintain therapeutic levels during prolonged procedures, specifically when the surgical duration exceeds two half-lives of the antibiotic or in cases of substantial blood loss exceeding 1500 ml (De Jonge

et al., 2021). Finally, duration must be limited; prophylaxis should be discontinued within 24 hours postoperatively for the vast majority of procedures, as prolonged administration fails to further reduce SSI risk while actively contributing to antimicrobial resistance, *Clostridioides difficile* infection, and unnecessary healthcare costs (Alharbi et al., 2025; Jia et al., 2022).

Despite the clarity of these well-established guidelines, adherence in clinical practice remains frustratingly variable. Studies consistently indicate that timing errors occur in 10-40% of cases, while inappropriate agent selection or unnecessarily prolonged duration of therapy are common occurrences (Haddash, 2025). This gap between evidence and practice underscores that successful implementation cannot rely on individual clinician memory alone; it requires systematic, structural approaches. These include the use of standardized, procedure-specific order sets, automated electronic health record reminders, and the clear assignment of dedicated roles within the surgical and anesthesia teams to ensure unambiguous responsibility for administration and re-dosing. Figure 1 illustrates the combined roles of preoperative antibiotic prophylaxis (PAP) and enhanced sterile processing workflows (SPW) in reducing surgical site infections.

Figure 1: Integrated Preoperative Antibiotic Prophylaxis and Sterile Processing Workflow
The Critical Role of Enhanced Sterile Processing Workflows

While PAP primarily addresses the risk from a patient's endogenous flora, the sterility of surgical instruments, implants, and equipment is a non-negotiable prerequisite for preventing exogenous infection. The sterile processing workflow (SPW) is a complex, sequential chain that begins at the point of use in the operating room and concludes with the sterile storage of instrument trays. Each link in this chain represents a potential point of failure with serious consequences for patient safety (Rutala & Weber, 2021).

An enhanced, evidence-based SPW incorporates technological advancements and rigorous protocols at every stage to mitigate these risks. It initiates with point-of-use treatment, where immediate wiping and soaking of instruments in the operating room prevent the drying of bioburden, a factor that dramatically complicates subsequent

cleaning (Casini et al., 2021). The subsequent phase of mechanical cleaning and disinfection has been revolutionized by the transition from manual cleaning to validated automated washer-disinfectors. These systems provide consistent, reproducible cleaning through controlled parameters of temperature, detergent exposure, and water quality, vastly reducing the variability and inadequacy inherent in manual methods (Alfa, 2013). Following cleaning, verification is essential, as visual inspection is notoriously unreliable. Enhanced workflows therefore integrate objective monitoring tools such as adenosine triphosphate (ATP) bioluminescence assays, protein residue tests, and borescope inspections for lumened devices to scientifically verify the removal of organic soil before any sterilization attempt (Romito et al., 2024).

The processes of packaging and sterilization are equally critical. Packaging must allow for complete sterilant penetration while maintaining a microbial barrier until the moment of use. The selection of sterilization methods—whether steam, hydrogen peroxide plasma, or ethylene oxide—must be based on device material compatibility, and each cycle must be rigorously monitored using a combination of physical, chemical, and biological indicators to confirm efficacy (Rutala & Weber, 2021). Finally, sterile storage and transport complete the workflow. Sterilized items must be stored in controlled environments with regulated temperature, humidity, and airflow to prevent condensation and microbial proliferation. Organized storage systems and careful handling during transport are essential to maintain package integrity until the instrument set is opened on the sterile field (Ay & Gencturk, 2018). Lapses at any stage, such as incomplete cleaning leading to "bioburden shielding" during sterilization, improper sterilizer load configuration, or damaged packaging, directly undermine the foundation of safe surgical care. Therefore, reliability demands significant investment in SPW infrastructure, comprehensive certification of technicians, and an organizational culture that reframes sterile processing from a logistical support service to a core, non-delegable clinical function.

Synergistic Integration: Creating a Multi-Layered Defense

The true power of SSI prevention emerges not from PAP or SPW in isolation, but from their strategic integration, which creates a synergistic, multi-layered defense system. This concept is elegantly explained by the Swiss Cheese Model of accident causation, wherein each preventive intervention represents a slice of cheese with inherent weaknesses (holes). A pathogen may pass through a hole in one layer, but by combining multiple independent, strengthened layers—with PAP and sterile instruments being two of the most

substantial—the probability of a hazard breaching all defenses and reaching the patient is dramatically reduced (Reason, 2016).

