

Multidisciplinary Nursing, Pharmacological, and Radiologic Perspectives in the Assessment and Management of Arachnoid Cysts

Fatimah Mutairan Almutairi ⁽¹⁾, Asrar Mohammed Faqih ⁽²⁾, Badryah Ghabran Ahmed Ghazwani ⁽³⁾, Hanan Abdu Yahy Matari ⁽⁴⁾, Marzuq Quedan Aleutaybi ⁽⁵⁾, Faisal Mohammed Saifi Aljabri ⁽⁶⁾, Dhoha Mohammed Daba ⁽⁷⁾, Esaam Mohammed Abdullah Shaker ⁽⁸⁾, Haya Tulihan Alenezi ⁽⁹⁾, Anoud Owead Alanzi ⁽¹⁰⁾, Jawaher Dahlool Alenazi ⁽¹⁰⁾, Naif Mazyad Alharbi ⁽¹¹⁾

(1) Ministry Of Health , Saudi Arabia,

(2) King Fahad Central Hospital in Jazan,Ministry of Health, Saudi Arabia,

(3) Al-Aidabi Health Center Jazan, Ministry of Health, Saudi Arabia,

(4) Abuarish General Hospital, Ministry of Health, Saudi Arabia,

(5) Afif General Hospital, Ministry of Health, Saudi Arabia,

(6) Branche Of Ministry Of Health, Riyadh Region, Saudi Arabia,

(7) Fahd Medical City , Ministry of Health, Saudi Arabia,

(8) King Salman Bin Abdulaziz Medical City - Mental Health Hospital, Ministry of Health, Saudi Arabia,

(9) King Khalid Hospital , Ministry of Health, Saudi Arabia,

(10) Chest Clinic In Alrawadh, Ministry of Health, Saudi Arabia,

(11) Alharm Hospital , Ministry of Health, Saudi Arabia.

Abstract

Background: Arachnoid cysts are benign, cerebrospinal fluid (CSF)-filled sacs that develop within the arachnoid membrane, representing one of the most common intracranial cystic lesions. They are predominantly congenital, arising from abnormal embryological development, and are most frequently located in the middle cranial fossa. While often discovered incidentally, a subset can become symptomatic due to mass effect or CSF flow obstruction.

Aim: This article provides a comprehensive, multidisciplinary overview of arachnoid cysts, focusing on their etiology, clinical presentation, diagnostic evaluation, and management principles to guide healthcare professionals in distinguishing incidental findings from clinically significant cases requiring intervention.

Methods: Diagnosis relies primarily on neuroimaging. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are the mainstays, with cysts appearing as well-circumscribed, non-enhancing lesions that match CSF density/signal on all sequences. Advanced MRI techniques, such as cisternography and high-resolution T2-weighted imaging, are used to assess cyst communication with CSF spaces and for surgical planning.

Results: The vast majority of arachnoid cysts are asymptomatic and stable, requiring only conservative monitoring with periodic clinical and radiologic follow-up. For the minority that cause symptoms like headaches, seizures, focal neurological deficits, or hydrocephalus, surgical intervention is indicated. Treatment options include endoscopic or microsurgical fenestration to create communication with CSF pathways or, less commonly, cystoperitoneal shunting.

Conclusion: A patient-centered, multidisciplinary approach is essential for optimal management. Most cysts are benign and require no treatment, but accurate diagnosis and timely surgical referral for symptomatic cases lead to excellent outcomes. Effective interprofessional collaboration among radiologists, neurologists, neurosurgeons, and nurses ensures appropriate patient education, surveillance, and intervention.

Keywords: Arachnoid Cyst, Cerebrospinal Fluid, Intracranial Cyst, Neuroimaging, Fenestration, Incidental Finding, Mass Effect.

Introduction

Arachnoid cysts are benign, cerebrospinal fluid (CSF)-filled lesions that arise within the arachnoid membrane as a result of splitting or duplication of its layers.[1] They are classified among the most common intracranial cystic lesions and are typically extra-axial, lying within the subarachnoid spaces rather than within the brain parenchyma itself. Most arachnoid

cysts are found in the anterior or middle cranial fossa—especially in the region of the Sylvian fissure—or in a retrocerebellar location in the posterior fossa.[1] Although their existence has been recognized for centuries, the exact pathogenesis of arachnoid cysts remains only partially understood. Current evidence suggests that most are congenital lesions formed due to abnormal splitting or

maldevelopment of the arachnoid during embryogenesis.[2][3][4] Historically, arachnoid cysts were often misinterpreted as other intracranial masses. Intracranial arachnoid cysts may have been described as purely cystic tumors causing blindness as early as the fifteenth century, reflecting the limited diagnostic tools of that era.[5] A more accurate recognition emerged in the 19th century, when Bright provided one of the earliest precise descriptions in 1831, referring to a "serous cyst in the arachnoid." [6] Since that initial characterization, numerous clinicopathologic and radiologic studies have contributed to a more refined understanding of these lesions, their embryological origins, and their clinical significance.[6]

From an embryologic perspective, arachnoid cysts are believed to arise from focal anomalies in the development of the meninges and adjacent neural structures. During normal fetal development, the arachnoid membrane differentiates and separates from the pia mater, forming the subarachnoid space through which CSF circulates. Disruption or incomplete fusion of the arachnoid layers during this period may result in the formation of localized CSF-filled clefts that progressively evolve into cysts.[2][3][4] Surgical and angiographic studies of temporal arachnoid cysts, particularly those in the middle cranial fossa, have identified aberrant Sylvian vasculature and other developmental anomalies in the surrounding region. These findings support the concept that such cysts may originate as early as 6 to 10 weeks of gestation, underscoring their congenital nature and close relationship to early cerebrovascular and meningeal development. Clinically, arachnoid cysts display a broad spectrum of presentations, ranging from completely asymptomatic lesions detected incidentally to symptomatic masses causing significant neurologic impairment. In contemporary practice, most arachnoid cysts are discovered incidentally during cross-sectional neuroimaging—typically computed tomography (CT) or magnetic resonance imaging (MRI)—performed for unrelated indications such as headache, trauma, or nonspecific neurological complaints.[1][7] The increasing availability and sensitivity of neuroimaging have therefore led to a higher detection rate and a more nuanced understanding of their natural history.

Nevertheless, a subset of arachnoid cysts become clinically relevant when they reach sufficient size or occupy critical locations, exerting mass effect on adjacent neural structures or disrupting normal CSF dynamics. The symptomatology depends largely on the anatomical site and the specific neural or vascular structures compressed. For example, large middle cranial fossa cysts may present with headaches, seizures, or developmental delay in children, whereas lesions compressing the optic apparatus can result in visual field deficits or progressive vision loss.[1] Posterior fossa cysts may cause gait disturbance, vertigo, or cranial nerve dysfunction. Reported

symptoms associated with arachnoid cysts include vision loss; nausea or vomiting; macrocephaly in infants and young children; and a variety of cranial neuropathies such as paralysis of the oculomotor, trochlear, and abducens nerves, trigeminal neuropathy, hemifacial spasm, sensorineural hearing loss, facial palsy, vagus nerve palsy, vertigo, and eighth cranial nerve dysfunction, depending on the proximity of the cyst to these structures.[7][8] Radiologic evaluation is central to the diagnosis and management planning of arachnoid cysts. On CT, an arachnoid cyst typically appears as a well-circumscribed, extra-axial, low-attenuation lesion with density identical or nearly identical to CSF and a thin, often imperceptible wall.[7] There is usually no associated enhancement after contrast administration, and calcification is uncommon. In many cases, especially when the cyst is located in a characteristic region such as the middle cranial fossa, CT imaging alone is sufficient to make a confident diagnosis.[7] When further anatomical delineation is required—such as for preoperative planning, evaluation of subtle mass effect, or differentiation from other cystic entities—MRI is the imaging modality of choice. On MRI, arachnoid cysts follow CSF signal intensity on all sequences, including T1-weighted, T2-weighted, and FLAIR images, and they typically do not restrict diffusion. MRI can accurately define the cyst's size, exact location, relationships to adjacent brain parenchyma, cranial nerves, and vascular structures, and any associated remodeling or thinning of the overlying skull.[7]

Despite their sometimes impressive radiologic appearance, the vast majority of arachnoid cysts are clinically silent and require no active treatment. Longitudinal studies have demonstrated that many remain stable in size for years, and a conservative strategy of observation with periodic clinical and radiologic follow-up is appropriate in asymptomatic or minimally symptomatic patients.[7][8] In such cases, the primary clinical challenge lies in correctly attributing symptoms and avoiding unnecessary surgical intervention when the cyst is merely an incidental finding. In contrast, when an arachnoid cyst is clearly associated with mass effect, obstructive hydrocephalus, progressive neurological deficits, or intractable symptoms such as refractory headaches or seizures, surgical management may be indicated.[8] The decision to operate is influenced by factors including the patient's age, symptom severity and progression, cyst size and location, and the presence of complications such as bone remodeling or hydrocephalus. Several operative techniques are available, and the location of the cyst often dictates the surgical approach. Options include open microsurgical fenestration of the cyst into the basal cisterns or ventricular system, endoscopic fenestration, cystoperitoneal shunting, or combinations thereof.[8] The overarching goal of surgery is to establish durable communication between the cyst and normal CSF

pathways, thereby relieving mass effect and normalizing CSF dynamics while minimizing operative risk.

