

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub https://doi.org/10.64483/202522250

Interprofessional Approaches to Heavy Metal Exposure Assessment and Management

Mohammad Hssin S Alazmi $^{(1)}$, Sulaiman Mohammed Dhaher Alsharari $^{(2)}$, Saida Yahia Ali Ghzwani $^{(3)}$, Saad Hamoud Qahtan Alshehri $^{(4)}$, Khulood Majed Hamoud Almutairi $^{(5)}$, Mohammed Abdulrahman M Abobaker $^{(6)}$, Mohammed Eid S Aljohany $^{(6)}$, Fahad Abdullah Sudan Almutairi $^{(7)}$, Ali Abdulaziz Alrayes $^{(8)}$, Ibrahim Ahmed Khabrani $^{(9)}$, Kadhem Yousef Al Sultan $^{(8)}$, Ahmad Yahya Qasem Ghazwani $^{(10)}$, Abdulaziz Mabrook ALzbali $^{(11)}$

- (1) Saudi Red Crescent Tabuk, Saudi Arabia,
- (2) Al-Issawiya General Hospital Issawiya, Ministry of Health, Saudi Arabia,
- (3) Al-Aidabi Health Center / Jazan, Ministry of Health, Saudi Arabia,
- (4) Riyadh Branch Ministry Of Health, Saudi Arabia,
- (5) Imam Abdul Rahman Alfaisal Hospital, Ministry of Health, Saudi Arabia,
- (6) Ministry Of Health Riyadh Branch, Saudi Arabia,
- (7) Long-Term Care Hospital, Ministry of Health, Saudi Arabia,
- (8) Ministry Of Health, Saudi Arabia,
- (9) Jazan, Ministry of Health, Saudi Arabia,
- (10) Aledabi Phcc, Ministry of Health, Saudi Arabia,
- (11) Saudi Red Crescent, Saudi Arabia.

Abstract

Background: Heavy metal exposure, stemming from both environmental and occupational sources, poses a significant global health risk. While some metals are essential in trace amounts, others like lead, arsenic, and mercury are toxic, causing multisystem damage through mechanisms like oxidative stress and enzyme inhibition. Diagnosis is challenging due to nonspecific symptoms that mimic common diseases.

Aim: This comprehensive review aims to detail the interprofessional approaches required for the effective assessment and management of heavy metal toxicity. It synthesizes information on etiology, pathophysiology, diagnostic testing, and collaborative care strategies.

Methods: The review outlines the critical procedures for accurate diagnosis, including the selection of appropriate biological specimens (blood, urine, hair) based on the metal's pharmacokinetics and the timing of exposure. It emphasizes advanced analytical techniques like Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the importance of rigorous quality control to prevent contamination and ensure result reliability.

Results: Accurate diagnosis hinges on correlating a plausible exposure history with consistent clinical symptoms and confirmatory laboratory testing. The clinical significance of test results must be interpreted within the context of population reference ranges and individual patient factors, as even low-level exposures can be harmful to vulnerable groups.

Conclusion: Effective management of heavy metal toxicity necessitates a coordinated, interprofessional effort. This involves clinicians, nurses, laboratory personnel, and toxicologists working together to ensure accurate diagnosis, guide interventions like chelation therapy, implement exposure mitigation, and protect public health.

Keywords: Heavy Metal Toxicity, Interprofessional Collaboration, Biomonitoring, ICP-MS, Lead, Arsenic, Diagnostic Testing, Public Health..

Introduction

Heavy metal is a broad term that describes a group of naturally occurring metallic elements characterized by relatively high atomic weight and density compared to water, as well as distinct physicochemical properties that influence their behavior in biological systems.[1] These elements are widely distributed in the earth's crust and can enter the environment through both natural processes, such as volcanic activity and weathering of rocks, and anthropogenic activities,

including industrial emissions, mining, smelting, agriculture, and waste disposal.[1] From a biological perspective, heavy metals can be divided into those that serve essential physiological functions and those that have no known beneficial role in human health. At low concentrations, certain heavy metals, such as iron, zinc, copper, and manganese, are indispensable for cellular metabolism, enzymatic reactions, oxygen transport, and antioxidant defense. However, even these essential trace elements can become toxic when

homeostatic mechanisms are overwhelmed, leading to accumulation and cellular damage.[2] In contrast, nonessential heavy metals, such as arsenic, cadmium, lead, thallium, and mercury, have no beneficial biological role but are ubiquitous contaminants due to their persistence and bioaccumulation in water, soil, food, and air.[2] Human exposure may occur through ingestion, inhalation, or dermal contact, and in certain occupational settings, exposure levels can be substantial. Once absorbed, these elements may bind to proteins, displace essential metals from enzymes, generate reactive oxygen species, and interfere with cellular signaling pathways. As with essential metals, toxicity typically manifests once tissue concentrations exceed a critical threshold, at which point systemic effects on the nervous, renal, hematologic, cardiovascular, or endocrine systems may become clinically apparent.[2],[4]

Confirming the diagnosis of elemental toxicity is often challenging because the clinical presentation is typically nonspecific and may mimic a wide range of diseases, including non-element-dependent autoimmune, metabolic, infectious, neurodegenerative conditions.[3] Symptoms such as fatigue, abdominal pain, cognitive decline, peripheral neuropathy, and mood disturbances may be attributed to more common disorders, delaying consideration of heavy metal exposure. A robust diagnostic approach requires the integration of clinical, occupational, environmental, and laboratory data. In principle, the diagnosis of elemental toxicity rests on three essential pillars: first, the identification of a plausible source of exposure, either environmental, occupational, dietary, or iatrogenic; second, the presence of signs and reported symptoms consistent with the toxicodynamic profile of the specific element; and third, the demonstration of abnormal element concentration in a relevant biological matrix, such as blood, urine, hair, or tissue biopsy.[3] If any of these components is absent, a definitive diagnosis cannot be confidently established, and alternative diagnoses must be carefully considered. Within this framework, the clinical laboratory plays a central and indispensable role. Accurate diagnosis depends on appropriate test selection, proper specimen collection and handling, and the use of validated analytical methods with sensitivity, specificity, and control.[3] Inductively coupled plasma mass spectrometry (ICP-MS) and related technologies have greatly improved the detection of trace and ultra-trace metal concentrations, but pre-analytical variables, such as contamination from collection tubes or environmental sources, may still compromise results. Therefore, close communication between clinicians, nurses, pharmacists, and laboratory professionals is required to ensure that samples are obtained at the correct time relative to exposure, stored properly, and interpreted in light of clinical context and reference intervals.[3],[4]

In clinical practice, targeted analysis of toxic elements should be integrated into the diagnostic work-up of patients whose presentations raise suspicion for heavy metal involvement. This is particularly important in individuals with renal disease of unexplained origin, where tubulointerstitial damage or glomerular dysfunction may reflect chronic exposure to elements such as cadmium or lead.[4] Similarly, bilateral peripheral neuropathy without an obvious metabolic or autoimmune cause should prompt consideration of neurotoxic metals, including arsenic, lead, or thallium, especially when accompanied by gastrointestinal or dermatologic manifestations.[4] Acute changes in mental function, ranging from confusion and irritability to seizures or coma, may result from acute or subacute metal intoxication and warrant prompt investigation of potential exposure sources. Inflammation of the nasal or larvngeal epithelium, particularly in industrial workers, may signal inhalational exposure to volatile metal compounds. Finally, any explicit history of elemental exposure whether occupational, environmental, or related to traditional remedies—should lower the threshold for ordering specific toxic element analyses.[4] By systematically integrating exposure history, clinical features, and targeted laboratory testing, healthcare teams can improve recognition, diagnosis, and management of heavy metal toxicity, thereby mitigating long-term health consequences for affected patients.[1–4]

Etiology and Epidemiology

Heavy metal toxicity arises from a complex interplay of environmental, occupational, dietary, and iatrogenic exposures, with patterns that vary across geographic regions, socioeconomic strata, and industrial practices.[1] Etiologically, one of the most important contributors is occupational exposure, particularly in industries involving mining, smelting, metallurgy, battery production, pigment and dye manufacture, metal plating, and waste handling.[1][5] Workers in these settings may inhale metal-laden dust or fumes, ingest contaminants transferred from the workplace to the hands or food, or absorb metals through the skin. Recognizing these risks, the Occupational Health and Safety Administration (OSHA) has established maximum permissible exposure limits for a range of metals, aiming to reduce the incidence of occupational toxicity through engineering controls, personal protective equipment, and regular monitoring. At the population level, the Environmental Protection Agency (EPA) monitors heavy metal pollutants in air, soil, and water, setting regulatory standards intended to protect the general public from chronic low-level exposure.[5] Despite these safeguards, lapses in enforcement, aging infrastructure, and industrial accidents continue to result in clinically significant exposures in both highincome and low- and middle-income countries.[1][5] Environmental pathways are equally important in the etiology of heavy metal toxicity. Metals introduced

into the environment from industrial effluents, mining runoff, agricultural chemicals, and combustion processes accumulate in soil and aquatic ecosystems. Shellfish and other aquatic organisms are of particular concern because they can bioaccumulate high concentrations of metals, which are then transferred to humans through the food chain.[1][5] Polluted runoff into coastal and estuarine environments thus becomes a critical determinant of dietary exposure, especially in communities that rely heavily on seafood as a protein source. Contaminated groundwater and surface water may also serve as major exposure routes, as illustrated by well-publicized episodes of arsenic-contaminated wells in certain regions and lead contamination in municipal water systems.[1][8]

