

Bridging Family Medicine, Nursing, and Laboratory Practice in the Diagnosis and Care of Food Allergies

Asaad Ali Mohammed Habbash ⁽¹⁾, Meshari Zayed Almutairi ⁽²⁾, Fahad Mousa Wasili ⁽³⁾, Manal Saud Alharbi ⁽⁴⁾, Majed Abdulrahman Alrashidi ⁽⁵⁾, Mansour Butayhan Al Mabdi ⁽⁵⁾, Ali Ahmed Alomari Alzhrani ⁽⁵⁾, Yahya Fathe Adawie ⁽⁶⁾, Mashael Musnad Odhayb Alanazi ⁽⁷⁾, Abrar Mohammed Alanzl ⁽⁸⁾

(1) Tabuk Health Cluster, Eradh Complex For Mental Health, Tabuk, Ministry of Health, Saudi Arabia,

(2) King Fahad Medical City, Ministry Of Health, Saudi Arabia,

(3) King Fahad Hospital, Ministry of Health, Saudi Arabia,

(4) Al Manar Primary Health Care Riyadh, Ministry of Health, Saudi Arabia,

(5) Jeddah Regional Laboratory, Ministry of Health, Saudi Arabia,

(6) Sharqi Waraqh Primary Health Care Centre, Ministry of Health, Saudi Arabia,

(7) Qurayyat General Hospital, Ministry of Health, Saudi Arabia,

(8) Al-Imam Abdulrahman Al-Fasil Hospital, Ministry of Health, Saudi Arabia.

Abstract

Background: Food allergies represent a significant and growing public health challenge with substantial clinical, psychosocial, and economic impacts. The etiology is multifactorial, involving genetic susceptibility, environmental exposures, and immune system dysregulation that leads to a failure of oral tolerance. Diagnosis and management require a coordinated, multidisciplinary approach.

Aim: This article aims to synthesize the comprehensive landscape of food allergies, detailing their pathophysiology, epidemiology, and the essential, integrated roles of family medicine, nursing, and laboratory practice in achieving optimal patient outcomes through precise diagnosis, effective management, and robust patient education.

Methods: The review consolidates evidence on the immunologic mechanisms (IgE-mediated and non-IgE-mediated), diagnostic evaluations (including skin prick testing, serum-specific IgE, and the gold-standard oral food challenge), and management strategies. It emphasizes a collaborative care model spanning primary care, specialized nursing, and diagnostic laboratories.

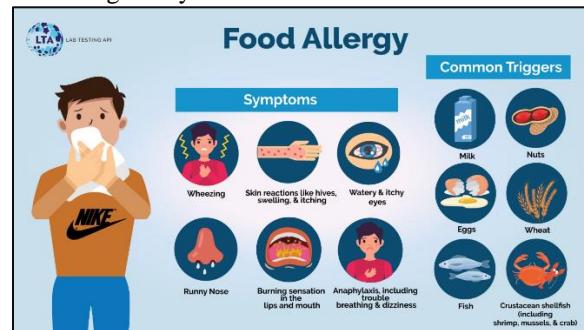
Results: Effective management hinges on strict dietary avoidance, emergency preparedness with epinephrine, and ongoing patient education. Prognosis varies, with many childhood allergies (e.g., milk, egg) often being outgrown, while others (e.g., peanut, shellfish) typically persist. Emerging treatments like immunotherapy and biologics (e.g., omalizumab) offer promise for desensitization. Complications range from acute anaphylaxis to chronic nutritional and psychosocial burdens.

Conclusion: An interprofessional team model is critical for improving the safety and quality of life for individuals with food allergies. This model integrates prevention, accurate diagnosis, personalized management, and continuous education to navigate the complexities of the condition.

Keywords: Food Allergy, Anaphylaxis, Immunoglobulin E, Oral Food Challenge, Allergen Immunotherapy, Epinephrine, Patient Education, Interprofessional Care.