From a broader clinical and interdisciplinary perspective, arachnoid cysts are of particular relevance to neurosurgeons, neurologists, radiologists, nurses, and rehabilitation specialists. Nurses and allied health professionals play a vital role in monitoring symptoms, educating patients and families about the benign nature of most cysts, recognizing red flags such as new neurological deficits or signs of raised intracranial pressure, and supporting postoperative recovery when surgical intervention is undertaken. Pharmacists may be involved in optimizing medical management of associated symptoms such as seizures or headaches. Radiologists are central to diagnosis, surveillance, and preoperative planning. Collectively, this coordinated approach helps ensure that arachnoid cysts are managed in a manner that balances the risks and benefits of intervention against the often benign natural history of these common intracranial lesions.[1][7][8]

Figure-1: CT Scan of Arachnoid Cyst.

Etiology

The etiology of arachnoid cyst formation remains incompletely understood; however, current evidence strongly supports a predominantly congenital origin related to abnormal development of the arachnoid membrane during embryogenesis. Most authors theorize that arachnoid cysts arise from focal splitting, duplication, or maldevelopment of the arachnoid layers during critical stages of meningeal formation, resulting in a loculated compartment in which cerebrospinal fluid (CSF) accumulates and is subsequently maintained or expanded over time.[2][3][4] This mechanism is consistent with the typical extra-axial location of arachnoid cysts within the subarachnoid space and with their frequent detection in childhood, even when they remain clinically silent until adulthood. Although the majority of arachnoid cysts are believed to be primary and developmental, histopathological analyses have provided evidence that a subset may have an acquired

component. In some surgical specimens, the presence of inflammatory cells, excess collagen deposition, or hemosiderin staining within or around the cyst wall suggests that prior hemorrhage, infection, trauma, or a chronic inflammatory process may contribute to cyst formation, enlargement, or secondary modification of a pre-existing congenital lesion.[1] These findings support the concept that arachnoid cysts, while generally congenital in origin, may occasionally develop or evolve in response to external insults to the meninges. Notably, underlying gliosis in the adjacent brain tissue is not typically observed, even in large cysts exerting mass effect, indicating that the parenchyma is more often displaced and compressed than structurally destroyed.[1]

Arachnoid cysts are also reported in association with several congenital and genetic syndromes, reinforcing the notion of a developmental basis. These include Aicardi syndrome, a rare neurodevelopmental disorder characterized by agenesis of the corpus callosum, chorioretinal lacunae, and seizures, in which intracranial cysts are a recognized feature.[9] Mucopolysaccharidoses, a group of lysosomal storage disorders, have likewise been linked to arachnoid cysts, possibly reflecting abnormal connective tissue metabolism and meningeal involvement in these conditions.[10][11] Acrocallosal syndrome, another disorder associated with callosal agenesis, craniofacial anomalies, and polydactyly, has been reported in conjunction with arachnoid cysts, further highlighting the relationship between midline brain malformations and cyst formation.[12] Connective tissue disorders such as Marfan syndrome have also been associated with arachnoid cysts, potentially due to underlying structural weakness in meningeal collagen and elastin, predisposing to abnormal arachnoid architecture and CSF compartmentalization.[13] More recently, a missense mutation (c.2576C>T) in the arginine–glutamic acid dipeptide repeats gene (RERE) has been implicated in cases with arachnoid cysts, supporting a genetic contribution to aberrant neurodevelopmental and meningeal formation.[14] Chudley-McCullough syndrome, characterized by sensorineural hearing loss and a constellation of brain malformations, including enlarged cisterna magna and callosal anomalies, has been reported with concomitant arachnoid cysts, again reinforcing the developmental framework.[15] In addition, glutaric aciduria type 1 has been described in association with bilateral arachnoid cysts, suggesting that metabolic disturbances during brain development may create a permissive environment for cyst formation. Collectively, these associations underscore that arachnoid cysts may serve as radiologic markers of broader genetic or syndromic pathology in selected patients.

Intracranial Arachnoid Cyst Classification

Intracranial arachnoid cysts are commonly classified according to their anatomical location, a schema that has important implications for clinical presentation,

potential complications, and surgical planning.[16] Supratentorial cysts constitute the majority and include those arising in the Sylvian region (often termed middle cranial fossa cysts), suprasellar cistern, cerebral convexities, interhemispheric fissure, and within the ventricular system. Sylvian fissure cysts, in particular, are among the most frequently encountered and may cause temporal lobe compression in large lesions. Suprasellar cysts can compromise the optic chiasm and hypothalamic structures, leading to visual and endocrine disturbances, whereas interhemispheric and convexity cysts may present with focal neurological deficits or seizures depending on the involved cortex.[1][7][16] Intraventricular arachnoid cysts, although less common, can interfere with CSF pathways and contribute to obstructive hydrocephalus. Infratentorial arachnoid cysts are typically located in the cerebellopontine angle, retrocerebellar region, or, more rarely, within the fourth ventricle.[16] Cerebellopontine angle cysts may mimic tumors in this region and present with cranial nerve deficits, particularly affecting hearing and facial function. Retrocerebellar cysts can compress the cerebellum and brainstem, causing gait ataxia, vertigo, or obstructive hydrocephalus. Arachnoid cysts may also occur in the quadrigeminal cistern, at the midline dorsal to the tectal plate, where they can cause aqueductal stenosis and hydrocephalus. Some classification schemes group quadrigeminal cistern cysts separately or describe them as either supratentorial or infratentorial depending on their extension.[16]

Beyond location-based classification, the Galassi system provides a widely used framework specifically for middle cranial fossa (Sylvian fissure) arachnoid cysts and incorporates both size and anatomical extent.[17] Galassi type I cysts are small, localized lesions confined to the anterior temporal fossa, typically communicating with the subarachnoid space and usually asymptomatic.[17] These cysts are often discovered incidentally and rarely require intervention. Galassi type II cysts occupy a larger portion of the Sylvian fissure, extending superiorly and exerting mass effect that displaces the temporal lobe; these lesions may be associated with symptoms such as headaches, seizures, or developmental delay in children.[17] Galassi type III cysts are large, expansive lesions filling most or all of the middle cranial fossa, with significant displacement of the temporal, parietal, and frontal lobes and a higher likelihood of raised intracranial pressure or hydrocephalus.[17] This gradation aids clinicians and surgeons in correlating radiologic appearance with clinical symptoms and in determining the urgency and type of surgical intervention, when indicated. Taken together, etiologic factors and classification systems for arachnoid cysts highlight their predominantly congenital and developmental origins, their frequent association with broader neurodevelopmental or genetic syndromes, and the importance of precise

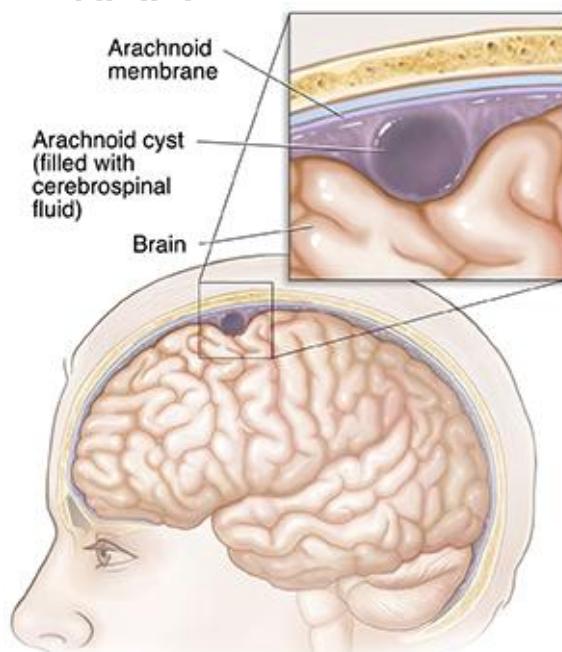
anatomical characterization for optimal clinical management.[1][2][3][4][9][16][17]