This synergy is operationally evident in several high-risk contexts. In contaminated or dirty procedures, while PAP is crucial, its efficacy is entirely contingent on minimizing the exogenous bacterial load from the operative field and instruments. A critical failure in SPW can introduce a microbial inoculum so substantial that it overwhelms even appropriate prophylactic antibiotic coverage (Marzoug et al., 2023). Similarly, in implant surgery involving prosthetic joints, cardiac valves, or mesh, the consequences of infection are catastrophic. Here, the combination of perfectly timed PAP and the absolute, verifiable assurance of implant and instrument sterility is non-negotiable; a breach in either defensive layer exponentially increases the risk of a deep, device-related infection necessitating surgical explantation (Klompas et al., 2022). Furthermore, in the era of expanding antimicrobial resistance, the synergy becomes a strategic imperative. As the spectrum of effective prophylactic antibiotics narrows, the role of enhanced SPWs as a primary defense against the introduction of multi-drug-resistant organisms (MDROs) like MRSA or VRE from patient to patient via contaminated equipment becomes even more critical (Kanamori et al., 2021). Quality improvement initiatives that formally bundle these interventions demonstrate their combined power most convincingly. Programs that concurrently implement standardized PAP protocols with surgeon-led audits and invest in SPD upgrades with objective cleaning verification technology consistently report greater and more sustained reductions in SSI rates than initiatives targeting a single domain alone (Koek et al., 2019).

Implementation Strategies and Multidisciplinary Collaboration

Successfully implementing this integrated model necessitates a fundamental shift from siloed protocols to genuine, operational multidisciplinary collaboration. The key stakeholder ecosystem is broad, encompassing surgeons, anesthesiologists, perioperative nurses, infection preventionists, pharmacists, and sterile processing technicians, each bearing distinct and vital responsibilities. Surgeons are responsible for ordering the correct prophylactic agent and advocating for the necessary resources and cultural priority for the SPD. Anesthesiologists and nurse anesthetists are typically accountable for the precise timing of PAP administration and any required intraoperative re-dosing. Perioperative nurses act as the crucial link, ensuring proper point-of-use instrument care and serving as the frontline users of sterile trays. Infection preventionists provide the surveillance backbone, monitoring SSI rates, auditing PAP compliance, and validating SPW practices. Pharmacists develop and manage the

standardized PAP order sets and ensure reliable drug availability. Finally, SPD technicians execute the technically complex and critical workflow steps that form the very bedrock of instrument safety (Jenkins, 2020).

Effective implementation strategies must activate this collaborative network through several key mechanisms. Standardization is the first step, involving the development and strict enforcement of facility-wide, procedure-specific PAP guidelines and detailed SPW standard operating procedures (SOPs). Education and training must be continuous and interprofessional, with regular joint sessions for all stakeholders that move beyond simple policy review to foster a deep understanding of the "why" behind protocols, building mutual respect and a shared mental model of

interdependencies. Technology integration serves as a force multiplier, utilizing computerized provider order entry (CPOE) with hard stops for PAP timing, barcode or RFID systems for instrument tracking and traceability, and integrated data dashboards that provide real-time feedback on compliance metrics for both PAP and SPW (Jackson et al., 2018). Ultimately, structured performance feedback closes the loop. This requires establishing regular forums, such as a Perioperative Quality and Safety Committee, where SSI data, PAP adherence rates, and SPW quality indicators (e.g., sterilization cycle failures, positive cleaning verification tests) are reviewed collaboratively by the full multidisciplinary team, driving continuous, data-informed improvement (Mylonakis & Ziakas, 2021).

Table 1: Core Components of an Integrated PAP and SPW Prevention Bundle

Component	Preoperative Antibiotic Prophylaxis (PAP)	Enhanced Sterile Processing Workflow (SPW)
Key Principle	Administer the right drug at the right time to achieve bactericidal tissue levels.	Ensure instruments are free of microbial life via validated cleaning and sterilization.
Critical Actions	<ol style="list-style-type: none"> 1. Procedure-specific agent selection. 2. Infusion completed 60 min pre-incision. 3. Intraoperative re-dosing for long procedures/blood loss. 4. Discontinuation within 24 hrs. 	<ol style="list-style-type: none"> 1. Point-of-use pre-cleaning in OR. 2. Automated mechanical cleaning. 3. Objective cleaning verification. 4. Validated sterilization with monitoring. 5. Secure sterile storage & transport.
Primary Stakeholders	Surgeon (orders), Anesthesia (administers), Pharmacist (manages formulary).	Perioperative Nurse (point-of-use), SPD Technician (processing), Infection Prevention (audits).
Common Metrics	% compliance with timing, agent, re-dosing, and duration guidelines.	Washer-disinfector cycle pass rates, cleaning verification test results, and biological indicator results.