Medications and nutritional supplements represent important etiologic category. While supplementation with essential trace elements such as iron, zinc, and copper can be therapeutically necessary in deficiency states, inappropriate dosing, prolonged unsupervised use, or polypharmacy can lead to metal accumulation and toxicity.[2] Beyond conventional supplements, traditional and alternative medicines may contain undeclared or poorly regulated metal Ayurvedic preparations have extensively studied in this regard, with research demonstrating that a substantial proportion contains clinically relevant levels of toxic metals; one study found that 65% of sampled Ayurvedic medicines contained lead, and approximately one-third contained arsenic and mercury.[6] Such products are often consumed chronically without medical supervision, increasing the risk of insidious toxicity, particularly in vulnerable populations such as children, pregnant women, and individuals with pre-existing renal or hepatic impairment.[6] Individual metals have distinct etiologic sources and epidemiologic patterns. Inorganic arsenic (As), the most toxic form, is commonly ingested via contaminated drinking water and food, especially in regions with geologic arsenic deposits or inadequate water treatment infrastructure.[7] Additional sources include pesticides, smelting processes involving copper and lead, wood preservatives, and natural events such as volcanic eruptions.[7] Chronic arsenic exposure is prevalent in certain rural areas dependent on shallow tube wells, where long-term ingestion leads to dermal changes, cardiovascular disease, and increased cancer risk, making it a major public health concern in affected regions.[1][7]

Lead (Pb) remains a pervasive toxicant despite regulatory efforts. Historically used in paint, gasoline, pipes, and numerous consumer products, lead persists in older housing, soil, and plumbing systems.[1][8] Lead-based paint in aging homes continues to be a source of pediatric exposure through ingestion of paint chips or inhalation of contaminated dust. Lead leaching from corroded pipes into household water supplies can result in widespread community

exposure, as seen in the contamination crisis in Flint, Michigan.[8] Additional sources include firing ranges, battery manufacturing, and certain cosmetics and traditional remedies.[1][8] Children and pregnant women are particularly susceptible to the neurotoxic effects of lead, and even low-level exposure has been associated with cognitive impairment, behavioral disturbances, and adverse pregnancy outcomes.[1] Cadmium (Cd) exposure is largely linked to occupational inhalation in industrial environments such as smelting, metal refining, and battery manufacturing.[9] Inhaled cadmium is efficiently absorbed in the lungs, with absorption rates influenced by particle size and solubility of the cadmium compound.[9] Cigarette smoking is a significant nonoccupational source, as tobacco plants accumulate cadmium from soil, leading to systemic uptake in smokers and increased body burden over time.[10] Chronic low-level exposure may also arise from contaminated vegetables, seeds, shellfish, and the food supply in regions with cadmium-contaminated soil or irrigation water.[1][10] Spray painting with cadmiumcontaining organic-based paints without appropriate respiratory protection is another recognized source of chronic exposure, contributing to pulmonary and renal toxicity among affected workers.[1][9]

Mercury (Hg) presents distinct environmental and dietary risks. Methylmercury, the organic form produced by microbial methylation of inorganic mercury in aquatic systems, bioaccumulates in fish and marine mammals, with higher concentrations in top predators such as shark and swordfish.[11] Human exposure occurs primarily through consumption of contaminated seafood. In adults, methylmercury poisoning may cause focal neuronal degeneration in the cerebral cortex and cerebellum, manifesting as sensory disturbances, ataxia, and visual or auditory impairments.[11] In utero exposure is especially concerning; depending on the level and timing of exposure, effects may range from fetal death to subtle but permanent neurodevelopmental delays.[12] Recognizing this risk, the U.S. Food and Drug Administration (FDA) recommends that pregnant women, women of childbearing age, and young children avoid or limit consumption of high-mercury fish such as shark, swordfish, king mackerel, and tilefish.[12] Mercury also remains an occupational hazard for dentists and dental staff in countries where mercury-containing dental amalgam is manufactured or widely used.[13] Chronic exposure in this setting may occur through inhalation of mercury vapor during amalgam preparation and placement, making appropriate ventilation and hygiene measures essential.[13] Thallium (Tl) exposure arises from a narrower but significant set of industrial and environmental sources. Coal combustion releases thallium into the atmosphere, subsequently depositing onto soil and water surfaces.[1] Semiconductor manufacturing and some industrial exhaust emissions also contribute to localized thallium contamination. The clinical presentation of thallium toxicity is highly variable, influenced by dose, duration, and route of exposure, as well as host factors such as age and comorbidities.[1] Symptoms may range from gastrointestinal distress and painful neuropathies to alopecia and severe multisystem involvement, making diagnosis difficult without a high index of suspicion and targeted laboratory testing.[1]

Chromium (Cr) toxicity is closely tied to industrial use and occupational exposure. Chromium enters the body through inhalation of dust and fumes, ingestion of contaminated food or water, and dermal absorption, particularly in workers who handle chromium without adequate protection.[14] compounds Chromium is used extensively in stainless steel production, chrome plating, leather tanning, textile printing and dyeing, cleaning solutions, and as an anticorrosive agent in cooling systems.[15] Workers in these industries may be exposed to both trivalent chromium (Cr III) and hexavalent chromium (Cr VI), which differ significantly in their toxicokinetics and toxicodynamics.[16] Hexavalent chromium, particular, is a potent respiratory and dermatologic irritant and a recognized carcinogen, associated with increased risk of lung cancer and sinonasal malignancies in occupational cohorts.[14][16] From an epidemiologic standpoint, the burden of heavy metal toxicity is unevenly distributed. Populations in low- and middle-income countries often face higher exposures due to less stringent environmental regulations, informal or unregulated mining and recycling operations, and limited access to safe water and occupational protection.[1][5] Children, pregnant women, and workers in high-risk industries constitute especially vulnerable groups, with long-term health and socioeconomic consequences. Globalization of food and product supply chains further complicates the epidemiologic landscape, as contaminants originating in one region may impact consumers worldwide. Comprehensive public health strategies that combine regulatory oversight, environmental monitoring, workplace safety, and community education are therefore critical to reducing the incidence and impact of heavy metal toxicity across populations.[1][5–16]

Fig. 1: Heavy Metals.
Pathophysiology

The pathophysiology of heavy metal toxicity centers on the disruption of metabolic and cellular homeostasis resulting from the excessive accumulation of metallic ions within biological tissues. Once absorbed through ingestion, inhalation, or dermal exposure, heavy metals enter systemic circulation and distribute to organs according to their individual pharmacokinetic properties, binding affinities, and biotransformation pathways.[17] Many of these elements have a strong propensity to bind to sulfhydryl, carboxyl, and phosphate groups on proteins and enzymes, altering their structure and impairing catalytic activity. This interference destabilizes essential biochemical reactions involved energy production. detoxification. neurotransmission, and cellular signaling. Over time, such interactions compromise cellular integrity and physiology, leading to tissue-specific dysfunction. A common pathway among most toxic metals is mitochondrial impairment. Heavy metals can inhibit mitochondrial enzymes within the electron transport chain, disrupt oxidative phosphorylation, and increase reactive oxygen species (ROS) generation. Excess ROS causes oxidative damage to lipids, proteins, and nucleic acids, promoting apoptosis or necrosis depending on exposure severity and duration.[17] Some metals, such as arsenic and cadmium, induce epigenetic modifications that alter gene expression, whereas others disrupt calcium homeostasis, impair ion channels, or interfere with membrane integrity. These cumulative effects heighten cellular stress and compromise organ-level function. Heavy metal toxicity also reflects the element-specific kinetics of absorption, distribution, metabolism, and excretion. For example, lead preferentially accumulates in bone producing nervous tissue, long-term neurocognitive deficits, while mercury accumulates in the brain and placenta, exerting profound neurotoxic and developmental effects. Cadmium targets the kidneys, causing progressive tubular dysfunction, whereas arsenic affects multiple systems due to its capacity to disrupt ATP production and DNA repair mechanisms. The route of exposure further shapes pathogenic outcomes; inhaled metals rapidly enter systemic circulation and may cause acute pulmonary injury, whereas ingested metals undergo gastrointestinal interaction and hepatic transformation. Overall, the pathophysiologic consequences of heavy metal toxicity represent the combined impact of molecular binding, oxidative stress, mitochondrial dysfunction, and organ-specific accumulation. These mechanisms collectively disrupt biological equilibrium, driving the acute and chronic clinical manifestations associated with elemental toxicants.[17]