Epidemiology

The epidemiology of arachnoid cysts reflects their nature as predominantly congenital lesions that may be detected at any point across the lifespan. The age at presentation spans from the neonatal period through late adulthood; however, the majority of arachnoid cysts are identified during the first decade of life, often in the course of neuroimaging performed for developmental delay, macrocephaly, seizures, or nonspecific neurological complaints.[2][3] In many pediatric cases, cysts are discovered incidentally, underscoring the fact that a significant proportion remain clinically silent and may never become symptomatic. In contrast, in older individuals, detection is more commonly incidental during imaging for unrelated conditions such as trauma, headache, or cerebrovascular disease.[4][18] A consistent epidemiologic feature is the male predominance, with most series reporting a male-to-female ratio of approximately 2:1, although the exact ratio varies somewhat across different cohorts and study designs.[2][3][4] The reasons for this sex difference remain unclear but may relate to sex-linked genetic susceptibility, developmental differences in meningeal or cerebrospinal fluid dynamics, or potential ascertainment bias driven by differential patterns of health care utilization or neuroimaging. Nonetheless, this male predominance has been replicated sufficiently to be considered a characteristic feature of arachnoid cyst epidemiology.[2][3] Prevalence estimates derived from large imaging-based studies suggest that arachnoid cysts are not rare. In children, the prevalence has been estimated at approximately 2.6%, indicating that they represent a relatively common incidental finding in pediatric neuroimaging.[18] In adults, reported prevalence ranges from 0.2% to 1.7%, depending on the population studied, imaging modality, and inclusion criteria.[18] These figures likely reflect both true age-related differences and varying thresholds for imaging; because many cysts are congenital and remain stable, some will be detected in childhood, while others will only be discovered later in life when imaging is performed for other reasons.

Epidemiologic patterns also vary by location and symptomatology. Middle cranial fossa (Sylvian) cysts are among the most frequently reported, particularly in children, whereas retrocerebellar and cerebellopontine angle cysts constitute a higher proportion of symptomatic lesions in some adult series.[2][4][18] The majority of cysts, regardless of location, remain asymptomatic and require no intervention. Only a small subset progresses to cause significant mass effect, hydrocephalus, or focal neurological deficits. Consequently, the clinical epidemiology of arachnoid cysts reflects not only their overall prevalence but also the relatively low proportion that becomes clinically significant. Overall, the epidemiologic profile of

arachnoid cysts—congenital onset, frequent detection in childhood, male predominance, and relatively modest but non-negligible prevalence in both pediatric and adult populations—highlights the importance of distinguishing incidental findings from lesions of true clinical consequence, guiding rational decisions regarding surveillance and intervention.[2][3][4][18]


Pathophysiology

The pathophysiology of arachnoid cysts remains an area of ongoing investigation, with several theories proposed to explain their development, growth, and clinical behavior. One of the earliest and most influential hypotheses was described by Starkman et al, who suggested that abnormalities in cerebrospinal fluid (CSF) flow during embryogenesis play a central role in cyst formation.[6] According to this theory, arachnoid cysts arise when the pulsatile forces of CSF dissect the primitive meningeal layers as the subarachnoid space, pia mater, and arachnoid membrane are forming. If these layers fail to separate or close normally, a loculated cavity becomes isolated from the broader subarachnoid space, trapping CSF within the resulting pocket. This trapped CSF may then persist and expand passively, driven by CSF pulsations or the osmotic properties of the cyst wall. This mechanism aligns with the congenital nature of most arachnoid cysts and explains their typical detection early in life. Robinson et al proposed an alternative explanation centered on primary agenesis of the temporal lobe, suggesting that cysts in this region form due to intrinsic maldevelopment of the temporal lobe rather than meningeal abnormalities.[19] However, this hypothesis has been largely refuted by clinical observations. Notably, in patients undergoing surgical decompression of middle cranial fossa cysts, the temporal lobe frequently re-expands into the decompressed space, indicating that the observed compression is secondary to mass effect rather than primary agenesis.[19] This finding further supports the idea that cyst formation results from aberrant arachnoid development rather than cortical underdevelopment.

Another line of evidence implicates in utero insults as potential contributors to the formation or evolution of arachnoid cysts. Electron microscopic examinations of cyst walls in certain cases reveal hemosiderin deposits, inflammatory cells, a thickened collagen layer, and hyperplastic arachnoid cells—findings suggestive of prior hemorrhage, inflammation, or meningeal injury.[20] These histological features imply that some cysts may not be purely congenital but could develop or enlarge in response to trauma, infection, or other prenatal or perinatal insults. In such cases, an initial developmental defect may create a predisposition, with subsequent injury promoting cyst expansion or structural alteration. The anatomical location of cysts also provides insight into their pathophysiology. Suprasellar arachnoid cysts, for example, are thought to originate from splitting of the arachnoid membrane

in the suprasellar cistern, allowing the membrane to balloon downward through the sella turcica. Intrasellar cysts may similarly arise from herniation of the arachnoid through a congenital or acquired defect in the diaphragma sella, followed by isolation of the herniated sac as it separates from CSF pathways.[6][20] Intraventricular arachnoid cysts, although relatively rare, are believed to develop from arachnoid cell nests trapped within the choroidal fissure during embryonic growth, later forming fluid-filled cavities as CSF accumulates.

Importantly, while most arachnoid cysts are sporadic and lack identifiable genetic abnormalities, certain congenital and syndromic conditions have been associated with their formation. These include disorders such as Aicardi syndrome, mucopolysaccharidoses, Marfan syndrome, and others described in the Etiology section. The presence of arachnoid cysts within these syndromes reinforces the idea that disruptions in connective tissue integrity, meningeal development, or cerebrovascular formation can predispose to cyst formation. Still, in the majority of cases, significant genetic anomalies are not identified, suggesting that cysts arise from subtle abnormalities in early arachnoid membrane development rather than from overt genetic defects. In summary, the pathophysiology of arachnoid cysts reflects a complex interplay of congenital developmental anomalies, CSF flow dynamics, potential in utero insults, and regional anatomic factors. While no single theory fully explains all cases, the evidence strongly supports a multifactorial origin in which embryologic maldevelopment serves as the primary mechanism, modified in some instances by inflammatory, traumatic, or structural influences later in life.[6][19][20]

Figure-2: Arachnoid Cyst Structure.

Causes of Arachnoid Cyst Expansion

The mechanisms underlying arachnoid cyst expansion remain an area of active investigation, with several hypotheses proposed to explain why some cysts enlarge over time while others remain stable. One well-supported theory involves the formation of a one-way ball-valve mechanism, in which cerebrospinal fluid (CSF) flows into the cyst from the surrounding subarachnoid space during systole but is unable to exit with equal efficiency during diastole. This unidirectional influx gradually increases intracystic volume and pressure, leading to progressive cyst enlargement and, in some cases, symptomatic mass effect.[21] Another proposed mechanism centers on osmotic gradients between the intracystic fluid and the surrounding CSF. If the protein content or solute concentration within the cyst differs slightly from that of the subarachnoid space, osmotic forces may drive passive fluid movement into the cyst cavity. Over time, this imbalance can result in a net increase in fluid volume and cyst expansion. A third hypothesis is the active secretion of fluid by the arachnoid cyst wall. Although arachnoid membrane cells are not traditionally considered secretory, some histopathologic studies suggest that certain cyst linings may acquire secretory capabilities or transport properties that facilitate gradual CSF accumulation. These mechanisms are not mutually exclusive and may coexist in varying degrees across different cyst types and anatomical locations. Ultimately, while many arachnoid cysts remain stable throughout life, understanding the potential drivers of cyst expansion is essential for identifying patients at risk of progression and determining appropriate surveillance or intervention strategies.[21]