Introduction

Food allergies are an increasingly recognized public health challenge with substantial clinical, psychosocial, and economic implications for patients and health systems alike [1]. The burden spans the life course, affecting both children and adults, and is concentrated around nine predominant allergens—milk, soy, eggs, peanuts, fish, shellfish, wheat, tree nuts, and sesame—each capable of provoking reactions that range from transient cutaneous symptoms to fulminant anaphylaxis requiring immediate intervention [1]. Within contemporary primary care, family medicine clinicians serve as the


first point of contact for risk stratification, longitudinal counseling, and coordination of referral pathways, ensuring that diagnostic evaluation and emergency preparedness (including epinephrine auto-injector training) are embedded within individualized care plans [1]. Parallel to this, nursing practice operationalizes patient-centered education, reinforces avoidance strategies, and monitors treatment adherence, thereby translating guideline recommendations into sustained self-management behaviors across community and outpatient settings [1]. From a diagnostic standpoint, laboratory medicine underpins clinical decision-making by clarifying the

immunopathologic basis of suspected reactions and by differentiating sensitization from clinically significant allergy through judicious use of serum-specific IgE assays and related modalities [1]. These data, interpreted in concert with detailed histories and supervised oral food challenges when appropriate, refine pretest probabilities and reduce both overdiagnosis and unnecessary dietary restrictions that impair growth, nutrition, and quality of life [1]. Advancements in research and evolving clinical guidelines continue to shape evidence-based best practices across the continuum of care, informing strategies for prevention, timely recognition, and acute management of IgE-mediated and non-IgE-mediated responses [1]. Taken together, an integrated model linking family medicine, nursing, and laboratory diagnostics provides a robust framework for early identification, precise diagnosis, risk mitigation, and equitable access to emergent care—outcomes that are essential to improving safety and quality for individuals living with food allergies in diverse care settings [1].

Etiology

The development of food allergies in infants and children reflects a multifactorial interaction among genetic susceptibility, environmental exposures, and immune system programming that begins in utero and continues throughout early childhood [1]. A strong familial predisposition is well recognized, particularly in lineages with asthma, eczema, and allergic rhinitis, indicating shared genetic architectures across atopic phenotypes. Within this framework, variants that impair epithelial barrier integrity and perturb immune regulation increase the likelihood that dietary proteins encountered at the skin or mucosa will be interpreted as threats rather than tolerated antigens [1]. This “barrier-first” perspective is supported by observations in atopic dermatitis, where chronic inflammation and microfissuring increase transepidermal water loss, facilitate allergen ingress, and promote dendritic cell activation with downstream skewing toward T-helper type 2 (Th2) immunity [1]. The filaggrin (FLG) gene, which encodes a structural protein pivotal to cornified envelope formation and stratum corneum hydration, has emerged as a canonical example: loss-of-function mutations in FLG compromise the cutaneous barrier, allowing environmental food proteins to penetrate, be captured by antigen-presenting cells, and initiate sensitization cascades that culminate in IgE class switching and mast cell priming [1]. In young children with moderate-to-severe atopic dermatitis, this pathophysiologic conduit appears particularly salient and may explain the epidemiologic co-segregation of eczema and early-onset food allergy. Genetic predisposition extends beyond FLG to encompass polymorphisms that regulate cytokine signaling, immunoglobulin isotype switching, and antigen presentation. Variants in the interleukin-4 (IL-4) locus

can amplify Th2 polarization, enhance IL-4/IL-13–driven B-cell class switching to IgE, and lower the threshold for clinical reactivity upon subsequent exposures to ubiquitous dietary proteins [2]. Similarly, specific human leukocyte antigen (HLA) haplotypes have been associated with heightened risk for particular allergens, notably peanut, suggesting that differences in peptide binding grooves influence epitope presentation and T-cell priming efficiency [3]. These findings underscore that “food allergy” is not a monolithic trait but a heterogeneous end point arising from diverse genetic routes that converge on shared immunologic pathways. Importantly, the genotype–phenotype relationship is probabilistic, not deterministic; penetrance is modulated by timing, dose, and context of allergen exposure as well as by the ecological dynamics of the infant microbiome.

Figure-1: Food Allergy Causes and Symptoms.