Barriers to Implementation and Sustainability

Despite the compelling evidence supporting the integrated model of preoperative antibiotic prophylaxis (PAP) and enhanced sterile processing workflows (SPW), significant and often entrenched barriers impede its full adoption and long-term sustainability in clinical practice. These challenges span financial, operational, human, and cultural domains. Foremost among these are systemic and financial barriers. The substantial upfront capital required for modern SPW technology—including automated washer-disinfectors, objective cleaning verification tools like ATP bioluminescence testers, and instrument tracking systems—alongside investments in electronic health record (EHR) upgrades to support hard-stop alerts for PAP timing, can be prohibitive for many institutions. Compounding this, prevailing fee-for-service reimbursement models typically fail to directly reward the prevention of surgical site infections (SSIs), making it difficult for healthcare administrators to justify the return on investment for these essential capital expenditures (Rennert-May et al., 2018).

These financial constraints are exacerbated by persistent workflow disconnects and communication gaps between the operating room (OR) and the sterile processing department (SPD).

The frequent physical and organizational separation of these units can foster a damaging "throw it over the wall" mentality, where each function acts as a separate silo rather than as interconnected components of a single patient safety system. Inadequate real-time communication regarding changes to surgical schedules, specific instrument needs, or urgent add-on cases can severely strain SPD capacity and workflow, leading to rushed processing cycles and increasing the risk of procedural errors (Van Baarle et al., 2024). Furthermore, the human factor and pervasive compliance fatigue present a constant challenge. Ensuring perfect, 100% adherence to the precise 60-minute window for PAP administration is exceptionally difficult within the dynamic, high-pressure, and often unpredictable environment of the OR. Similarly, maintaining meticulous, uncompromising attention to every detailed step of the complex SPW—from point-of-use cleaning to sterilization monitoring—can be undermined by high procedural volumes, staff turnover, and the complacency that can arise from routine, leading to dangerous normalization of deviance (Ewers et al., 2017).

Underpinning these operational challenges are deep-seated knowledge and perception gaps. A persistent institutional underestimation of the SPD's direct clinical impact often leads to its categorization

as a "support" or "logistical" service rather than as the vital clinical safety department it is. This misperception negatively affects resource allocation, departmental budgets, and technician morale and professional standing. Conversely, OR staff, including surgeons and nurses, may not fully appreciate the catastrophic consequences of poor point-of-use instrument care, such as failing to keep instruments moist during a procedure, viewing it as a minor inconvenience rather than a critical step that directly compromises the entire downstream sterilization process (Ay & Gencturk, 2018).

Future Directions and Innovations

The future of effective, integrated SSI prevention lies in proactively addressing these barriers by leveraging technological innovation, advanced data analytics, and intentional cultural transformation to hardwire essential safety practices into the foundation of surgical care. A primary direction involves the broader adoption of advanced tracking systems and predictive data analytics. The implementation of instrument tracking via radio-frequency identification (RFID) or barcoding will enable complete end-to-end traceability, allowing specific instrument sets to be linked to individual patients and procedures. This capability is revolutionary for conducting precise root-cause analyses in the event of an SSI and for optimizing surgical tray composition to improve efficiency. Furthermore, the application of predictive analytics to aggregated EHR data holds promise for identifying high-risk patients who may benefit from intensified or tailored prophylactic regimens or preoperative decolonization protocols (Anderson & Chang, 2015).