Histopathology

Histopathologically, arachnoid cysts are characterized by a delicate, thin-walled structure that reflects their origin within the arachnoid membrane. The cyst wall is typically composed of layers of flattened arachnoid cells, often supported by a loose arrangement of collagen fibers, which together form a translucent membrane capable of holding cerebrospinal fluid (CSF).[22] Although the classic description emphasizes a wall lined by arachnoid tissue, significant variability has been reported across different specimens, suggesting a spectrum of microscopic appearances depending on the cyst's developmental history, location, and whether secondary changes have occurred over time. In many cases, the cyst wall demonstrates fibrous connective tissue interwoven with arachnoid cells, and this fibrous component may be more prominent in older or larger cysts that have undergone structural remodeling. Notably, some cysts exhibit a simple epithelial lining, which has prompted discussion regarding potential metaplastic changes or embryologic remnants within the cyst structure. Furthermore, luminal epithelial cells that do not resemble typical arachnoid tissue have been identified

in certain cases, including cells with abundant microvilli or cilia, features suggesting a secretory or absorptive role in fluid dynamics within the cyst cavity.[22][23] These epithelial elements, along with the presence of microvilli and cilia, have fueled hypotheses regarding possible mechanisms of cyst expansion, including active fluid secretion or selective fluid transport. The variability in cyst wall composition also helps explain why some arachnoid cysts remain stable for decades, while others expand over time or become symptomatic. Overall, the histopathologic profile of arachnoid cysts reinforces their predominantly congenital origin while highlighting the structural diversity that can influence clinical behavior and treatment considerations.[22][23]

History and Physical

The clinical assessment of patients with arachnoid cysts begins with recognizing that these lesions span a wide spectrum from completely asymptomatic to clearly symptomatic, with reported proportions varying considerably across studies and depending heavily on the population examined and the imaging indication.[2][3][4] Arachnoid cysts may be identified in newborns, children, and adults, but they are most frequently encountered during the first decade of life, reflecting their congenital origin and the increasing use of neuroimaging in pediatric practice.[2][3] When taking a history, clinicians should first clarify the context in which the cyst was discovered—whether as an incidental finding or during the evaluation of specific neurological complaints. This distinction is crucial, as the majority of arachnoid cysts are incidental and unrelated to the presenting symptoms, while a smaller subset are directly responsible for clinical manifestations.[2][4][24] The location of arachnoid cysts is highly variable, but there is a well-described predominance in the middle cranial fossa and retrocerebellar region, followed by smaller numbers at the cerebral convexities and in the suprasellar area.[2][3][4] Much lower frequencies are observed in the cerebellopontine angle, intraventricular space, supracerebellar cistern, quadrigeminal cistern, ambient cistern, anterior fossa, and brainstem.[2] Even within these less common locations, reported incidences vary substantially. For example, Al-Holou et al documented an intraventricular cyst incidence of 0.3% in children and none in adults, while Hall et al found intraventricular cysts comprising 12% of pediatric cases, underscoring the influence of sampling methods and referral patterns on epidemiologic estimates.[2][3][4] This variability in distribution has direct implications for the range of possible symptoms and physical findings.

In clinical practice, most arachnoid cysts are identified incidentally during imaging for unrelated conditions. Patients may undergo computed tomography (CT) or magnetic resonance imaging (MRI) for headaches, trauma, suspected stroke, seizure evaluation,

developmental delay, behavioral changes, dizziness, or visual disturbance, and the cyst is detected as an unexpected finding.[2][3][4][24] For this reason, a meticulous history is required to determine whether any reported symptoms could plausibly be attributed to the lesion. Headache is the most frequent complaint leading to imaging, yet in many cases it proves unrelated to an incidental arachnoid cyst.[24] Still, in patients with large cysts or clear evidence of mass effect, chronic headaches, seizures, or symptoms of raised intracranial pressure may be causally associated. Larger cysts, particularly those causing midline shift, ventricular compression, or skull remodeling, are more likely to be symptomatic and more likely to come to surgical attention than small, stable lesions.[24] The physical examination should be tailored to the cyst's location and the patient's age and symptoms. In general, the clinician should perform a comprehensive neurological examination, with particular attention to cranial nerve function, motor and sensory systems, coordination, gait, and signs of raised intracranial pressure such as papilledema. Although arachnoid cysts are rarely the direct cause of major neurological deficits, their relatively common incidence and wide anatomical distribution mean that they can, in select cases, produce a broad array of manifestations.[25][26][27][28][29] Patients may present with vision loss or visual field deficits, nausea and vomiting, macrocephaly in infants, disequilibrium, or cranial nerve palsies. Depending on the specific neuroanatomical relationships, documented deficits include paralysis of the oculomotor, trochlear, and abducens nerves, trigeminal neuropathy, hemifacial spasm, sensorineural hearing loss, facial palsy, vagus nerve palsy, vertigo, and other forms of eighth cranial neuropathy.[25][26][27][28][29]

Cyst location strongly predicts clinical expression. A quadrigeminal plate cistern arachnoid cyst, for instance, may compress the trochlear nerves and the quadrigeminal plate, leading to vertical diplopia and trochlear nerve dysfunction.[30] A cyst impinging on the optic nerve can produce ipsilateral visual field loss, whereas a suprasellar cyst compressing the optic chiasm may cause bitemporal hemianopsia. Lesions affecting the occipital cortex may result in homonymous hemianopsia. Careful visual field testing and fundoscopic examination are therefore important components of the physical evaluation in patients with suprasellar, parasellar, or occipital cysts.[25][30] In children, temporal arachnoid cysts have rarely been associated with learning difficulties and attention deficit hyperactivity disorder, suggesting that subtle neurocognitive changes may occur in the context of long-standing temporal lobe compression.[31] Thus, developmental and behavioral histories, teacher or caregiver reports, and neuropsychological assessment may be warranted when such cysts are identified in the pediatric population.

Arachnoid cysts may also present with atypical or uncommon symptoms that require a high index of suspicion. Bobble-head doll syndrome, characterized by rhythmic, often anteroposterior nodding movements of the head, has been reported in association with arachnoid cysts causing third ventricular dilation and cerebellar involvement.[32][33] In these cases, the abnormal head movements frequently diminish or resolve following surgical decompression or shunting, underscoring the causal relationship between cyst-induced hydrocephalus and motor manifestations. Even more rarely, psychiatric symptoms such as depression have been attributed to large arachnoid cysts producing significant mass effect in frontal or temporal regions, with improvement or resolution documented after marsupialization or fenestration.[34] While such presentations are exceptional, they highlight the importance of correlating neuroanatomical disruption with changes in mood, behavior, or cognition, particularly when symptoms are otherwise unexplained. Complications related to cyst rupture are uncommon but clinically important. Spontaneous or traumatic rupture of an arachnoid cyst may lead to the formation of a subdural hygroma, most often in the context of middle cranial fossa lesions.[35][36] The patient may present with new or worsening headache, nausea, vomiting, or signs of raised intracranial pressure following minor head trauma or, occasionally, without any clear precipitating event. Many subdural hygromas resolve spontaneously and can be managed conservatively with clinical and imaging follow-up; however, some cases require surgical intervention, particularly if significant mass effect or neurologic deterioration occurs.[35][36][37] Traumatic rupture can also rarely result in acute or chronic subdural hematoma, necessitating more urgent neurosurgical management. Spinal arachnoid cysts, though rare compared with intracranial lesions, warrant specific consideration in the history and physical examination.[38] These cysts can occur anywhere along the spinal column but are most frequently located in the thoracic region and more commonly in the dorsal (posterior) aspect of the spinal canal.[38][39] The typical presenting complaint is back pain, which may be accompanied by fluctuating leg weakness or gait disturbance. Depending on the level and extent of cord or nerve root compression, patients may exhibit monoparesis, radicular pain, spastic quadriplegia, sensory disturbances, neurogenic claudication, monoplegia, or bladder and bowel dysfunction, including neurogenic bladder and incontinence.[38][39] On examination, clinicians should carefully evaluate motor strength, reflexes, sensory levels, and sphincter tone, and correlate these findings with imaging to determine whether the cyst is likely responsible for the observed deficits. In summary, the history and physical examination of patients with arachnoid cysts must be

systematic and individualized, integrating information about cyst location, size, and imaging characteristics with the patient's symptoms, neurologic findings, and developmental or cognitive status.[2][3][4][24] Because most cysts are incidental and asymptomatic, clinicians must avoid over-attributing nonspecific complaints—particularly headaches—to these lesions. At the same time, awareness of the diverse and sometimes subtle ways in which arachnoid cysts can manifest, from cranial nerve palsies and visual field deficits to movement disorders and spinal cord syndromes, is essential to identify those patients in whom the cyst is clinically significant and may benefit from closer surveillance or neurosurgical intervention [35][36][37][38][39].