Specimen Requirements and Procedure

Testing for heavy metal exposure may be approached indirectly or directly, and a clear understanding of specimen requirements is fundamental to reliable diagnosis. Indirect tests, such as examination of a peripheral blood smear, can provide early diagnostic clues. For example, the presence of basophilic stippling in erythrocytes in a patient who also exhibits

a characteristic blue line at the gingival margin raises strong clinical suspicion for chronic lead toxicity and may prompt confirmatory testing.[18] However, such indirect markers are neither specific nor quantitative. Consequently, the definitive and confirmatory evaluation of suspected heavy metal intoxication requires direct measurement of the concentration of the implicated metal in biological specimens using validated analytical techniques.[18] A variety of specimens can be used for direct analysis, including blood, urine, hair, and nails, and the optimal sample type depends on the specific metal, route and timing of exposure, and whether acute, chronic, or remote exposure is being investigated.[19] In many clinical scenarios, a combination of blood and urine analysis is requested to capture both current body burden and ongoing excretion patterns.[20],[21] For numerous heavy metals, a 24-hour urine collection is particularly informative, as it reflects cumulative excretion over a defined period and can be used to assess acute, chronic, and prior exposure.[20] A spot urine test may also be used when a timed collection is impractical; however, in this setting creatinine concentration should be measured concurrently so that metal excretion can be corrected for urine dilution, typically expressed as micrograms per gram of creatinine.[20] Blood testing is frequently ordered alongside urine metal analysis, especially in acute and subacute exposures, where circulating metal levels are more likely to be elevated and reflective of recent intake.[21]

Because heavy metals are present in biological matrices at very low concentrations, often in the nanoor microgram range, meticulous attention to preanalytical variables is essential to avoid contamination and spurious results.[22],[23] Specialized "trace element free" collection tubes and containers must be used, as conventional glass or plastic materials may leach metals into the specimen. For most blood-based metal assays, royal blue-capped tubes, specifically manufactured for trace element analysis, are recommended.[24] Lead testing is an important exception, for which tan-top, lead-free tubes are commonly employed and validated for clinical use.[24] Once collected, specimens should generally be refrigerated to minimize degradation or microbial overgrowth that could alter sample integrity, particularly for urine collections spanning 24 hours.[24] With respect to lead, whole blood is the specimen of choice to assess internal dose and current exposure, although urine may be used in certain monitoring contexts.[25] Blood for lead analysis must be collected in lead-free heparinized vacutainers or in tubes containing ethylenediaminetetraacetic acid (EDTA) as an anticoagulant.[25] During collection and handling, great care must be taken to avoid contact with materials that may introduce exogenous lead, including certain glassware, soldered equipment, or contaminated surfaces.[25] No clinically meaningful differences in blood lead concentrations have been observed between properly obtained venous and capillary samples, provided strict protocols are followed to prevent contamination from skin or environmental dust.[26] Heparinized whole blood stored under refrigeration remains stable for approximately two weeks, whereas EDTAanticoagulated blood can be frozen at -20 °C and preserved for several months without significant loss of analytic reliability.[27] When EDTA is used, the addition of 1.4 mg of calcium chloride per milliliter of blood may be required to optimize lead recovery during analytical processing, improving accuracy of quantification.[28] Urine samples intended for lead measurement should be collected in lead-free borosilicate glass or polyethylene containers, with at least 50 mL of urine obtained.[29] Measurement of urine specific gravity is recommended to assess concentration, and the specimen should be preserved, for example with 500 mg of thymol per liter, and refrigerated, which ensures stability for up to one week.[29],[30]

For arsenic (As), the choice of specimen and timing of sampling are especially critical. Blood is generally considered the least useful matrix for assessing arsenic exposure, because arsenic is rapidly cleared from the circulation into a large body phosphate pool and distributed into tissues.[31] The body handles arsenate species similarly to phosphate, incorporating them into biochemical pathways wherever phosphate is normally utilized.[31] Consequently, abnormal arsenic concentrations in blood are detectable for only a short window—typically about four hours after ingestion—rendering blood arsenic measurement primarily useful for documenting acute, high-level exposure, particularly when concentrations exceed approximately 20 mg/L (0.3 mmol/L).[32] For most clinical and occupational purposes, urine is the specimen of choice for arsenic analysis, as arsenic and its metabolites are excreted predominantly via the kidneys, and urinary levels reflect recent exposure over the preceding days.[33] Hair and nail analysis play a distinctive role in the evaluation of arsenic and certain other metals by providing a chronological record of exposure. Arsenic circulating in the bloodstream binds covalently to sulfhydryl groups in cysteine residues of keratin, a major structural protein in hair and nails.[34] Because keratin has a high cysteine content, arsenic accumulates in these tissues at concentrations greater than those found in many soft tissues, making hair and nails valuable for retrospective exposure assessment.[34] Several weeks following significant exposure, transverse white bands known as Mees' lines may develop on the fingernails; these are thought to result from keratin denaturation caused by elements such as cadmium, lead, and mercury, in addition to arsenic.[35] Given that scalp hair grows at an average rate of about 1 cm per month, hair collected from the nape of the neck can be segmented to approximate the timing of exposure events in the preceding months, with proximal segments representing more recent exposure.[36] Axillary or pubic hair, which may have longer growth cycles, can serve as an indicator of longer-term (6–12 months) exposure history.[36]

Cadmium (Cd) measurement presents its own practical challenges, particularly with respect to avoiding contamination. Urinary cadmium is a useful marker of body burden, especially in chronic exposure, but specimen collection methods must be carefully selected. Use of rubber catheters for urine collection can artifactually elevate measured cadmium levels because trace amounts of cadmium may be extracted from the rubber as urine passes through it.[37] For this reason, rubber catheters should be avoided whenever possible in patients undergoing evaluation for cadmium exposure. Similarly, brightly colored plastic urine containers and pipette tips are discouraged, as the pigments used to color these plastics may be cadmium-based and can leach into the sample, confounding results.[37] The use of clear, cadmium-free polyethylene or glass containers specifically designated for trace element testing is strongly recommended for accurate cadmium analysis.[37] Mercury (Hg) exposure is typically evaluated by analyzing blood, urine, and, in selected cases, hair,[11] Each specimen type provides different information about the nature and timing of exposure. Urinary mercury measurements are particularly useful for monitoring long-term exposures to elemental mercury and its inorganic salts, such as those encountered in certain industrial or dental settings.[11] Because these forms of mercury are excreted primarily through the kidneys, urinary concentrations correlate reasonably well with chronic exposure. In contrast, blood mercury levels are more informative in cases of short-term or higher-level exposure to elemental or inorganic mercury, reflecting more recent intake.[11] mercury analysis, often focusing methylmercury, is frequently used to assess chronic dietary exposure from fish consumption, especially in epidemiologic and public health investigations, although it must be interpreted with careful attention to external contamination and hair treatment history.[11]

Thallium (Tl) testing is generally reserved for situations in which there is clinical suspicion of poisoning or in medicolegal investigations of unexplained illness or death.[38] Because thallium is rapidly cleared from the bloodstream into tissues, blood levels may be elevated only transiently following exposure, limiting their diagnostic window.[38] Urine testing is therefore often the preferred method for documenting thallium exposure, as urinary excretion continues for a longer period and can provide a more reliable indication of body burden.[38] Timely collection of urine samples, ideally over 24 hours, enhances diagnostic sensitivity and facilitates monitoring of treatment efficacy in

cases where chelation or other interventions are employed.[38] Chromium (Cr) assessment is commonly based on urine and blood or serum measurements, depending on the clinical context. Urinary chromium concentrations are useful for monitoring short-term or recent exposure, particularly in occupational settings where workers may inhale or ingest chromium compounds during industrial processes.[39] However, in specific clinical situations such as monitoring patients with metal-on-metal joint arthroplasty, serum or whole blood chromium measurements are preferred, as they more accurately reflect systemic metal ion release from prosthetic components.[39] While using a plastic cannula for blood sampling has been proposed as a strategy to minimize contamination, studies suggest that this is generally unnecessary when appropriate techniques followed.[40] Nevertheless, are sporadic contamination from stainless steel needles has been documented, underscoring the importance of using standardized, trace-element-appropriate collection devices and of discarding the initial aliquot of blood when extremely low detection thresholds are required.[40] In summary, the reliability of heavy metal testing depends heavily on choosing the correct specimen, timing the collection appropriately with respect to exposure, and adhering to rigorous preanalytical protocols to avoid contamination.[18–23] Blood and urine are the mainstay specimens for most metals in acute and chronic exposure, while hair and nails provide valuable retrospective and temporal information, particularly for arsenic and certain other elements.[31-36] For each metal, knowledge of its toxicokinetics and preferred storage and excretion pathways guides specimen selection interpretation. Clinicians, nurses, phlebotomists, pharmacists, and laboratory professionals must collaborate closely to ensure accurate collection, handling, and processing of specimens, thereby enabling precise quantification of heavy metals and supporting timely, evidence-based management of elemental toxicity.[19–21],[24–40]