Environmental determinants shape these genetic risks by modulating barrier health, microbial colonization, and immune education during critical windows. Mode of delivery is a salient example: infants born by cesarean section exhibit distinct initial microbiota and reduced exposure to maternal vaginal and intestinal commensals, a divergence that may delay or alter the maturation of oral tolerance mechanisms [4]. This microbial skewing, compounded by factors such as shorter breastfeeding duration, household antimicrobial use, and urban living, can attenuate the generation of regulatory T cells and the production of tolerogenic metabolites, thereby sustaining Th2-biased responses to food proteins [4]. Early-life antibiotics further perturb microbial diversity and function, and cohort studies have linked such disruptions with subsequent allergic manifestations, including food allergy, plausibly via impaired short-chain fatty acid signaling, diminished barrier support, and altered antigen sampling at the gut epithelium [5]. Family physicians and pediatric nurses encounter these exposures routinely in practice; anticipatory guidance on judicious antibiotic use and support for practices that promote healthy microbial seeding and maintenance therefore constitute practical, prevention-oriented touchpoints [4][5]. The timing and context of introducing potentially allergenic foods interface with these environmental themes by leveraging windows of immunologic plasticity to favor tolerance rather than sensitization

[4]. Although detailed recommendations belong in Deterrence and Patient Education, the etiologic principle is that early, developmentally appropriate exposure—under conditions of an intact or well-managed skin and gut barrier and within a microbiome-supportive milieu—can foster oral tolerance through antigen presentation in the lamina propria and expansion of allergen-specific regulatory T cells [4]. Conversely, delayed exposure in an infant with active eczematous skin, disrupted barriers, or a dysbiotic microbiome may increase the probability that first “meaningful” contact with the allergen occurs cutaneously rather than enterally, promoting a pathogenic sensitization trajectory [1][4]. Nurses are central to operationalizing this translational insight through caregiver education, reinforcement of emollient-based skin care in eczema, and structured follow-up that aligns feeding practices with evolving family preferences and developmental readiness [1][4].

At the immunologic core, food allergy represents a failure of tolerance characterized by aberrant antigen processing and dysregulated effector responses. In IgE-mediated pathways, allergens cross the epithelium and are presented by dendritic cells to naïve T cells in a cytokine milieu that favors Th2 differentiation; IL-4 and IL-13 drive B-cell class switching to IgE, which then binds Fc ϵ RI on mast cells and basophils. Upon re-exposure, cross-linking triggers degranulation and the rapid release of mediators such as histamine, tryptase, and leukotrienes, producing the immediate hypersensitivity phenotype recognized clinically as urticaria, angioedema, bronchospasm, vomiting, and, in severe cases, anaphylaxis [2]. In non-IgE-mediated and mixed phenotypes, delayed cellular mechanisms, including eosinophil- and T cell-dominant inflammation, predominate, leading to subacute gastrointestinal or dermatologic syndromes. The clinical heterogeneity reflects differences in tissue tropism, effector cell recruitment, and mediator profiles, all of which are shaped by antecedent genetic and environmental conditions [1][2]. Laboratory medicine contributes to elucidating these mechanisms and refining etiologic assessment by quantifying serum-specific IgE, employing component-resolved diagnostics to dissect epitope specificity (e.g., storage proteins versus cross-reactive carbohydrate determinants), and, when warranted, complementing with cellular assays that explore basophil activation profiles. These approaches, interpreted in concert with exposure history and supervised oral food challenges, help distinguish sensitization from clinically meaningful allergy, thereby averting unnecessary dietary restrictions that erode nutritional status and quality of life [1][3]. In family medicine, this precision translates into more nuanced risk stratification, targeted referrals, and individualized emergency preparedness plans; in nursing practice, it supports patient-centered education that aligns test

interpretation with daily routines, school policies, and caregiver competencies in epinephrine administration [1].