Evaluation

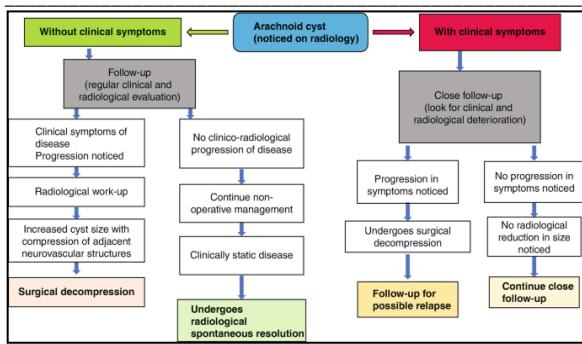
The evaluation of arachnoid cysts relies heavily on neuroimaging, with computed tomography (CT) and magnetic resonance imaging (MRI) serving as the principal diagnostic tools. In many cases, CT imaging alone is sufficient to establish the diagnosis of an arachnoid cyst, particularly when the lesion appears as a well-circumscribed, extra-axial, fluid-filled, thin-walled structure in a characteristic location, such as the middle cranial fossa or retrocerebellar region.[7] On CT, arachnoid cysts demonstrate attenuation values identical or nearly identical to cerebrospinal fluid (CSF), without associated calcification or solid components, and typically show no enhancement following intravenous contrast administration. This imaging profile, combined with their typical locations and lack of surrounding edema, strongly favors the diagnosis of an arachnoid cyst over other cystic intracranial lesions. When additional anatomical detail or characterization is required, MRI is the modality of choice. MRI offers superior soft tissue contrast and multiplanar capability, enabling comprehensive evaluation of the cyst's size, exact location, relationship to adjacent brain structures, cranial nerves, and vascular elements, as well as its impact on CSF pathways.[7] Classically, an arachnoid cyst follows CSF signal intensity on all conventional MRI pulse sequences: low signal on T1-weighted images, high signal on T2-weighted fast spin-echo (FSE) or spin-echo (SE) sequences, and near-complete suppression on T2-fluid attenuated inversion recovery (FLAIR) images. On diffusion-weighted imaging (DWI), arachnoid cysts do not exhibit restricted diffusion, and the apparent diffusion coefficient (ADC) maps show high ADC values comparable to CSF, helping distinguish arachnoid cysts from epidermoid cysts, which demonstrate diffusion restriction.[7][40] Hemorrhage within an arachnoid cyst is rare, but when it occurs, blood products may alter the typical CSF-like signal characteristics, necessitating careful interpretation.

Because the arachnoid cyst wall is extremely thin, direct visualization can be challenging. Specialized MRI techniques improve delineation of the cyst wall and surrounding neurovascular structures. High-

resolution T2-weighted sequences and 3D acquisitions allow better depiction of the interface between the cyst and adjacent parenchyma, cranial nerves, and vessels. Importantly, arachnoid cysts do not enhance after gadolinium administration, although adjacent dura or reactive changes may show mild enhancement. The lack of internal enhancement is a critical feature in differentiating arachnoid cysts from cystic tumors or abscesses, which typically demonstrate some degree of mural or nodular enhancement.[7] In some situations, further physiologic or anatomical information regarding CSF dynamics and cyst communication is required to guide management decisions. CT and MRI cisternography can be used to assess whether a cyst communicates with the surrounding subarachnoid space. In CT cisternography, a neuro-safe nonionic iodinated contrast agent is injected intrathecally via lumbar puncture, and dynamic CT images are obtained over time.[7] The degree and timing of contrast filling within the cyst provide functional insight: cysts that fill completely and early are considered freely communicating and may behave like enlarged CSF spaces, often requiring only observation. Conversely, cysts that fill slowly, incompletely, or not at all may be functionally isolated compartments, potentially at higher risk for mass effect or enlargement and therefore more relevant to surgical planning.

MRI cisternography can be performed with or without intrathecal contrast. Traditionally, intrathecal contrast-enhanced MRI cisternography has been valued for its ability to demonstrate small communications between the cyst and CSF spaces that are not visible on routine imaging.[40] However, noncontrast high-resolution MRI techniques have increasingly gained prominence. Sequences such as constructive interference in steady state (CISS), fast imaging employing steady-state acquisition (FIESTA), and three-dimensional T2-weighted sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D SPACE) allow exquisite visualization of CSF-filled spaces, cyst walls, cranial nerves, and vascular structures.[40] These techniques can reveal the precise topographic relationships of the cyst to critical structures, thereby reducing surgical morbidity by assisting in preoperative planning and intraoperative navigation. The 3D SPACE sequence is particularly useful for evaluating cyst-CSF communication. This sequence demonstrates signal loss in areas of CSF flow, as moving CSF creates a flow void. When applied to arachnoid cyst assessment, these signal loss areas can highlight narrow channels through which CSF enters or exits the cyst, thereby suggesting communication with the subarachnoid space.[40] Similarly, phase-contrast MRI utilizes velocity-encoded imaging to detect flowing CSF as a characteristic signal change, allowing assessment of dynamic CSF movement into and out of the cyst. A demonstrable flow signal between the cyst and neighboring cisterns or ventricles suggests an open

communication. However, phase-contrast MRI is susceptible to artifacts and false positives, and apparent connections identified on this modality should be confirmed with contrast-enhanced MR cisternography when the distinction has therapeutic implications.[40]


Beyond characterizing the cyst itself, the radiologic evaluation must systematically assess for mass effect and secondary complications. Radiologists should examine for subtle or overt compression of brain parenchyma, effacement of sulci, distortion or displacement of cranial nerves and vessels, narrowing or occlusion of aqueductal or ventricular pathways, and evidence of hydrocephalus. Mass effect can range from mild indentation of adjacent cortex to significant midline shift or transtentorial herniation in the case of very large cysts.[7] The presence of skull remodeling or thinning of the overlying calvaria, particularly in long-standing middle cranial fossa cysts, is another important indicator of chronic mass effect. In addition, evaluation for associated subdural collections, such as hygromas or hematomas following cyst rupture, is critical, especially in patients presenting with acute neurological deterioration after trauma.[35][36][37] Accurate interpretation of imaging findings depends on close collaboration between radiologists and clinicians. The final radiologic assessment should incorporate relevant clinical history, including presenting symptoms, neurologic examination findings, prior imaging, and any antecedent trauma or neurosurgical procedures. Knowledge of specific clinical concerns—such as visual field deficits, cranial neuropathies, or signs of raised intracranial pressure—helps radiologists focus on pertinent relationships, for instance, between a suprasellar cyst and the optic chiasm, a cerebellopontine angle cyst and the seventh–eighth nerve complex, or a retrocerebellar cyst and the fourth ventricle.[25][26][30] Reporting should address not only the presence and type of arachnoid cyst but also its likely clinical relevance in light of the referring indication.

Radiologists must also be vigilant for critically located or acutely complicated arachnoid cysts. Cysts causing obstructive hydrocephalus, significant midline shift, impending herniation, or acute hemorrhage represent neurosurgical emergencies. In such circumstances, prompt communication with the ordering clinician and direct notification of a neurosurgeon are essential to expedite management and prevent further neurologic compromise.[7][35][36] Conversely, in asymptomatic patients with typical-appearing cysts and no mass effect, radiology reports should clearly indicate the likely benign and incidental nature of the finding, thus helping avoid unnecessary anxiety, invasive testing, or unwarranted surgery. In summary, the evaluation of arachnoid cysts is grounded in careful, multimodal neuroimaging assessment, integrating CT and MRI with advanced techniques such as cisternography, CISS, FIESTA, 3D SPACE, and phase-contrast

imaging.[7][40] This imaging framework allows accurate diagnosis, differentiation from mimics, assessment of CSF communication, and detailed appraisal of mass effect and potential complications. When combined with a thorough clinical history and examination, it provides the foundation for rational, patient-specific management decisions, from conservative observation to surgical intervention.