Diagnostic Tests

Diagnostic evaluation of heavy metal exposure relies on precise quantitative measurement of metal concentrations in biological specimens, supported by an understanding of each element's pharmacokinetics and distribution. Modern analytical chemistry has greatly enhanced the sensitivity and specificity of heavy metal testing, primarily through the use of inductively coupled plasma mass spectrometry (ICP/MS) and atomic absorption spectroscopy (AAS).[41] ICP/MS is now the preferred method in most reference and specialized laboratories because it offers extremely low detection limits, broad dynamic range, and the ability to measure multiple elements simultaneously in a single run.[41] AAS, while still useful, is generally limited to single-element analysis and may lack the sensitivity and throughput required for complex biomonitoring panels. Data from the

Centers for Disease Control and Prevention (CDC) Biomonitoring Program and the Agency for Toxic Substances and Disease Registry (ATSDR) provide and laboratorians clinicians with essential pharmacokinetic information about heavy metals in various body fluids and tissues, thereby informing appropriate specimen selection and timing of sample collection for optimal diagnostic yield. Arsenic testing illustrates the importance of both half-life and chemical speciation in diagnostic interpretation. Inorganic arsenic, the more toxic form, has a relatively short half-life of approximately 3–4 hours in blood.[2] After absorption, it undergoes hepatic methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are subsequently excreted in the urine and can be detected for roughly 2-4 days following exposure.[2] Consequently, urine arsenic measurement—often in a 24-hour collection—is the primary tool for evaluating recent inorganic arsenic exposure. Hair analysis provides a complementary long-term record, detecting exposure over a period of 6 to 12 months, especially when segmental analysis is performed to approximate the timing of arsenic intake.[2] Diagnostic complexity arises because organic arsenic species, such as arsenobetaine found in seafood, are relatively non-toxic yet can appear in both blood and urine at high concentrations after recent consumption.[42][43] These organic forms are rapidly eliminated, typically via urine within 1–2 days.[42][43] For this reason, dietary history with particular attention to recent seafood intake is critical when interpreting arsenic results. To differentiate toxic inorganic arsenic from benign organic arsenic, an arsenic "reflex" or fractionated speciation test can be ordered as part of a heavy metal panel, allowing separation and quantification of individual arsenic species and preventing misclassification of seafoodrelated elevations as toxic exposure.[44]

Lead testing is comparatively straightforward in terms of specimen choice but requires careful attention to exposure history and clinical context. A blood lead concentration remains the most widely used and clinically relevant biomarker for both pediatric and adult exposures. Following exposure, lead exhibits a blood half-life of approximately 1 to 2 months, after which it is progressively redistributed to bone and other tissues.[41] Thus, blood lead levels primarily reflect recent and ongoing exposure, while cumulative body burden is better inferred indirectly from clinical history or, in specialized settings, from bone lead measurements using X-ray fluorescence. In routine practice, serial blood lead levels are used to monitor the effectiveness of exposure mitigation and chelation therapy, as well as to guide public health interventions in affected communities. Cadmium presents a different diagnostic profile due to its markedly prolonged persistence in the body. Cadmium has a blood half-life of about 3-4 months, which makes blood cadmium measurement useful for assessing relatively recent exposure, especially in occupational settings or among smokers.[45] However, cadmium's overall biological half-life is extremely longapproximately 30 years—because of its high affinity for metallothionein and its slow turnover in the kidneys and other tissues.[45] As a result, urine cadmium concentrations, as well as cadmium levels in hair or nails, are considered better indicators of cumulative body burden. Elevated urinary cadmium in the absence of recent acute exposure suggests chronic accumulation and may correlate with early renal tubular damage, even before overt clinical nephropathy develops. Therefore, both blood and urinary cadmium analyses are complementary, with blood cadmium reflecting more recent exposure and urine or keratinized tissues representing long-term bioaccumulation.[45]

Mercury testing must be tailored to the chemical form of mercury and the route of exposure. Metallic and elemental mercury, as well as inorganic mercury salts, display a biphasic kinetic pattern. In blood, elemental mercury has an initial half-life of about 3 days, followed by a longer half-life phase of 1 to 3 weeks as it redistributes and undergoes oxidation.[46] During this period, blood mercury measurement is valuable for detecting relatively recent exposures. Urine mercury analysis is particularly useful for monitoring longer-term exposure to elemental and inorganic mercury, as these forms are primarily excreted renally and can be detected for 1–3 months after exposure. [46] In contrast, methylmercury—the primary form encountered through fish consumption—has a longer half-life of approximately 40-90 days in blood and hair, making these matrices the specimens of choice for assessing dietary methylmercury exposure.[46] Because roughly 90% of methylmercury is eliminated via feces, urine testing is not informative for this form.[47] Consequently, mercury urinalysis is diagnostically meaningful only for inorganic and elemental mercury, whereas blood and hair analysis essential for methylmercury-related evaluations.[46][47] Thallium testing underscores the importance of specimen timing and selection. Thallium has a relatively short half-life in blood, approximately 3 days, after which it rapidly redistributes into tissues.[38] Blood testing is therefore most helpful in the immediate period following exposure. For a longer diagnostic window, urine testing is preferred, as thallium is excreted over an extended period and can be detected in urine for up to 2 months post-exposure.[38] In suspected poisoning cases or medicolegal investigations, serial urine thallium measurements can help confirm exposure, treatment responses, and progressive elimination from the body.

Chromium diagnostics must account for multiple oxidation states and diverse exposure pathways. Urinary chromium concentrations serve as the most useful biomarker for assessing occupational exposure

to water-soluble hexavalent chromium (Cr VI), a form widely used in electroplating, stainless steel production, and pigment manufacture.[48] Because urinary chromium reflects recent absorption and excretion, it is particularly suited to monitoring workers during and after shifts, and to evaluating the effectiveness of industrial hygiene measures.[48] However, urinary chromium is not entirely specific to occupational sources; dietary intake of both trivalent chromium (Cr III), an essential trace element, and hexavalent chromium can contribute to total urinary chromium levels. Supplements marketed metabolic or glycemic control and environmental exposures may also influence baseline concentrations.[48] For clinical scenarios involving implanted metal-on-metal prostheses, chromium testing may instead focus on serum or whole blood chromium to evaluate systemic metal ion release. Across all these metals, advanced analytical methods such as ICP/MS provide the necessary sensitivity to detect trace concentrations in complex biological matrices.[41] However, accurate diagnostic interpretation requires more than a numerical result; it demands careful integration of metal-specific pharmacokinetics, form of the element, timing and magnitude of exposure, specimen type, and individual patient factors. Reference ranges and clinical decision limits must be applied cautiously, recognizing that even "low" levels of certain metals, such as lead in children or methylmercury in fetuses, may have clinically significant effects. The availability of comprehensive biomonitoring data from the CDC and ATSDR further aids clinicians in contextualizing individual results within population distributions and established risk thresholds for specific outcomes.[41] Ultimately, the diagnostic evaluation of heavy metal toxicity is a multi-step process that begins with clinical suspicion and targeted history-taking, followed by judicious selection of the most appropriate test for the suspected metal and exposure scenario. The choice of blood, urine, hair, or nail analysis-and in some instances multiple specimens-must be guided by an understanding of half-life, tissue distribution, and excretion pathways. When applied thoughtfully and interpreted in collaboration between clinicians, laboratorians, and toxicology experts, these diagnostic tests enable timely detection, risk assessment, and management of heavy metal exposures, thereby reducing morbidity and preventing long-term sequelae.[2],[11],[38],[41–48]

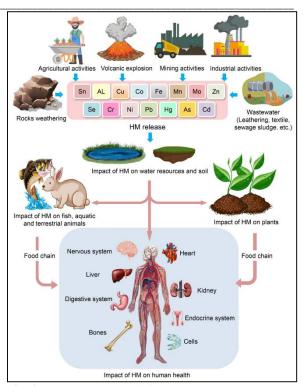


Fig. 2: Heavy Metal Toxicity.