Concurrently, investment in automation and "smart" systems will be crucial for reducing human error and enhancing reliability. Within the SPD, robotics for instrument sorting and handling can

increase throughput and consistency. The development of "smart" surgical sets or containers equipped with sensors could electronically document their own processing status—recording exposure to cleaning cycles, sterilization parameters, and storage duration. In the OR, integration of automated, anesthesia timer-linked dispensing systems for PAP could virtually eliminate timing errors by ensuring administration occurs precisely within the validated window (Dhar et al., 2021). This technological evolution must be paired with a continued focus on antimicrobial stewardship within surgical prophylaxis. Future clinical guidelines will inevitably refine PAP recommendations to minimize ecological collateral damage, emphasizing shorter postoperative durations, the de-escalation of unnecessarily broad-spectrum agents, and clearer definitions of procedures where prophylaxis is truly unnecessary—all while vigilantly maintaining, or even enhancing, SSI prevention efficacy (Bouji et al., 2022).

Ultimately, the sustainability of any technological or procedural advance depends on a foundational cultural transformation toward a pervasive safety mindset. Cultivating a Just Culture is essential, where unintentional human errors are addressed through system redesign and support, while willful disregard for safety protocols is held accountable. This approach encourages the transparent reporting of near-misses and minor deviations in both PAP administration and SPW, creating invaluable opportunities for proactive system improvement before serious harm occurs. Success requires fostering a shared, non-hierarchical accountability for safety that extends from the boardroom and surgical suite to the decontamination room, ensuring every team member understands their critical role in the patient's outcome (Van Baarle et al., 2022).

Table 2: Barriers and Proposed Solutions for Integrated PAP-SPW Implementation

Barrier Category	Specific Challenges	Potential Solutions & Future Directions
Financial & Systemic	High cost of SPW technology; lack of ROI-driven reimbursement.	Advocate for value-based purchasing tied to HAI rates; pursue shared cost models/group purchasing for technology.
Workflow Process	OR-SPD communication gaps; PAP timing errors in dynamic OR.	Implement shared digital platforms for schedule/instrument tracking; use audible EHR alerts/anesthesia timer integration for PAP.
Human Factor	Compliance fatigue, high SPD turnover, and knowledge gaps.	Implement regular joint OR-SPD in-services; create career ladders/certifications for SPD techs; use gamification for compliance.
Technological	Lack of instrument traceability; unreliable manual audits.	Invest in instrument tracking (RFID/barcode) systems; adopt objective, real-time cleaning verification technology.

Conclusion

The prevention of surgical site infections is a paramount goal that demands a comprehensive, integrated approach. Preoperative antibiotic

prophylaxis and enhanced sterile processing workflows are not standalone tasks but interdependent, non-negotiable components of a holistic defense strategy. The evidence is clear:

guideline-concordant PAP and a robust, technology-supported SPW each independently reduce SSI risk, and their synergistic integration yields the greatest protective effect. Achieving this requires breaking down traditional silos between the operating room and sterile processing department through standardized protocols, continuous multidisciplinary education, technological integration, and an unwavering institutional commitment to a culture of safety. As surgical interventions become more complex and antimicrobial resistance grows, the precision and reliability of this combined approach will only increase in importance. Future efforts must focus on sustainable implementation models that leverage data, automation, and shared accountability to make zero preventable SSIs an achievable standard of care.