Treatment / Management

Management of arachnoid cysts requires a careful balance between recognizing their overwhelmingly benign natural history and identifying the minority of cases in which intervention is warranted. The vast majority of arachnoid cysts require no treatment, particularly those discovered incidentally and lacking clinical or radiologic signs of mass effect. These lesions typically remain stable over time, and conservative management through periodic clinical follow-up and imaging is sufficient.[8] Nonetheless, when patients present with symptoms attributable to the cyst, surgical treatment becomes an important consideration. Indications for intervention depend on several interrelated factors. Cyst location plays a central role in determining both symptomatology and the optimal treatment strategy. Lesions situated in areas where even modest expansion can compromise critical neural structures—such as the suprasellar region, quadrigeminal cistern, or cerebellopontine angle—are more likely to warrant evaluation for surgery. Mass effect, particularly when associated with compression of adjacent brain tissue or cranial nerves, is another major determinant. Presentations involving impaired cerebrospinal fluid (CSF) flow, including obstructive hydrocephalus, increase the urgency for intervention as untreated hydrocephalus can lead to permanent neurological injury.[41][7] Clinical symptoms also strongly influence management decisions. Patients who experience focal neurological deficits, whether cranial neuropathies, motor weakness, or sensory disturbances, may benefit from surgical decompression. Likewise, headaches—especially if they demonstrate positional variation or correlate with imaging evidence of mass effect—may respond to intervention. Seizures, though often unrelated to the presence of an arachnoid cyst, may in selected cases improve following cyst decompression, particularly for middle cranial fossa cysts associated with temporal lobe irritation. In children, developmental or cognitive deficits attributable to chronic compression can motivate earlier surgical management to prevent long-term impairment.[8]

Figure-3: Arachnoid Cyst Management.

Once the decision for treatment is made, several surgical options are available. The choice of procedure is dictated by the cyst's size, location, and relationship to CSF pathways. One established approach is microsurgical excision of part or all of the cyst wall, combined with the creation of an intentional communication between the cyst cavity and the subarachnoid space. This traditional technique is often employed when the cyst is readily accessible and surrounded by minimal critical neurovascular structures.[41][7] By allowing CSF to flow freely between the cyst and the normal CSF spaces, long-term decompression can be achieved with low recurrence risk. A less invasive and increasingly favored alternative is endoscopic fenestration, in which the cyst is opened into the nearest ventricular or cisternal compartment using neuroendoscopic guidance. This technique is particularly well suited for deep-seated cysts or those near ventricular structures. Evidence shows that, for perisylvian arachnoid cysts, endoscopic fenestration offers excellent outcomes with the highest event-free survival among contemporary treatment options, outperforming traditional microsurgical fenestration in some series.[42] Endoscopic approaches also avoid the morbidity associated with larger craniotomies and typically involve shorter hospital stays and faster recovery. In rare cases, the placement of a cystoperitoneal shunt may be necessary.[33][8] Shunting is generally avoided due to the well-known long-term risks of shunt dependency, malfunction, infection, overdrainage, and the need for multiple revisions. Nonetheless, in situations where fenestration is not feasible—such as cysts with inaccessible anatomy or recalcitrant lesions that fail other surgical methods—a shunt may be an effective option. Uncommon cyst locations, such as those near the foramen ovale, have prompted innovative approaches including percutaneous aspiration, though these techniques are reserved for select circumstances.[27]

Overall, surgery for arachnoid cysts is highly effective, and most patients experience significant improvement or complete resolution of symptoms following intervention. However, recurrences have been documented, particularly in large cysts, cysts with incomplete fenestration, or those with complex multiloculated anatomy.[43] In such cases, repeat

fenestration or conversion to shunting may be considered. In emergencies—particularly when patients present with acute hydrocephalus, rapid neurological deterioration, or signs of impending herniation—immediate neurosurgical intervention is essential. Rapid CSF diversion through external ventricular drainage or emergent cyst fenestration can be lifesaving. These scenarios underscore the importance of integrating clinical findings with imaging results to determine the urgency of management. In summary, treatment of arachnoid cysts is guided by a nuanced understanding of their benign natural history, symptomatology, and neuroanatomical relationships. Most cysts warrant observation alone, but in appropriately selected patients, surgical intervention—typically through microsurgical or endoscopic fenestration—offers durable relief with low morbidity. A patient-centered, anatomy-informed approach ensures optimal outcomes while minimizing unnecessary procedures.[7][8][32][33][38][39][41][42][43]

Differential Diagnosis

The differential diagnosis of arachnoid cysts encompasses a range of intracranial cystic lesions that may exhibit overlapping radiologic or clinical features. Because arachnoid cysts are defined radiographically as extra-axial, CSF-filled, thin-walled lesions that follow cerebrospinal fluid (CSF) signal on all imaging sequences, distinguishing them from other pathology relies heavily on nuanced radiologic interpretation. Advanced neuroimaging, particularly magnetic resonance imaging (MRI), plays a central role in differentiating arachnoid cysts from epidermoid cysts, dermoid cysts, intracranial abscesses, and parasitic cystic diseases such as neurocysticercosis. Each of these entities has defining characteristics that allow for accurate diagnosis and avoidance of inappropriate interventions. Among the most challenging differentials is the epidermoid cyst, which, like an arachnoid cyst, may appear similar to CSF on conventional T2 fast spin-echo (FSE) and spin-echo (SE) sequences. However, epidermoid cysts consist of keratin debris and desquamated epithelial cells, producing subtle but important differences in imaging behavior. Unlike arachnoid cysts, epidermoid cysts do not follow CSF signal intensity uniformly across all MRI sequences. They often demonstrate heterogeneous signal on T1- and T2-weighted imaging and may appear slightly hyperintense relative to CSF on FLAIR sequences. The most distinguishing feature is their characteristic bright diffusion-weighted imaging (DWI) signal with corresponding low apparent diffusion coefficient (ADC) values, reflecting restricted diffusion—an appearance not seen in simple arachnoid cysts. Epidermoid cysts also have a predilection for paramedian, anterior, and lateral brainstem regions, which may help narrow diagnostic considerations when location aligns with this distribution.

Dermoid cysts and intracranial lipomas represent another important set of differentials. Both lesions contain fat, enabling reliable differentiation on CT or MRI. On CT, dermoid cysts and lipomas exhibit hypodense attenuation consistent with fat, often -100 Hounsfield units or lower. On MRI, they display classic high T1 signal intensity. Employing T1-weighted sequences with fat saturation is particularly diagnostic, as the signal will suppress fat-saturation techniques, confirming the diagnosis. Dermoid cysts may also contain additional components, such as hair or sebaceous material, and occasionally demonstrate chemical shift artifact or calcifications. Unlike arachnoid cysts, dermoid rarely follow CSF signal and may rupture, producing fat droplets in the subarachnoid space—a feature that is pathognomonic and easily distinguished radiologically. Intracranial abscesses may mimic cystic lesions, especially in early or partially treated stages. However, several imaging characteristics reliably distinguish abscesses from arachnoid cysts. The contents of an abscess do not mimic CSF because they contain purulent material, inflammatory exudate, and cellular debris. This translates radiologically into variable internal signal intensities and a pattern of restricted diffusion similar to epidermoid cysts. Abscesses also characteristically exhibit rim enhancement following contrast administration. Although rim thickness may vary, thin and smooth enhancement is common in bacterial infections, whereas thicker, more irregular enhancement may be observed in fungal or atypical infections. Important clinical context—such as fever, focal infection, elevated inflammatory markers, or recent immunosuppression—further differentiates abscesses from simple arachnoid cysts.

Parasitic disease, particularly neurocysticercosis, can closely resemble arachnoid cysts, especially in its racemose subtype. Racemose neurocysticercosis involves cystic degeneration of *Taenia solium* larvae within the subarachnoid cisterns or ventricular system, producing thin-walled, CSF-like cystic structures that may lack the typical scolex seen in parenchymal cysts. These cysts may be multiloculated and can produce mass effect or CSF obstruction similar to that caused by large arachnoid cysts. Despite imaging similarities, additional radiologic findings usually assist in the diagnosis: parenchymal cysts in other life-cycle stages, calcified granulomas, ependymitis, or leptomeningeal enhancement. Clinical history also plays a crucial role, including exposure risk, residence in endemic regions, seizure onset, and serologic evidence of *T. solium* infection. Immunologic assays, such as ELISA or enzyme-linked immunoelectrotransfer blot (EITB), can provide confirmatory evidence. In conclusion, differentiating arachnoid cysts from other intracranial cystic lesions hinges on recognizing key imaging characteristics—particularly CSF equivalence across all MRI sequences, absence of enhancement, lack of restricted

diffusion, and presence of a thin, uniform wall. Careful clinical correlation, combined with advanced neuroimaging techniques, ensures accurate diagnosis, appropriate management, and avoidance of unnecessary surgical intervention.