Testing Procedures

Analytical procedures for measuring trace and ultratrace heavy metals in biological specimens must meet stringent performance criteria because concentrations of interest are often extremely low, typically in the nanogram per gram (ng/g) to microgram per gram (μg/g) range. [49] To be clinically useful, any method employed must be highly sensitive, specific, precise, accurate, and sufficiently rapid to support timely clinical decision-making. Sensitivity is particularly critical; ideally, the detection limit of a method should be at least an order of magnitude (10fold) lower than the expected analyte concentration in the specimen. This margin ensures that measurements retain acceptable accuracy and precision near clinical decision thresholds and that subtle changes in concentration can be detected over time.[49] Analytical specificity, the ability to distinguish the target metal from chemically or spectrally similar species, is equally important, especially in complex biological matrices where numerous potential interferents are present. Several analytical techniques have become standard in clinical and toxicological laboratories for quantifying metals in blood, urine, and other biological fluids. These include atomic absorption spectroscopy (AAS), atomic emission spectroscopy (AES), anodic stripping voltammetry (ASV), and mass spectrometry-based methods.[50] AAS, which measures the absorption of light by ground-state atoms, is widely used for single-element analysis and remains a robust, cost-effective tool for certain metals. AES, on the other hand, detects light emitted by excited atoms and ions, and can be implemented via inductively coupled plasma atomic

emission spectroscopy to enable simultaneous multielement analysis. Anodic stripping voltammetry is an electrochemical technique that preconcentrates metals onto an electrode surface, followed by controlled stripping; it is particularly sensitive for certain cations in aqueous solutions. Mass spectrometry, especially in combination with an inductively coupled plasma (ICP/MS), offers unparalleled sensitivity and multicapability, allowing simultaneous element quantification of numerous metals at trace and ultratrace levels.[50],[51] These methods vary with respect to detection limits, throughput, capital costs, and technical complexity, enabling laboratories to select the most appropriate technology for their clinical volume, budget, and analytical requirements.[51]

In clinical practice, heavy metals may be ordered as individual assays or as part of multi-element panels. Many laboratories offer standardized "heavy metal panels" that commonly include arsenic, cadmium, lead, and mercury, reflecting their clinical and public health relevance.[49] The decision on which metals to test is driven by a careful clinical assessment that considers the patient's symptoms, exposure history, occupation, and environmental risk factors.[49] For example, a child living in an older home with peeling paint might warrant targeted lead testing, whereas an industrial worker exposed to welding fumes may require a broader panel including chromium and manganese. Clinicians must communicate suspected exposure sources and timing to the laboratory, enabling appropriate choice of specimen (blood, urine, hair, or nails), as well as correct interpretation of results. Lead testing exemplifies the complexity of method selection and interpretation. There is currently no universally accepted reference method for blood lead determination; however, a definitive approach employs isotope dilution inductively coupled plasma mass spectrometry (ICP/MS) for both whole blood and urine.[52] In ICP-MS analysis of lead, it is critical to account for the natural isotopic distribution of lead in the environment. Lead exists as several stable isotopes, predominantly with mass-to-charge ratios (m/z) 206, 207, and 208. Accurate quantification requires summing the signals from these isotopes to obtain a total lead concentration that reflects the true isotopic mixture present in the sample.[52] If only a single isotope is monitored and used for calibration, discrepancies may arise because the isotopic abundance in the calibrator may not match that in the patient specimen. This mismatch can lead to systematic underestimation or overestimation of lead concentrations.[52],[53]

Fig. 3: Impact of heavy metal on different tissues. Interestingly, this inherent isotopic variability can be leveraged analytically to identify the source of lead exposure. By determining the relative isotopic abundances of lead in a patient's blood and comparing them with those in potential environmental sources such as paint chips, contaminated soil, or water samples—it may be possible to identify a matching isotopic pattern.[53] The source with an isotopic ratio that closely mirrors the blood profile is likely the major contributor to exposure and should be eliminated remediated in the or environment.[54] This approach has significant public health implications, guiding targeted interventions in homes and communities. Ultimately, the choice of analytical methodology for lead in any given laboratory depends on the availability of instrumentation (e.g., graphite furnace AAS versus ICP/MS), daily sample volume, the clinical or surveillance purpose of testing, and the technical expertise of laboratory personnel.[55] Arsenic analysis further illustrates the strengths of ICP-MS and the need for speciation studies. ICP-MS can accurately quantify total arsenic in biological samples, but total concentrations alone do not distinguish between toxic inorganic arsenic species and relatively non-toxic organic forms derived from seafood, such as arsenobetaine.[56] To address this challenge, highperformance liquid chromatography (HPLC) is often coupled with ICP-MS to separate arsenic species before detection. This hyphenated technique enables resolution of inorganic arsenic (As III and As V), MMA, DMA, and organic arsenic compounds, thereby allowing more precise assessment of toxic exposure.[56] Such speciation is invaluable when interpreting urine arsenic results in patients with recent seafood consumption, preventing misdiagnosis of arsenic poisoning based solely on elevated total

Cadmium is traditionally measured using atomic absorption spectrometry, particularly graphite furnace AAS, because of its excellent sensitivity for this metal.[57] However, ICP-MS has become increasingly favored due to its ability to simultaneously measure cadmium along with other metals of interest in a single analytical run, enhancing efficiency and diagnostic breadth.[57] Similarly, thallium, a metal often encountered in toxicological emergencies or medicolegal investigations, is

arsenic concentrations.

routinely quantified using ICP-MS in both blood and urine, capitalizing on the method's exceptional sensitivity and selectivity.[57] Chromium testing demonstrates both the advantages and challenges of ICP-MS. ICP-MS is the preferred technology for quantifying chromium in body fluids, including serum, plasma, and urine, because of its sensitivity and multi-element capability.[58] However, chromium analysis by ICP-MS is prone to interference from polyatomic ions formed in the plasma, such as species originating from argon, carbon, nitrogen, or chlorine that can share the same nominal mass as chromium isotopes.[58] These interferences can cause falsely elevated results if not properly addressed. Advanced instrumental strategies, such as dynamic reaction cell (DRC) technology or collision cell systems with kinetic energy discrimination, are employed to mitigate these polyatomic interferences.[58] Reactive gases introduced into the cell can selectively neutralize or shift the mass of interfering ions, while collisioninduced energy discrimination separates analyte ions from interfering species based on kinetic properties. The implementation of these technologies is crucial for achieving reproducible and accurate chromium measurements, particularly in patients with metal-onmetal joint replacements or occupational exposure to hexavalent chromium compounds.[58] Beyond the analytical instrumentation, rigorous quality assurance and quality control (QA/QC) procedures are integral to reliable testing. Calibration using matrix-matched standards, routine analysis of certified reference materials, participation in external proficiency testing programs, and careful monitoring of blanks and controls are necessary to ensure ongoing accuracy and precision.[49],[51] Laboratories must also address pre-analytical factors such as specimen collection, transport, and storage, which can dramatically influence test results if not properly managed. For and ultra-trace analysis, even contamination from collection tubes, needles, reagents, or the environment can compromise data integrity. In summary, testing procedures for heavy metals rely on sophisticated analytical techniques tailored to the unique physicochemical properties and clinical relevance of each metal.[49-58] The selection of appropriate methods—whether AAS, AES, ASV, or ICP-MS—depends on required sensitivity, sample throughput, instrument availability, and the need for speciation. Coupled with robust QA/QC practices and thoughtful clinical interpretation, these procedures form the cornerstone of accurate detection and monitoring of heavy metal exposure, ultimately supporting timely intervention, prevention of further exposure, and improved patient outcomes.

Test Type	Specimen Type	Elevated
Arsenic	Blood	> 70 µg/L
	Urine - Adults	≥ 100 µg/L
	Urine - children	≥ 50 µg/L
Cadmium	Blood	> 5 µg/L
	Urine	> 2 μg/L or
		> 3 µg/g creatinine
Mercury	Blood - Adults	≥ 15 µg/L
	Blood - Children	> 10 µg/L
	Urine - Adults	> 20 µg/L or
		> 35 µg/g creatinine
	Urine - Children	> 10 µg/L

Fig. 4: Heavy Metal Testing. **Interfering Factors**

Interfering factors play a significant role in the accuracy and interpretation of heavy metal testing, and careful attention to pre-analytical considerations is essential to avoid misleading results. One of the most common and well-recognized sources of interference is recent seafood consumption, which can elevate levels of certain metals, particularly organic arsenic compounds such as arsenobetaine. Because these organic forms are relatively non-toxic yet appear in blood and urine at high concentrations shortly after ingestion, patients are generally advised to avoid seafood for at least 48 hours before testing.[59] Failure to observe this precaution may result in falsely elevated total arsenic levels, complicating the distinction between benign dietary exposure and clinically significant inorganic arsenic toxicity. In addition to dietary sources, imaging contrast agents can also interfere with heavy metal assays. Some laboratories recommend avoiding iodine-based or gadolinium-based contrast material for at least 72 hours prior to specimen collection, as these agents may alter the analytical detection of certain trace elements, including selenium, platinum, zinc. manganese.[60] This interference is often methoddependent, particularly in techniques such as ICP-MS, where high concentrations of contrast-related ions can cause spectral overlap or matrix effects that compromise quantification. Clinical coordination between radiology and laboratory services is therefore crucial when heavy metal testing is anticipated, especially in hospitalized or chronically ill patients who may undergo frequent imaging studies. Environmental exposures must also be carefully considered, particularly when hair or nail samples are used. Unlike blood or urine, these keratinized tissues can easily bind exogenous metals from the environment, creating the impression of elevated internal body burden when in fact the contamination is external. Cadmium, for instance, is present in cigarette smoke and can adhere to the outer surface of hair and nails. Individuals who smokers who live with smokers-may exhibit falsely elevated cadmium levels when these specimens are analyzed.[59] Other external contaminants, such as metal-rich dust in industrial environments or cosmetic treatments applied to hair or nails, may similarly skew results. These issues can be minimized through meticulous sample preparation in analytical laboratories, including washing procedures designed to remove exogenous contaminants while preserving endogenous metal content.