The etiologic tapestry is therefore best understood as a sequence: genetically primed barriers and immune circuits encounter environmental inputs—delivery mode, antibiotics, microbial ecologies, and feeding practices—that channel antigen encounters toward tolerance or sensitization. When the balance tips toward sensitization, Th2-skewed immunity, IgE class switching, and effector cell priming consolidate a state of clinical reactivity that can persist or, in some children, remit as tolerance mechanisms mature. Intervening along this continuum—by supporting barrier integrity in eczema, curating early microbial exposures, calibrating the timing of allergen introduction, and using laboratory evidence to personalize decisions—offers actionable levers for prevention and management across family medicine, laboratory diagnostics, and nursing workflows [1][4][5]. Continued advances in genetics and immunology will clarify subphenotypes and endotypes, enabling even more tailored strategies to preserve tolerance and reduce the incidence and severity of food allergies in vulnerable pediatric populations [2][3].

Epidemiology

Food allergies have emerged as a critical global health issue, reflecting both changing environmental conditions and evolving dietary patterns. The World Health Organization and other health authorities recognize food allergies as one of the most rapidly increasing non-communicable conditions, now affecting an estimated 250 million people worldwide [6]. This growing prevalence transcends socioeconomic and geographic boundaries, impacting both industrialized and developing regions. In the United States alone, approximately 8% of children and up to 10% of adults are affected, representing millions of individuals who face daily challenges related to dietary restrictions, emergency preparedness, and healthcare access [7]. Importantly, around 40% of affected children exhibit multiple food allergies, significantly complicating diagnosis, dietary management, and quality of life [8]. The distribution of specific food allergens varies according to regional diets and exposure patterns. Globally, the most prevalent allergenic foods include cow’s milk, eggs, peanuts, tree nuts, soy, wheat, fish, shellfish, and sesame, collectively accounting for the vast majority of allergic reactions [6]. Among these, cow’s milk and egg allergies dominate early childhood incidence, while peanut, tree nut, and shellfish allergies frequently persist into adulthood [10]. This persistence reflects the complex immunologic mechanisms underlying sensitization and tolerance development, where certain allergens—such as peanut proteins Ara h 1 and Ara h 2—tend to elicit stronger and more durable IgE-mediated responses. Interestingly, longitudinal cohort studies demonstrate that many

children eventually outgrow allergies to milk, eggs, or soy, often by late childhood or adolescence, whereas allergies to peanuts, tree nuts, and shellfish are less likely to resolve [10][6]. Additionally, individuals with pre-existing allergic conditions—such as sensitivity to bee venom, latex, or certain medications—demonstrate a higher propensity for developing food allergies later in life, highlighting shared immune dysregulation pathways across allergic phenotypes [8].

Marked geographic variations characterize global food allergy epidemiology. Prevalence tends to be highest in Westernized, urbanized regions, where up to 10% of infants may be diagnosed with at least one food allergy [7]. Conversely, lower prevalence rates are observed in rural or resource-limited settings, suggesting that environmental exposures—such as early contact with diverse microbes, lower antibiotic usage, and differences in diet—may confer a protective effect [11]. The “hygiene hypothesis” offers one explanatory model, proposing that reduced microbial exposure in early childhood skews immune development toward Th2 dominance, predisposing individuals to allergic sensitization. More recent extensions of this concept, including the “microbiome hypothesis,” underscore the pivotal role of gut microbial diversity in maintaining immune tolerance [5][12]. Other environmental risk factors, such as air pollution, microplastic ingestion, and limited exposure to natural environments and animal microbes, have also been implicated in disrupting mucosal immunity and promoting allergic inflammation [13][14][15]. Beyond global and environmental differences, racial and ethnic disparities in food allergy prevalence are increasingly recognized within single nations. For instance, in the United States, Black children exhibit disproportionately higher rates of peanut and shellfish allergies compared with White counterparts, even after adjusting for socioeconomic and healthcare access variables [7]. This observation suggests that genetic predisposition and differential environmental exposures intersect to influence allergic disease risk. Studies have also highlighted varying allergen sensitization profiles across ethnic groups, indicating that culturally specific diets and early-life feeding practices contribute to observed heterogeneity. For example, sesame allergy is more common in Middle Eastern and Mediterranean populations, while buckwheat allergy is more prevalent in East Asian countries, reflecting localized dietary exposure patterns [9].