Prognosis

The prognosis for patients with arachnoid cysts is generally excellent, largely because most cysts remain stable and asymptomatic throughout life. In the overwhelming majority of cases, no intervention is required, and long-term follow-up simply involves periodic monitoring if clinically indicated. When symptoms arise and surgical treatment becomes necessary, outcomes are typically very favorable. Surgical approaches, such as endoscopic fenestration, microsurgical fenestration, or cystoperitoneal shunting—have high rates of success, and surgery is almost always curative, relieving mass effect, restoring CSF flow, and resolving associated neurological deficits.[43] Nevertheless, recurrences do occur in a minority of patients, especially when the cyst is multiloculated, incompletely fenestrated, or located in regions prone to postoperative scarring. These cases may require repeat surgery or alternative interventions. Interestingly, spontaneous resolution of arachnoid cysts has been documented, although it remains relatively uncommon. Reports suggest that cysts may regress after minor trauma, possibly because mechanical forces disrupt the cyst wall and establish a communication with the subarachnoid space, allowing the collection to decompress.[44] Such cases underscore the dynamic nature of these lesions and support the practice of conservative management for asymptomatic patients. Overall, patients with arachnoid cysts—treated or untreated—typically have excellent long-term neurological outcomes, provided that symptomatic cysts are properly identified and managed.

Complications

Although arachnoid cysts are frequently benign and incidental, they can produce complications depending on their location, size, and effect on adjacent neurological structures. Arachnoid cyst rupture, though rare, is a well-recognized event that can result in subdural hygromas or subdural hematomas, requiring neurosurgical intervention. Rupture may occur spontaneously or after minor trauma, particularly in middle cranial fossa cysts. Cysts exerting significant mass effect can cause a variety of neurological symptoms by compressing cranial nerves, brain parenchyma, or CSF pathways. Documented complications include vision loss, macrocephaly in children, and obstructive hydrocephalus, as well as cranial nerve deficits such as paralysis of the oculomotor, trochlear, and abducens nerves.[45] Trigeminal neuropathy, hemifacial spasm, sensorineural hearing loss, facial palsy, vagus nerve palsy, and vertigo have also been reported, reflecting the diverse anatomical pathways potentially

affected.[25][26][27][28][29] In exceptional cases, complications may arise from cyst expansion, hemorrhage into the cyst, or cyst-induced cortical irritation leading to seizures. The risk of significant complications remains low overall, but awareness of these possibilities is crucial for timely diagnosis and management.

Patient Education

Effective patient education is essential to alleviate anxiety and prevent unnecessary interventions. Patients should be informed that most arachnoid cysts are incidental findings, discovered during imaging performed for unrelated symptoms, and that these cysts rarely require treatment. Clear explanations help patients understand that cysts often remain stable for many years and pose minimal risk. Clinicians should emphasize that only in specific and uncommon circumstances—such as when the cyst produces mass effect, obstructs CSF flow, or causes neurological symptoms—is neurosurgical consultation or intervention warranted. Patients and caregivers should also be educated about warning signs such as new neurological deficits, worsening headaches, visual disturbances, or symptoms of increased intracranial pressure, all of which merit prompt clinical reassessment. Reassurance and individualized follow-up plans play a key role in reducing anxiety and ensuring appropriate monitoring.

Other Issues

Arachnoid cysts are relatively common intracranial findings and are typically benign. The most frequent locations include the anterior and middle cranial fossae and the retrocerebellar cistern. Radiologically, a classic arachnoid cyst should exhibit a thin, non-enhancing wall and contain fluid identical in density on CT and in intensity on all MRI sequences to CSF. These imaging characteristics are central to differentiating arachnoid cysts from other intracranial cystic lesions. Clinicians should also recognize that cyst size does not always correlate with symptoms and that many large cysts remain asymptomatic throughout life.

Enhancing Healthcare Team Outcomes

Optimal care of patients with arachnoid cysts relies on coordinated interprofessional communication among primary care clinicians, internists, emergency physicians, radiologists, neurosurgeons, radiology technicians, and operating room staff. In most cases, radiologists simply document the incidental finding in the imaging report, and no further communication is required unless clinical correlations suggest otherwise. However, in rare but critical situations—such as cysts producing significant mass effect, obstructive hydrocephalus, or a rupture with substantial subdural hygroma or hematoma—radiologists must immediately notify the referring provider or a neurosurgeon. Rapid interprofessional collaboration allows timely evaluation, emergency department referral, and prompt intervention when necessary. This coordinated approach ensures patient safety, improves

clinical outcomes, and enhances overall healthcare team performance in the management of arachnoid cysts.

Conclusion:

In conclusion, arachnoid cysts are common, predominantly congenital intracranial lesions with an overwhelmingly benign natural history. The critical clinical challenge lies in accurately differentiating the vast majority of incidental, asymptomatic cysts from the small subset that become symptomatic due to mass effect, obstruction of cerebrospinal fluid pathways, or complications such as rupture. A thorough understanding of their pathophysiology and characteristic radiologic features is paramount to avoid unnecessary patient anxiety and intervention. Neuroimaging, particularly MRI, is the cornerstone of diagnosis and surveillance, providing detailed anatomical information that guides management decisions. For asymptomatic patients, a conservative strategy of observation and periodic follow-up is the standard of care, as most cysts remain stable throughout life. However, when symptoms such as persistent headaches, seizures, focal neurological deficits, or signs of elevated intracranial pressure are clearly attributable to the cyst, surgical intervention becomes necessary. Modern surgical techniques, especially endoscopic fenestration, offer effective and minimally invasive means to decompress the cyst and re-establish communication with normal CSF spaces, resulting in excellent patient outcomes with low morbidity. Ultimately, a collaborative, multidisciplinary approach involving primary care providers, neurologists, radiologists, and neurosurgeons ensures that management is tailored to the individual patient, balancing the risks of intervention against the typically indolent course of this common intracranial finding.

References:

1. Kalsi P, Hejrati N, Charalampidis A, Wu PH, Schneider M, Wilson JR, Gao AF, Massicotte EM, Fehlings MG. Spinal arachnoid cysts: A case series & systematic review of the literature. *Brain Spine*. 2022;2:100904.
2. Al-Holou WN, Terman S, Kilburg C, Garton HJ, Muraszko KM, Maher CO. Prevalence and natural history of arachnoid cysts in adults. *J Neurosurg*. 2013 Feb;118(2):222-31.
3. Al-Holou WN, O'Lynnger TM, Pandey AS, Gemmete JJ, Thompson BG, Muraszko KM, Garton HJ, Maher CO. Natural history and imaging prevalence of cavernous malformations in children and young adults. *J Neurosurg Pediatr*. 2012 Feb;9(2):198-205.
4. Hall S, Smedley A, Sparrow O, Mathad N, Waters R, Chakraborty A, Tsitouras V. Natural History of Intracranial Arachnoid Cysts. *World Neurosurg*. 2019 Jun;126:e1315-e1320.
5. Kivelä T, Pelkonen R, Oja M, Heiskanen O. Diabetes insipidus and blindness caused by a suprasellar tumor: Pieter Pauw's observations

from the 16th century. *JAMA*. 1998 Jan 07;279(1):48-50.