Moreover, the accuracy of heavy metal assays may be affected by improper specimen handling, storage, or collection materials. For example, using non-traceelement-free tubes may introduce exogenous metals, spurious leading to elevations. Similarly, contamination from stainless steel needles. environmental dust, or even laboratory reagents can lead to analytical artifacts, particularly when testing for metals present at extremely low concentrations. This underscores the importance of adhering to standardized protocols for specimen collection and handling, including the use of certified trace-metalfree collection containers and strict avoidance of environmental contamination. Overall, understanding and mitigating interfering factors is essential for the reliability of heavy metal testing. By carefully timing specimen collection, avoiding recent dietary and contrast exposures, accounting for environmental contaminants, and employing rigorous pre-analytical controls, clinicians and laboratory personnel can significantly improve the accuracy of test results and ensure valid interpretation that supports optimal patient care.[59][60]

Clinical Significance

The clinical significance of heavy metal testing extends beyond a simple comparison of laboratory results to provided reference ranges. For each element, testing laboratory reports a measured concentration alongside a reference interval, which is derived from population-based typically biomonitoring data or local cohort studies.[61] It is essential to recognize that these reference values may vary among laboratories and across geographic regions due to differences in environmental exposure, dietary patterns, industrial activity, and analytical methodologies.[61][62] Importantly, a concentration that falls within the statistical "normal" range for a given population does not necessarily imply an absence of biological or health effects. For certain metals, even low-level exposures have been associated with subtle but clinically relevant outcomes, particularly in vulnerable groups such as children, pregnant women, and individuals with comorbidities. Regulatory bodies such as OSHA and the EPA periodically revise acceptable exposure limits as new toxicological and epidemiologic data emerge, emphasizing that safety thresholds are dynamic rather than fixed. Conversely, an "abnormal" or higher-thanaverage heavy metal concentration does not, by itself, establish a diagnosis of toxicity. Interpretation must be contextualized within the patient's clinical picture, including symptoms, physical findings, exposure history, and comorbid conditions. Some individuals with elevated levels may remain asymptomatic, whereas others may exhibit clear signs of organ dysfunction at similar or even lower concentrations. Therefore, when confronted with a result exceeding the usual reference range, clinicians should not immediately equate this with poisoning but should instead initiate a systematic evaluation of potential exposure sources, duration, and intensity, as well as a careful assessment for target-organ effects. Follow-up testing, trend analysis, and consultation with toxicology or occupational health specialists may be warranted. In this way, heavy metal measurements serve as a critical tool for risk assessment and clinical decision-making, guiding interventions aimed at exposure reduction, monitoring, and. when appropriate, chelation or other therapeutic strategies.[61][62]

Quality Control and Lab Safety

Quality control and laboratory safety are central pillars in the accurate measurement of trace and ultra-trace heavy metals, where even minute analytical errors or contamination can significantly distort clinical interpretation. The Clinical Laboratory Improvement Amendments of 1988 (CLIA) mandate that every clinical laboratory implement robust quality control (QC) procedures designed to monitor both the accuracy and precision of the entire testing process, from pre-analytic specimen handling to final result reporting.[63] In the context of trace element analysis, these requirements are particularly stringent because the analyte concentrations are often in the nanogram or microgram range, and small deviations in calibration or technique can lead to clinically meaningful discrepancies. Quality assurance programs therefore must encompass instrument maintenance, calibration verification, internal OC material monitoring, staff competency assessment, and documentation.[63][64] systematic spectrometry-based methods, especially inductively coupled plasma mass spectrometry (ICP-MS), have become the mainstay for multi-element analysis due to their sensitivity and specificity. However, these instruments are more complex and maintenanceintensive than many traditional clinical analyzers.[64] Unlike routine optical spectrophotometry, mass spectrometers often require more frequent troubleshooting, optimization of plasma and ion optics conditions, daily performance verification, and ongoing assessment of spectral interferences.[64] This higher technical complexity underscores the necessity of comprehensive training for laboratory personnel and the establishment of detailed standard operating procedures. Fortunately, in trace element analysis, several certified reference materials (CRMs) are available for biological fluids and tissues, enabling laboratories to evaluate trueness (accuracy) and method performance against independent, wellcharacterized standards.[64] The routine use of CRMs strengthens the validity of patient results and supports compliance with regulatory and accreditation requirements.

Participation in external quality assessment through proficiency testing (PT) schemes is another indispensable component of quality assurance for trace metal laboratories.[65] In PT programs, a central provider distributes standardized samples with unknown (to the participants) concentrations of specific metals to a network of laboratories. Each laboratory analyzes these PT specimens using its routine methods and reports the results back to the provider for evaluation.[66] The PT provider assigns target values to the samples, often based on reference methods or consensus means, and determines whether each laboratory's results fall within acceptable limits reflect clinically tolerable imprecision.[66][67] This process allows laboratories to compare their performance with peer institutions, verify adherence to manufacturers' specifications, and identify systematic errors that might not be apparent from internal QC alone. PT is thus a powerful tool for benchmarking and continuous improvement in trace element testing.[65][67] Acceptability limits for PT are not arbitrary; they incorporate both methodspecific and analyte-specific considerations. These limits account for components of error such as analytical bias, random imprecision, calibration differences between laboratories, and characteristics of the PT materials themselves, including homogeneity, stability during storage and shipping, and matrix-related effects.[68] For example, the CLIA-88 performance criteria for blood lead analysis stipulate that laboratories must achieve accuracy within $\pm 2 \mu g/dL$ or $\pm 10\%$ of the peer group mean, whichever is greater.[69][70] These criteria recognize the public health importance of precise lead measurement, especially in children, where small differences in concentration may have significant neurodevelopmental implications. Laboratories failing to meet these criteria risk not only regulatory noncompliance but also compromised patient safety and public health decision-making.[69]

When a PT result falls outside the acceptable range, the laboratory is obligated to conduct a thorough investigation to identify possible causes and implement corrective actions.[68] Potential issues include instrument malfunction, reagent degradation, incorrect calibration, sample mix-up, or data transcription errors. Even when PT results technically meet acceptance criteria, it is considered good practice to scrutinize any result with a standard deviation index (SDI) greater than approximately 2.5.[65] An SDI of 2.5 indicates only a 0.6% probability that the result belongs to the expected distribution of the peer group, suggesting a non-trivial likelihood of a method-related problem.[65] Similarly, repeated PT results that approach failure thresholds over multiple events, even if still technically acceptable, should prompt a review for emerging

systematic errors or drifting calibration.[66][68] These proactive reviews help identify and resolve issues before they evolve into serious quality failures or lead to erroneous patient results. In parallel with analytical quality control, laboratory safety practices are crucial in trace metal analysis, both to protect personnel and to prevent contamination that may compromise results.[71] Given that target metal concentrations are often at ultra-trace levels, even minor environmental contamination—from dust, equipment, reagents, or human handling-can lead to falsely elevated measurements. Proper sample handling begins with the use of gloves and, where appropriate, additional personal protective equipment to prevent both exposure and inadvertent transfer of metals from skin or clothing to specimens.[71] Dedicated, trace-metal free collection containers, pipettes, and labware should be used to minimize contamination, and instruments should be maintained according to manufacturer recommendations with regular cleaning of sample introduction systems.

Maintaining a clean, organized workspace is equally important. Benches, laminar flow hoods, and analytical instruments should be regularly cleaned using appropriate agents that do not themselves introduce trace metals.[71] Glassware and plasticware intended for trace metal work may require pretreatment, such as acid washing and thorough rinsing deionized water, to remove residual contaminants. Laboratories should establish clear zoning between pre-analytical, analytical, and postanalytical areas to minimize cross-contamination. Strict adherence to written protocols for specimen accessioning, aliquoting, and storage helps prevent mix-ups and ensures chain-of-custody integrity, which is particularly important in occupational medicine and medicolegal contexts. Waste management is another aspect of laboratory safety environmental stewardship. Solutions, samples, and consumables contaminated with heavy metals must be collected in designated hazardous-waste containers and disposed of according to institutional policies and local, state, or national regulations.[72] Improper disposal can lead to environmental contamination and secondary exposure risks. Staff must be trained to recognize hazardous materials, segregate waste streams appropriately, and document disposal procedures in compliance with requirements. Safety data sheets (SDS) for reagents and standards should be readily accessible, and emergency procedures for spills or accidental exposures must be clearly defined and rehearsed.[72] It is also important to acknowledge that specific safety practices and QC approaches may vary among laboratories, depending testing on instrumentation, accreditation status, and the range of metals analyzed.[71] High-throughput reference laboratories may employ automated systems and advanced clean-room designs, whereas smaller hospital or regional laboratories may rely on more

fundamental standards of accuracy, safety, and regulatory compliance. Regardless of scale, the guiding principles remain the same: rigorous quality control to ensure reliable, clinically meaningful results, and robust safety measures to protect both personnel and the integrity of the testing process. By integrating CLIA-compliant QC systems, participating in external proficiency testing, and

enforcing stringent lab safety practices, laboratories

contribute decisively to the accurate diagnosis and

monitoring of heavy metal exposure, ultimately

supporting better patient outcomes and public health

modest infrastructure but still must meet the same

Enhancing Healthcare Team Outcomes

protection.[63-72].