References

- Alfa, M. J. (2013). Monitoring and improving the effectiveness of cleaning medical and surgical devices. *American journal of infection control*, 41(5), S56-S59. <https://doi.org/10.1016/j.ajic.2012.12.006>
- Alharbi, S. M., Alqurashi, E. A. Z., Alsubaie, M. D., Alanazi, N. M., Almutairi, B. A., Almotlaq, H. M., ... & Alsharari, Y. D. D. (2025). Artificial Intelligence and Robotics in Surgery: The Future of Precision Medicine. *Saudi Journal of Medicine and Public Health*, 2(2), 159-170. <https://doi.org/10.64483/jmph-69>
- Anderson, D. J., Podgorny, K., Berrios-Torres, S. I., Bratzler, D. W., Dellinger, E. P., Greene, L., ... & Kaye, K. S. (2014). Strategies to prevent surgical site infections in acute care hospitals: 2014 update. *Infection Control & Hospital Epidemiology*, 35(S2), S66-S88. doi:10.1017/S0899823X00193869
- Anderson, J. E., & Chang, D. C. (2015). Using electronic health records for surgical quality improvement in the era of big data. *JAMA surgery*, 150(1), 24-29. doi:10.1001/jamasurg.2014.947
- Asiri, B. A. A., Almutairi, R. M., Alfadhel, R. M., Faqeehi, S. M., & Alshammari, E. M. (2025). Technology-Driven Nursing Interventions to Support Telehealth in Cardiac Primary Care. *Saudi Journal of Medicine and Public Health*, 2(2), 137-146. <https://doi.org/10.64483/jmph-67>
- Ay, F., & Gencturk, N. (2018). Disinfection and sterilization related situations for Patient Safety in Operation rooms. *Int J Caring Sci*, 11(1), 607.
- Ban, K. A., Minei, J. P., Laronga, C., Harbrecht, B. G., Jensen, E. H., Fry, D. E., ... & Duane, T. M. (2017). American College of Surgeons and Surgical Infection Society: surgical site infection guidelines, 2016 update. *Journal of the American College of Surgeons*, 224(1), 59-74. DOI: 10.1016/j.jamcollsurg.2016.10.029
- Berrios-Torres, S. I., Umscheid, C. A., Bratzler, D. W., Leas, B., Stone, E. C., Kelz, R. R., ... & Schecter, W. P. (2017). Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. *JAMA surgery*, 152(8), 784-791. doi:10.1001/jamasurg.2017.0904
- Bouji, N., Wen, S., & Dietz, M. J. (2022). Intravenous antibiotic duration in the treatment of prosthetic joint infection: systematic review and meta-analysis. *Journal of Bone and Joint Infection*, 7(5), 191-202. <https://doi.org/10.5194/jbji-7-191-2022>
- Bratzler, D. W., Dellinger, E. P., Olsen, K. M., Perl, T. M., Auwaerter, P. G., Bolon, M. K., ... & Weinstein, R. A. (2013). Clinical practice guidelines for antimicrobial prophylaxis in surgery. *American journal of health-system pharmacy*, 70(3), 195-283. <https://doi.org/10.2146/ajhp120568>
- Calderwood, M. S., Anderson, D. J., Bratzler, D. W., Dellinger, E. P., Garcia-Houchins, S., Maragakis, L. L., ... & Kaye, K. S. (2023). Strategies to prevent surgical site infections in acute-care hospitals: 2022 Update. *Infection Control & Hospital Epidemiology*, 44(5), 695-720. doi:10.1017/ice.2023.67
- Casini, B., Tuvo, B., Marciano, E., Del Magro, G., Gemignani, G., Luchini, G., ... & Privitera, G. (2021). Improving the reprocessing quality of flexible thermolabile endoscopes: how to learn from mistakes. *International Journal of Environmental Research and Public Health*, 18(5), 2482. <https://doi.org/10.3390/ijerph18052482>
- De Jonge, S. W., Boldingh, Q. J., Koch, A. H., Daniels, L., De Vries, E. N., Spijkerman, I. J., ... & Boermeester, M. A. (2021). Timing of preoperative antibiotic prophylaxis and surgical site infection: TAPAS, an observational cohort study. *Annals of Surgery*, 274(4), e308-e314. DOI: 10.1097/SLA.0000000000003634
- Dhar, S., Sandhu, A. L., Valyko, A., Kaye, K. S., & Washer, L. (2021). Strategies for effective infection prevention programs: structures, processes, and funding. *Infectious Disease Clinics*, 35(3), 531-551. <https://doi.org/10.1016/j.idc.2021.04.001>
- Ewers, T., Knobloch, M. J., & Safdar, N. (2017). Antimicrobial stewardship: the role of the patient. *Current Treatment Options in Infectious Diseases*, 9(1), 92-103. <https://doi.org/10.1007/s40506-017-0106-z>
- Haddash, N. A. M. A. (2025). Therapeutic Potential of Plant-Based Dietary Interventions in Chronic Disease Remission: Mechanisms, Clinical Evidence, and Practical Implementation. *Saudi Journal of Medicine and Public Health*, 2(2), 53-61. <https://doi.org/10.64483/jmph-32>

17. Hawn, M. T., Richman, J. S., Vick, C. C., Deierhoi, R. J., Graham, L. A., Henderson, W. G., & Itani, K. M. (2013). Timing of surgical antibiotic prophylaxis and the risk of surgical site infection. *JAMA surgery*, 148(7). doi:10.1001/jamasurg.2013.134

18. Jackson, G. P., Moffatt-Bruce, S. D., & Melton, G. B. (2018). Leveraging health information technologies to support surgical practice. *JAMA surgery*, 153(11), 981-982. doi:10.1001/jamasurg.2018.1978

19. Jia, Y., Chen, J., Liang, W., Xiong, Y., Peng, Z., & Wang, G. (2022). Differences in Efficacy between Short-and Long-Course Antibiotic Agents for Joint Prosthesis Infection: A Systematic Review and Meta-Analysis. *Surgical Infections*, 23(7), 616-624. https://doi.org/10.1089/sur.2022.157

20. Jenkins, J. (2020). Sterilization Central: HVAC and Infection Prevention Considerations in Sterile Processing Departments. *Biomedical Instrumentation & Technology*, 54(5), 372-373.