6. STARKMAN SP, BROWN TC, LINELL EA. Cerebral arachnoid cysts. *J Neuropathol Exp Neurol*. 1958 Jul;17(3):484-500.
7. Wang X, Chen JX, You C, Jiang S. CT cisternography in intracranial symptomatic arachnoid cysts: classification and treatment. *J Neurol Sci*. 2012 Jul 15;318(1-2):125-30.
8. Jafrani R, Raskin JS, Kaufman A, Lam S. Intracranial arachnoid cysts: Pediatric neurosurgery update. *Surg Neurol Int*. 2019;10:15.
9. Yüksel D, Yilmaz D, Usak E, Senbil N, Gürer Y. Arachnoid cyst and costovertebral defects in Aicardi syndrome. *J Paediatr Child Health*. 2009 Jun;45(6):391-2.
10. Reichert R, Campos LG, Vairo F, de Souza CF, Pérez JA, Duarte JÁ, Leiria FA, Anés M, Vedolin LM. Neuroimaging Findings in Patients with Mucopolysaccharidosis: What You Really Need to Know. *Radiographics*. 2016 Sep-Oct;36(5):1448-62.
11. Zafeiriou DI, Batzios SP. Brain and spinal MR imaging findings in mucopolysaccharidoses: a review. *AJNR Am J Neuroradiol*. 2013 Jan;34(1):5-13.
12. Koenig R, Bach A, Woelki U, Grzeschik KH, Fuchs S. Spectrum of the acrocallosal syndrome. *Am J Med Genet*. 2002 Feb 15;108(1):7-11.
13. Arnold PM, Teuber J. Marfan syndrome and symptomatic sacral cyst: report of two cases. *J Spinal Cord Med*. 2013 Sep;36(5):499-503.
14. Wang Y, Cui J, Qin X, Hong X. Familial intracranial arachnoid cysts with a missense mutation (c.2576C>T) in RERE: A case report. *Medicine (Baltimore)*. 2018 Dec;97(50):e13665.
15. Doherty D, Chudley AE, Coghlan G, Ishak GE, Innes AM, Lemire EG, Rogers RC, Mhanni AA, Phelps IG, Jones SJ, Zhan SH, Fejes AP, Shahin H, Kanaan M, Akay H, Tekin M, FORGE Canada Consortium, Triggs-Raine B, Zelinski T. GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. *Am J Hum Genet*. 2012 Jun 08;90(6):1088-93.
16. Kirmizigoz S, Dogan A, Kayhan S, Sarıaltın SY, Tehli O. Comparison of Surgical Techniques for Intracranial Arachnoid Cysts: A Volumetric Analysis. *Turk Neurosurg*. 2023;33(6):1038-1046.
17. Galassi E, Tognetti F, Gaist G, Fagioli L, Frank F, Frank G. CT scan and metrizamide CT cisternography in arachnoid cysts of the middle cranial fossa: classification and pathophysiological aspects. *Surg Neurol*. 1982 May;17(5):363-9.
18. Al-Holou WN, Yew AY, Boomsaad ZE, Garton HJ, Muraszko KM, Maher CO. Prevalence and natural history of arachnoid cysts in children. *J Neurosurg Pediatr*. 2010 Jun;5(6):578-85.
19. Robinson Rg. The Temporal Lobe Agenesis Syndrome. *Brain*. 1964 Mar;87:87-106.
20. Rengachary SS, Watanabe I. Ultrastructure and pathogenesis of intracranial arachnoid cysts. *J Neuropathol Exp Neurol*. 1981 Jan;40(1):61-83.
21. Öcal E. Understanding intracranial arachnoid cysts: a review of etiology, pathogenesis, and epidemiology. *Childs Nerv Syst*. 2023 Jan;39(1):73-78.
22. Balsubramaniam C, Laurent J, Rouah E, Armstrong D, Feldstein N, Schneider S, Cheek W. Congenital arachnoid cysts in children. *Pediatr Neurosci*. 1989;15(5):223-8.
23. Rabiei K, Tisell M, Wikkelsø C, Johansson BR. Diverse arachnoid cyst morphology indicates different pathophysiological origins. *Fluids Barriers CNS*. 2014 Mar 03;11(1):5.
24. de Longpre J. Large Arachnoid Cyst. *N Engl J Med*. 2017 Jun 08;376(23):2265.
25. Brewington D, Petrov D, Whitmore R, Liu G, Wolf R, Zager EL. De Novo Intraneuronal Arachnoid Cyst Presenting with Complete Third Nerve Palsy: Case Report and Literature Review. *World Neurosurg*. 2017 Feb;98:e27-873.e31.
26. Bison HS, Janetos TM, Russell EJ, Volpe NJ. Cranial Nerve Palsies in the Setting of Arachnoid Cysts: A Case Series and Literature Review. *J Neuroophthalmol*. 2024 Jun 01;44(2):242-246.
27. Bigder MG, Helmi A, Kaufmann AM. Trigeminal neuropathy associated with an enlarging arachnoid cyst in Meckel's cave: case report, management strategy and review of the literature. *Acta Neurochir (Wien)*. 2017 Dec;159(12):2309-2312.
28. Olaya JE, Ghostine M, Rowe M, Zouros A. Endoscopic fenestration of a cerebellopontine angle arachnoid cyst resulting in complete recovery from sensorineural hearing loss and facial nerve palsy. *J Neurosurg Pediatr*. 2011 Feb;7(2):157-60.
29. Hayden MG, Tornabene SV, Nguyen A, Thekdi A, Alksne JF. Cerebellopontine angle cyst compressing the vagus nerve: case report. *Neurosurgery*. 2007 Jun;60(6):E1150; discussion 1150.
30. Pagni CA, Canavero S, Vinci V. Left trochlear nerve palsy, unique symptom of an arachnoid cyst of the trigeminal plate. Case report. *Acta Neurochir (Wien)*. 1990;105(3-4):147-9.
31. Millichap JG. Temporal lobe arachnoid cyst-attention deficit disorder syndrome: role of the electroencephalogram in diagnosis. *Neurology*. 1997 May;48(5):1435-9.

32. Ishihara M, Nonaka M, Oshida N, Hamada Y, Nakajima S, Yamasaki M. "No-no" type bobble-head doll syndrome in an infant with an arachnoid cyst of the posterior fossa: a case report. *Pediatr Neurol*. 2013 Dec;49(6):474-6.

33. Olvera-Castro JO, Morales-Briceño H, Sandoval-Bonilla B, Gallardo-Ceja D, Venegas-Cruz MA, Estrada-Estrada EM, Contreras-Mota M, Guinto-Balanzar G, García-López R. Bobble-head doll syndrome in an 80-year-old man, associated with a giant arachnoid cyst of the lamina quadrigemina, treated with endoscopic ventriculocystosternotomy and cystoperitoneal shunt. *Acta Neurochir (Wien)*. 2017 Aug;159(8):1445-1450.

34. Shettar M, Karkal R, Misra R, Kakunje A, Mohan Chandran VV, Mendonsa RD. Arachnoid Cyst Causing Depression and Neuropsychiatric Symptoms: a Case Report. *East Asian Arch Psychiatry*. 2018 Jun;28(2):64-67.

35. García Romero JC, Ortega Martínez R, Zabalo San Juan G, de Frutos Marcos D, Zazpe Cenoz I. Subdural hygroma secondary to rupture of an intracranial arachnoid cyst: description of 2 cases and review of the literature. *Neurocirugia (Astur : Engl Ed)*. 2018 Sep-Oct;29(5):260-264.

36. Donaldson JW, Edwards-Brown M, Luerssen TG. Arachnoid cyst rupture with concurrent subdural hygroma. *Pediatr Neurosurg*. 2000 Mar;32(3):137-9.

37. Gelabert-González M, Fernández-Villa J, Cutrán-Prieto J, García Allut A, Martínez-Rumbo R. Arachnoid cyst rupture with subdural hygroma: report of three cases and literature review. *Childs Nerv Syst*. 2002 Nov;18(11):609-13.

38. Kumar A, Sakia R, Singh K, Sharma V. Spinal arachnoid cyst. *J Clin Neurosci*. 2011 Sep;18(9):1189-92.

39. Garg K, Borkar SA, Kale SS, Sharma BS. Spinal arachnoid cysts - our experience and review of literature. *Br J Neurosurg*. 2017 Apr;31(2):172-178.

40. Algin O. Evaluation of the Communication Between Arachnoid Cysts and Neighboring Cerebrospinal Fluid Spaces by T2W 3D-SPACE With Variant Flip-Angle Technique at 3 T. *J Comput Assist Tomogr*. 2018 Sep/Oct;42(5):816-821.

41. Mastronardi L, Taniguchi R, Caroli M, Crispo F, Ferrante L, Fukushima T. Cerebellopontine angle arachnoid cyst: a case of hemifacial spasm caused by an organic lesion other than neurovascular compression: case report. *Neurosurgery*. 2009 Dec;65(6):E1205; discussion E1205.

42. El Damaty A, Issa M, Paggetti F, Seitz A, Unterberg A. Intracranial arachnoid cysts: What is the appropriate surgical technique? A retrospective comparative study with 61 pediatric patients. *World Neurosurg*. 2023 Jul;19:100195.

43. Nakahashi M, Uei H, Tokuhashi Y. Recurrence of a symptomatic spinal intradural arachnoid cyst 29 years after fenestration. *J Int Med Res*. 2019 Sep;47(9):4530-4536.

44. Hanai S, Yanaka K, Aiyama H, Kajita M, Ishikawa E. Spontaneous resorption of a convexity arachnoid cyst associated with intracystic hemorrhage and subdural hematoma: A case report. *Surg Neurol Int*. 2023;14:224.

45. Clifton W, Rahmathulla G, Tavanaiepour K, Alcindor D, Jakubek G, Tavanaiepour D. Surgically Treated de Novo Cervicomedullary Arachnoid Cyst in Symptomatic Adult Patient. *World Neurosurg*. 2018 Aug;116:329-332