Improving healthcare team outcomes in the evaluation and management of heavy metal toxicity depends on a coordinated, interprofessional approach grounded in thorough assessment, technical accuracy, and effective communication. Because heavy metal toxicity often presents with vague, nonspecific clinical symptoms such as fatigue, abdominal pain, neurocognitive changes, and dermatologic manifestations-it can easily be mistaken for more common medical conditions. This diagnostic ambiguity underscores the need for clinicians to obtain a comprehensive environmental, occupational, dietary, and residential history. Such histories are especially crucial in pediatric populations, where exposure to metals like lead, arsenic, and mercury can produce long-term neurological and developmental consequences. Early recognition and timely testing improve the likelihood of preventing irreversible harm. Healthcare providers must maintain a high index of suspicion for heavy metal exposure in individuals with occupational risk factors, such as those working in mining, welding, battery manufacture, construction, or other industrial settings. For these populations, routine heavy metal testing—guided by exposure risk and regulatory recommendations—can provide essential surveillance to detect elevated levels before clinical toxicity develops. When heavy metal toxicity is suspected, clinicians are encouraged to consult their regional poison control center or a medical toxicologist. These experts can provide critical guidance on specimen selection, test interpretation, chelation options, and emergency interventions. Collaboration with local public health departments is also invaluable, as patterns of elevated metal concentrations in patients may signal environmental contamination or regulatory violations. Public health agencies can assist in identifying community-level exposure sources, coordinating environmental testing, and implementing remediation measures. Nurses play a key role in patient education, specimen collection, and ongoing monitoring. Their training must emphasize proper venipuncture techniques, use of trace-metal-free tubes, and awareness of common sources of contamination. Because heavy metal assays measure

substances at extremely low concentrations, improper handling can introduce exogenous metals and yield inaccurate or misleading results. Laboratory technologists must likewise be proficient in the technical protocols specific to trace metal analysis, including sample preparation, contamination prevention, and calibration verification. Their knowledge directly impacts test accuracy and ultimately the clinical decisions made by physicians and toxicologists. Effective communication among clinicians, nurses, laboratorians, pharmacists, environmental health specialists, and toxicology consultants strengthens diagnostic accuracy and optimizes patient management. Through coordinated surveillance, precise laboratory practices, and collaborative clinical decision-making, healthcare teams can more effectively identify heavy metal exposure, reduce preventable harm, and ensure timely, evidence-based treatment for affected individuals.

Conclusion:

In conclusion, the effective management of heavy metal toxicity demands a highly coordinated, interprofessional approach. Diagnosis is complex, relying on the crucial triad of a plausible exposure history, consistent clinical signs, and confirmatory laboratory testing. The accuracy of this testing is paramount, requiring meticulous specimen collection, advanced analytical techniques like ICP-MS, and rigorous quality control to avoid contamination. Ultimately, a result is only clinically meaningful when interpreted by a skilled team that understands the nuances of metal-specific toxicokinetics population biomonitoring data. This collaborative model extends beyond diagnosis to encompass all aspects of patient care. Clinicians, nurses, laboratory technologists, pharmacists, and medical toxicologists must communicate effectively to guide appropriate management, which may include chelation therapy, and to implement essential exposure mitigation strategies. Furthermore, collaboration with public health authorities is vital for identifying communitywide exposure sources and implementing preventive measures. Through this integrated, team-based framework, healthcare professionals can significantly improve outcomes for affected individuals and contribute to broader public health protection against the pervasive threat of heavy metal exposure.

References:

- 1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133-64.
- 2. Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167-82.
- 3. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018 Jan;119(1):157-184.
- 4. Dorne JL, Kass GE, Bordajandi LR, Amzal B, Bertelsen U, Castoldi AF, Heppner C, Eskola M,

- Fabiansson S, Ferrari P, Scaravelli E, Dogliotti E, Fuerst P, Boobis AR, Verger P. Human risk assessment of heavy metals: principles and applications. Met Ions Life Sci. 2011;8:27-60.
- Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett. 2003 Jan 31;137(1-2):65-83.
- Mikulski MA, Wichman MD, Simmons DL, Pham AN, Clottey V, Fuortes LJ. Toxic metals in ayurvedic preparations from a public health lead poisoning cluster investigation. Int J Occup Environ Health. 2017 Jul;23(3):187-192.
- Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014 Jun;7(2):60-72.
- 8. Hanna-Attisha M, Lanphear B, Landrigan P. Lead Poisoning in the 21st Century: The Silent Epidemic Continues. Am J Public Health. 2018 Nov;108(11):1430.
- Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA. Cadmium in Human Diseases: It's More than Just a Mere Metal. Indian J Clin Biochem. 2019 Oct;34(4):371-378.
- Kim H, Lee HJ, Hwang JY, Ha EH, Park H, Ha M, Kim JH, Hong YC, Chang N. Blood cadmium concentrations of male cigarette smokers are inversely associated with fruit consumption. J Nutr. 2010 Jun;140(6):1133-8.
- 11. Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health. 2012;2012:460508.
- Carocci A, Rovito N, Sinicropi MS, Genchi G. Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol. 2014;229:1-18.
- Bjørklund G, Hilt B, Dadar M, Lindh U, Aaseth J. Neurotoxic effects of mercury exposure in dental personnel. Basic Clin Pharmacol Toxicol. 2019 May;124(5):568-574.
- Hossini H, Shafie B, Niri AD, Nazari M, Esfahlan AJ, Ahmadpour M, Nazmara Z, Ahmadimanesh M, Makhdoumi P, Mirzaei N, Hoseinzadeh E. A comprehensive review on human health effects of chromium: insights on induced toxicity. Environ Sci Pollut Res Int. 2022 Oct;29(47):70686-70705.
- 15. Baruthio F. Toxic effects of chromium and its compounds. Biol Trace Elem Res. 1992 Jan-Mar;32:145-53.
- DesMarais TL, Costa M. Mechanisms of Chromium-Induced Toxicity. Curr Opin Toxicol. 2019 Apr;14:1-7.
- 17. Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: An overview. Indian J Pharmacol. 2011 May;43(3):246-53.

- Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015 Jun;8(2):55-64
- 19. Zajac L, Johnson SA, Hauptman M. Doc, can you test me for "toxic metals"? Challenges of testing for toxicants in patients with environmental concerns. Curr Probl Pediatr Adolesc Health Care. 2020 Feb;50(2):100762.
- 20. Wang YX, Feng W, Zeng Q, Sun Y, Wang P, You L, Yang P, Huang Z, Yu SL, Lu WQ. Variability of Metal Levels in Spot, First Morning, and 24-Hour Urine Samples over a 3-Month Period in Healthy Adult Chinese Men. Environ Health Perspect. 2016 Apr;124(4):468-76.
- 21. Barlow NL, Bradberry SM. Investigation and monitoring of heavy metal poisoning. J Clin Pathol. 2023 Feb;76(2):82-97.
- 22. Rodushkin I, Odman F. Assessment of the contamination from devices used for sampling and storage of whole blood and serum for element analysis. J Trace Elem Med Biol. 2001;15(1):40-5.
- Moyer TP, Mussmann GV, Nixon DE. Bloodcollection device for trace and ultra-trace metal specimens evaluated. Clin Chem. 1991 May;37(5):709-14.
- 24. Boeynaems JM, De Leener A, Dessars B, Villa-Lobos HR, Aubry JC, Cotton F, Thiry P. Evaluation of a new generation of plastic evacuated blood-collection tubes in clinical chemistry, therapeutic drug monitoring, hormone and trace metal analysis. Clin Chem Lab Med. 2004 Jan;42(1):67-71.
- 25. Sommar JN, Hedmer M, Lundh T, Nilsson L, Skerfving S, Bergdahl IA. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure. J Expo Sci Environ Epidemiol. 2014 Jan-Feb;24(1):51-7.
- Smith D, Hernandez-Avila M, Téllez-Rojo MM, Mercado A, Hu H. The relationship between lead in plasma and whole blood in women. Environ Health Perspect. 2002 Mar;110(3):263-8.
- 27. Barbosa F, Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect. 2005 Dec;113(12):1669-74.
- 28. Banfi G, Salvagno GL, Lippi G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin Chem Lab Med. 2007;45(5):565-76.
- 29. Moreira Mde F, Neves EB. [Use of urine lead level as an exposure indicator and its relationship to blood lead]. Cad Saude Publica. 2008 Sep;24(9):2151-9.
- 30. Wang X, Gu H, Palma-Duran SA, Fierro A, Jasbi P, Shi X, Bresette W, Tasevska N. Influence of Storage Conditions and Preservatives on