The public health implications of food allergies extend far beyond individual morbidity. Food allergies contribute substantially to healthcare utilization, including increased emergency department visits, hospital admissions, and healthcare costs associated with acute management and long-term follow-up [16]. Moreover, the incidence of food-induced anaphylaxis has risen dramatically,

particularly among children and adolescents, with reports indicating significant year-over-year increases in both emergency visits and fatal reactions [17]. This trend underscores the urgent need for enhanced awareness, availability of epinephrine auto-injectors, and education among caregivers, educators, and healthcare providers. From a psychosocial standpoint, food allergies impose a profound emotional and economic burden on families. Caregivers often experience heightened anxiety, especially regarding accidental exposure in schools, social settings, and restaurants. Nursing professionals and family medicine practitioners play critical roles in mitigating these burdens through patient education, counseling, and community-based interventions that promote resilience and safety planning. Meanwhile, laboratory diagnostics contribute to improved case identification, helping clinicians distinguish between true allergy and asymptomatic sensitization, thereby preventing unnecessary dietary restriction that can impair nutrition and quality of life [7][11]. In summary, the epidemiology of food allergies reveals a multifactorial pattern influenced by genetics, environment, diet, and healthcare systems. Rising prevalence rates, regional disparities, and persistent inequities in diagnosis and management underscore the necessity of coordinated public health strategies that integrate family medicine, nursing, and laboratory science. Understanding these epidemiological dynamics is essential for guiding clinical screening protocols, optimizing early intervention programs, and tailoring educational initiatives to the cultural and socioeconomic contexts of diverse populations [6][7][16][17].

Pathophysiology

Food allergy arises when immune homeostasis fails and ordinarily harmless dietary proteins are processed and perceived as threats rather than tolerated antigens. In health, oral tolerance is established through coordinated sampling of luminal proteins by specialized intestinal antigen-presenting cells, induction of regulatory T cells, and production of tolerogenic cytokines that restrain effector responses. Breakdown of these mechanisms promotes aberrant sensitization, in which epithelial barrier perturbations, dendritic cell programming, and a type 2-skewed cytokine milieu converge to support the generation of allergen-specific effector pathways. Clinically, the resulting reactions are broadly divided into IgE-mediated and non-IgE-mediated hypersensitivities, each with distinct cellular circuits, kinetics, and target tissues but a common origin in the loss of immune tolerance to food antigens [18]. In IgE-mediated food allergy, initial sensitization typically begins at cutaneous or mucosal surfaces where allergens traverse a compromised barrier and are captured by dendritic cells. These cells migrate to draining lymph nodes and present processed peptides to naïve T cells in a cytokine environment favoring T-helper 2 (Th2) differentiation. Th2 cells elaborate

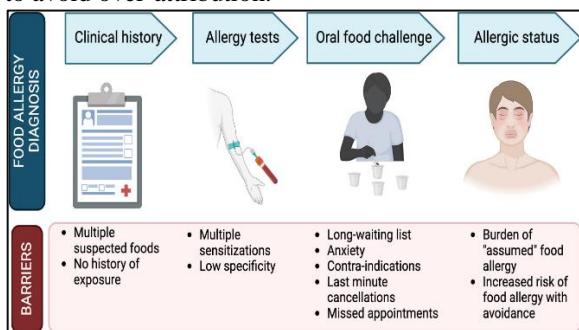
interleukin-4 and interleukin-13, while driving B-cell class switching to allergen-specific IgE. Newly synthesized IgE binds with high affinity to Fc ϵ RI receptors on mast cells and basophils, arming these cells for rapid effector responses upon re-encounter with the allergen. This primed state can persist for months, setting the stage for immediate hypersensitivity at the next exposure [18]. Re-exposure leads to cross-linking of Fc ϵ RI-bound IgE, intracellular calcium influx, and explosive degranulation with release of histamine, tryptase, and heparin, alongside rapid synthesis of leukotrienes and prostaglandins. The early-phase reaction manifests within minutes as pruritus, urticaria, flushing, bronchospasm, vomiting, and hypotension driven by smooth muscle contraction, vascular leakage, and mucous hypersecretion. A late-phase response, hours later, recruits eosinophils, Th2 cells, and innate lymphoid cells, sustaining tissue inflammation and symptom recurrence [13].