21. Kanamori, H., Weber, D. J., & Rutala, W. A. (2021). Role of the healthcare surface environment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and potential control measures. *Clinical Infectious Diseases*, 72(11), 2052-2061. https://doi.org/10.1093/cid/ciaa1467

22. Karapetyan, K., Mei, S., Choudhury, A., & Cottreau, J. (2023). Overview of antibiotic prophylaxis in orthopaedic and cardiac procedures. *Orthopaedic Nursing*, 42(5), 312-316. DOI: 10.1097/NOR.0000000000000972

23. Klompas, M., Branson, R., Cawcutt, K., Crist, M., Eichenwald, E. C., Greene, L. R., ... & Berenholtz, S. M. (2022). Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. *Infection Control & Hospital Epidemiology*, 43(6), 687-713. doi:10.1017/ice.2022.88

24. Koek, M. B. G., Van Der Kooi, T. I. I., Stigter, F. C. A., De Boer, P. T., De Gier, B., Hopmans, T. E. M., ... & Blaauwgeers, H. G. M. (2019). Burden of surgical site infections in the Netherlands: cost analyses and disability-adjusted life years. *Journal of Hospital Infection*, 103(3), 293-302. https://doi.org/10.1016/j.jhin.2019.07.010

25. Marzoug, O. A., Anees, A., & Malik, E. M. (2023). Assessment of risk factors associated with surgical site infection following abdominal surgery: a systematic review. *BMJ Surgery, Interventions, & Health Technologies*, 5(1), e000182. https://doi.org/10.1136/bmjsit-2023-000182

26. Mylonakis, E., & Ziakas, P. D. (2021). How should economic analyses inform nosocomial infection control?. *AMA Journal of Ethics*, 23(8), 631-638. doi: 10.1001/amaethics.2021.631.

27. Reason, J. (2016). *Managing the risks of organizational accidents*. Routledge.

28. Rennert-May, E., Conly, J., Leal, J., Smith, S., & Manns, B. (2018). Economic evaluations and their use in infection prevention and control: a narrative review. *Antimicrobial Resistance & Infection Control*, 7(1), 31. https://doi.org/10.1186/s13756-018-0327-z

29. Romito, K., Bradley Jr, D. F., Mitchell, C. V., Atwood, B., Eberhardt, G. L., Smith, J. D., ... & Belew, C. (2024). Best practices for flexible endoscope high-level disinfection--an integrative review. *Canadian Journal of Infection Control/Revue Canadienne de Prévention des Infections*, 39(1). DOI: 10.36584/suffix

30. Rutala, W. A., & Weber, D. J. (2021). Disinfection and sterilization in health care facilities: an overview and current issues. *Infectious Disease Clinics*, 35(3), 575-607. https://doi.org/10.1016/j.idc.2021.04.004

31. Van Baarle, E., Hartman, L., Rooijakkers, S., Wallenburg, I., Weenink, J. W., Bal, R., & Widdershoven, G. (2022). Fostering a just culture in healthcare organizations: experiences in practice. *BMC Health Services Research*, 22(1), 1035. https://doi.org/10.1186/s12913-022-08418-z

32. van der Ploeg, K., Vos, M. C., Erler, N. S., Bulkmans, A. J., Mason-Slingerland, B. C., Severin, J. A., & Bruno, M. J. (2024). Impact of duodenoscope reprocessing factors on duodenoscope contamination: a retrospective observational study. *Journal of Hospital Infection*, 154, 88-94. https://doi.org/10.1016/j.jhin.2024.09.018

33. World Health Organization. (2024). *Global strategy on infection prevention and control*. World Health Organization.

34. Zhu, N. J., Weldegiorgis, M., Carter, E., Brown, C., Holmes, A., & Aylin, P. (2024). Economic burden of community-acquired antibiotic-resistant urinary tract infections: systematic review and meta-analysis. *JMIR Public Health and Surveillance*, 10, e53828. https://doi.org/10.2196/53828.