- Metabolite Fingerprints in Urine. Metabolites. 2019 Sep 27;9(10)
- 31. Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat MP. What is the best biomarker to assess arsenic exposure via drinking water? Environ Int. 2012 Feb;39(1):150-71.
- 32. Hall M, Chen Y, Ahsan H, Slavkovich V, van Geen A, Parvez F, Graziano J. Blood arsenic as a biomarker of arsenic exposure: results from a prospective study. Toxicology. 2006 Aug 15;225(2-3):225-33.
- 33. Takayama Y, Masuzaki Y, Mizutani F, Iwata T, Maeda E, Tsukada M, Nomura K, Ito Y, Chisaki Y, Murata K. Associations between blood arsenic and urinary arsenic species concentrations as an exposure characterization tool. Sci Total Environ. 2021 Jan 01;750:141517.
- 34. Villain M, Cirimele V, Kintz P. Hair analysis in toxicology. Clin Chem Lab Med. 2004;42(11):1265-72.
- 35. Sharma S, Gupta A, Deshmukh A, Puri V. Arsenic poisoning and Mees' lines. QJM. 2016 Aug;109(8):565-6.
- Kintz P. Hair Analysis in Forensic Toxicology: An Updated Review with a Special Focus on Pitfalls. Curr Pharm Des. 2017;23(36):5480-5486.
- Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020 May 26;17(11)
- Osorio-Rico L, Santamaria A, Galván-Arzate S. Thallium Toxicity: General Issues, Neurological Symptoms, and Neurotoxic Mechanisms. Adv Neurobiol. 2017;18:345-353.
- Verdonck J, Duca RC, Galea KS, Iavicoli I, Poels K, Töreyin ZN, Vanoirbeek J, Godderis L. Systematic review of biomonitoring data on occupational exposure to hexavalent chromium. Int J Hyg Environ Health. 2021 Jul;236:113799.
- 40. Hodnett D, Wood DM, Raja K, Dargan PI, Shah AD. A healthy volunteer study to investigate trace element contamination of blood samples by stainless steel venepuncture needles. Clin Toxicol (Phila). 2012 Feb;50(2):99-107.
- 41. Wilschefski SC, Baxter MR. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev. 2019 Aug;40(3):115-133.
- 42. Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA. Human exposure to organic arsenic species from seafood. Sci Total Environ. 2017 Feb 15:580:266-282.
- 43. Molin M, Ydersbond TA, Ulven SM, Holck M, Dahl L, Sloth JJ, Fliegel D, Goessler W, Alexander J, Meltzer HM. Major and minor arsenic compounds accounting for the total

- urinary excretion of arsenic following intake of blue mussels (Mytilus edulis): a controlled human study. Food Chem Toxicol. 2012 Jul;50(7):2462-72.
- 44. Hackenmueller SA, Strathmann FG. Total arsenic screening prior to fractionation enhances clinical utility and test utilization in the assessment of arsenic toxicity. Am J Clin Pathol. 2014 Aug;142(2):184-9.
- 45. Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Caspian J Intern Med. 2017 Summer;8(3):135-145.
- 46. Yaginuma-Sakurai K, Murata K, Iwai-Shimada M, Nakai K, Kurokawa N, Tatsuta N, Satoh H. Hair-to-blood ratio and biological half-life of mercury: experimental study of methylmercury exposure through fish consumption in humans. J Toxicol Sci. 2012 Feb;37(1):123-30.
- 47. Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Hong YS. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med. 2016;28:5.
- 48. Martin Remy A, Robert A, Jacoby N, Wild P. Is Urinary Chromium Specific to Hexavalent Chromium Exposure in the Presence of Coexposure to Other Chromium Compounds? A Biomonitoring Study in the Electroplating Industry. Ann Work Expo Health. 2021 Apr 22;65(3):332-345.
- 49. Bolann BJ, Rahil-Khazen R, Henriksen H, Isrenn R, Ulvik RJ. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory. Scand J Clin Lab Invest. 2007;67(4):353-66.
- 50. Plantin LO. Analytical methods for trace elements in biological material. Acta Neurol Scand Suppl. 1984;100:95-9.
- 51. Mattiello G, Bortoli A. [Instrumental analysis of trace elements]. Ann Ist Super Sanita. 1995;31(2):233-7.
- 52. Forrer R, Gautschi K, Lutz H. Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biol Trace Elem Res. 2001 Apr;80(1):77-93.
- 53. Gulson B, Kamenov GD, Manton W, Rabinowitz M. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields. Int J Environ Res Public Health. 2018 Apr 11;15(4)
- 54. Rodushkin I, Engström E, Baxter DC. Isotopic analyses by ICP-MS in clinical samples. Anal Bioanal Chem. 2013 Mar;405(9):2785-97.
- 55. Trzcinka-Ochocka M, Brodzka R, Janasik B. Useful and Fast Method for Blood Lead and

- Cadmium Determination Using ICP-MS and GF-AAS; Validation Parameters. J Clin Lab Anal. 2016 Mar;30(2):130-9.
- 56. Morton J, Leese E. Arsenic speciation in clinical samples: urine analysis using fast micro-liquid chromatography ICP-MS. Anal Bioanal Chem. 2011 Feb;399(5):1781-8.
- 57. Jones DR, Jarrett JM, Tevis DS, Franklin M, Mullinix NJ, Wallon KL, Derrick Quarles C, Caldwell KL, Jones RL. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures. Talanta. 2017 Jan 01;162:114-122.
- 58. Georgi JC, Sommer YL, Ward CD, Cheng PY, Jones RL, Caldwell KL. Biomonitoring method for the analysis of chromium and cobalt in human whole blood using inductively coupled plasma kinetic energy discrimination mass spectrometry (ICP-KED-MS). Anal Methods. 2017;9(23):3464-3476.
- 59. Steuerwald AJ, Parsons PJ, Arnason JG, Chen Z, Peterson CM, Louis GM. Trace element analysis of human urine collected after administration of Gd-based MRI contrast agents: characterizing spectral interferences using inorganic mass spectrometry. J Anal At Spectrom. 2013 Jun;28(6):821-830.
- 60. Lippi G, Daves M, Mattiuzzi C. Interference of medical contrast media on laboratory testing. Biochem Med (Zagreb). 2014;24(1):80-8
- Saravanabhavan G, Werry K, Walker M, Haines D, Malowany M, Khoury C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007-2013. Int J Hyg Environ Health. 2017 Mar;220(2 Pt A):189-200.
- 62. Namkoong S, Hong SP, Kim MH, Park BC. Reliability on intra-laboratory and interlaboratory data of hair mineral analysis comparing with blood analysis. Ann Dermatol. 2013 Feb;25(1):67-72.
- Badrick T. Quality leadership and quality control. Clin Biochem Rev. 2003 Aug;24(3):81-93.
- 64. Buratti M, Xaiz D, Valia C, Colombi A. Inaccuracy quality control in the monitoring of trace metal concentrations in biological fluids. Sci Total Environ. 1992 Jun 09;120(1-2):81-3.
- 65. James D, Ames D, Lopez B, Still R, Simpson W, Twomey P. External quality assessment: best practice. J Clin Pathol. 2014 Aug;67(8):651-5.
- Miller WG, Jones GR, Horowitz GL, Weykamp C. Proficiency testing/external quality assessment: current challenges and future directions. Clin Chem. 2011 Dec;57(12):1670-80
- 67. Hertzberg MS, Mammen J, McCraw A, Nair SC, Srivastava A. Achieving and maintaining quality

- in the laboratory. Haemophilia. 2006 Jul;12 Suppl 3:61-7.
- 68. Kristensen GB, Meijer P. Interpretation of EQA results and EQA-based trouble shooting. Biochem Med (Zagreb). 2017 Feb 15;27(1):49-62.
- 69. Keleş M. Evaluation of the clinical chemistry tests analytical performance with Sigma Metric by using different quality specifications Comparison of analyser actual performance with manufacturer data. Biochem Med (Zagreb). 2022 Feb 15;32(1):010703.
- 70. Ehrmeyer SS, Laessig RH. Has compliance with CLIA requirements really improved quality in US clinical laboratories? Clin Chim Acta. 2004 Aug 02;346(1):37-43.
- Sommer YL, Ward CD, Georgi JC, Cheng PY, Jones RL. Importance of Preanalytical Factors in Measuring Cr and Co Levels in Human Whole Blood: Contamination Control, Proper Sample Collection and Long-Term Storage Stability. J Anal Toxicol. 2021 Mar 12;45(3):297-307.
- 72. Ward CD, Williams RJ, Mullenix K, Syhapanha K, Jones RL, Caldwell K. Trace Metals Screening Process of Devices Used for the Collection, Analysis, and Storage of Biological Specimens. At Spectrosc. 2018 Dec;39(6):219-228