Anaphylaxis represents the most severe expression of this cascade and is characterized by sudden, systemic involvement. Diagnostic frameworks emphasize rapid onset with compromise of at least two organ systems—skin/mucosa, respiratory, cardiovascular, or gastrointestinal—or isolated hypotension or airway compromise after exposure to a likely allergen. The hemodynamic collapse of anaphylaxis reflects widespread vasodilation, increased vascular permeability, and diminished venous return; respiratory compromise arises from bronchoconstriction, laryngeal edema, and increased secretions. Without immediate epinephrine to counteract β 2-mediated bronchodilation and α 1-mediated vasoconstriction, the reaction can progress to shock and cardiac arrest. The propensity for biphasic reactions underscores the importance of observation and escalation plans after initial stabilization [18][13]. A specialized IgE-mediated phenotype is oral allergy syndrome (OAS), also termed pollen-food allergy syndrome, in which sensitization to aeroallergens primes IgE that cross-reacts with homologous proteins in certain raw fruits, vegetables, and nuts. Structural similarity between pollen antigens and plant food proteins—classically PR-10 proteins, profilins, or lipid transfer proteins—drives this molecular mimicry. Upon ingestion, allergens contact mast cells and basophils in the oropharyngeal mucosa, triggering localized mediator release. Patients typically report immediate itching, tingling, or swelling of the lips, tongue, palate, and throat, with symptoms that are transient and self-limited. Because many cross-reactive proteins are heat-labile, culinary processing denatures epitopes and mitigates clinical reactivity, allowing most individuals to tolerate cooked forms of the culprit foods. Although systemic reactions are uncommon, vigilance is warranted in those with co-factors such as uncontrolled asthma or high allergen load exposure [19][20].

In contrast, non-IgE-mediated food allergies arise predominantly from delayed, cell-mediated mechanisms in which T cells, macrophages, and eosinophils orchestrate tissue-specific inflammation without a central role for IgE. Exemplars include food protein-induced enterocolitis syndrome (FPIES), food protein-induced enteropathy, and allergic proctocolitis. These disorders typically present with delayed-onset gastrointestinal symptoms—protracted vomiting, lethargy, diarrhea, and, in severe FPIES, dehydration and hypotension—occurring hours after ingestion rather than minutes. Histologic patterns reflect epithelial injury, edema, and leukocyte infiltration, while cytokine profiles suggest heightened tumor necrosis factor signaling with impaired regulatory pathways. Because IgE is not the driving effector, skin prick testing and specific IgE levels may be negative, and diagnosis relies on clinical criteria and, when safe and necessary, supervised oral food challenges that reproduce the phenotype in a controlled setting [20][21]. Across both immune archetypes, the epithelial barrier serves as a critical gatekeeper and educator of the mucosal immune system. Barrier disruption—via cutaneous inflammation, viral gastroenteritis, dietary emulsifiers, or other environmental stressors—enhances antigen uptake and skews antigen-presenting cell programming toward danger signaling. The resulting context shapes T-cell fate decisions, promoting Th2 polarization in at-risk hosts and attenuating generation of allergen-specific regulatory T cells that would otherwise maintain tolerance. Microbial metabolites and commensal composition further condition this interface; dysbiosis can diminish short-chain fatty acid-mediated support for epithelial integrity and regulatory circuits, thereby amplifying sensitization risk upon dietary exposures. The dynamic interplay among barrier status, microbial cues, and antigen dose and timing ultimately determines whether an encounter promotes tolerance or drives pathologic immunity [13][20].

Effector mechanisms downstream of sensitization exhibit organotropism that explains clinical heterogeneity. In the skin, mast cell mediators increase vascular permeability and stimulate sensory nerves, producing wheals and pruritus; in the airways, leukotrienes and histamine constrict smooth muscle and thicken secretions, provoking cough, wheeze, and stridor; in the gastrointestinal tract, serotonin and prostaglandins accelerate motility and alter secretion, causing cramping, vomiting, and diarrhea. Non-IgE pathways, particularly in FPIES, are dominated by T-cell-derived cytokines that impair epithelial transport and barrier function, leading to fluid shifts and emesis without urticaria or angioedema. These tissue-specific patterns help clinicians distinguish mechanisms at the bedside and tailor investigations, accordingly, integrating laboratory data judiciously while recognizing that oral food challenge remains the reference standard when noninvasive testing is

inconclusive [18][21]. The propensity for co-factors to amplify reactions provides further insight into pathophysiology. Exercise, alcohol, nonsteroidal anti-inflammatory drugs, and intercurrent infection can lower the threshold for degranulation or intensify mediator effects by altering gastrointestinal permeability, prostaglandin pathways, or adrenergic balance. Likewise, uncontrolled asthma increases the risk of severe respiratory compromise during systemic reactions, underscoring the necessity of comprehensive disease management and emergency preparedness plans that prioritize early epinephrine use and escalation protocols. Education around these co-factors is a core element of preventive care, particularly for adolescents who face unique exposure patterns and adherence challenges [18][13]. In synthesis, food allergy represents a spectrum of immune dysregulation unified by the loss of tolerance to dietary proteins. IgE-mediated disease is characterized by Th2-driven class switching, mast cell and basophil priming, and rapid mediator release upon re-exposure, culminating in immediate hypersensitivity and potential anaphylaxis. Non-IgE-mediated conditions reflect delayed, T cell-dominated inflammation that preferentially targets the gastrointestinal tract and requires distinct diagnostic strategies. Across mechanisms, epithelial integrity, antigen context, and host immune set points determine clinical fate. Recognizing these interlocking elements equips clinicians to interpret presentations, select appropriate tests, anticipate severity, and implement targeted interventions that restore control and reduce risk across diverse patient populations [19][20][21].


History and Physical

The clinical approach to a patient with suspected food allergy begins with a meticulous history that clarifies whether the presentation follows a recognizable exposure or whether food allergy is one possibility among several competing diagnoses. When a reaction has occurred, the history should reconstruct the exposure with as much granularity as possible: the specific food(s) eaten, estimated quantities, form (cooked, baked, raw), preparation methods, and potential cross-contact. Documenting the time from ingestion to symptom onset is crucial because IgE-mediated reactions typically occur within minutes to two hours, whereas non-IgE-mediated conditions often exhibit a delayed time course. Equally important is characterizing the trajectory—onset, peak, duration, and resolution—along with the organ systems involved and any interventions used, including antihistamines, inhaled bronchodilators, or epinephrine. Patients and caregivers should be asked about prior reactions to the same or related foods, interval changes in severity, and contextual co-factors such as physical exertion, alcohol, nonsteroidal anti-inflammatory drugs, intercurrent infections, or menstruation, all of which can lower reaction thresholds and intensify responses. When food allergy

is one of several potential explanations, the purpose of the history is to establish pattern recognition and reproducibility. A diet-focused review explores typical intake and probes for consistent symptom clustering after specific foods. A structured food and symptom diary—spanning at least two to four weeks—can be invaluable for linking exposures with recurrent hives, vomiting, diarrhea, abdominal pain, or wheeze. The clinician should also screen for nonallergic mimics such as lactose intolerance, celiac disease, gastroesophageal reflux, eosinophilic gastrointestinal disease, and mast cell activation disorders. Because atopic diathesis increases the likelihood of food allergy, ascertain personal and family histories of eczema, asthma, allergic rhinitis, and anaphylaxis, and for infants and toddlers, review feeding history, including breastfeeding, timing of introduction of allergenic foods, and any avoidance practices. This broader context helps prioritize differential diagnoses and frame pretest probabilities before any confirmatory testing is considered.

Non-IgE-mediated food allergies present distinctive historical features, especially in infants. Food protein-induced enterocolitis syndrome (FPIES) typically manifests with repetitive, often projectile vomiting beginning one to three hours after ingestion of the triggering food, followed by pallor, lethargy, and, in more severe cases, dehydration and hypotension. With continued exposure, progressive symptoms can include abdominal distention, diarrhea—sometimes bloody—failure to thrive, and anemia. Common triggers include cow's milk, soy, oats, and rice, and the absence of immediate cutaneous or respiratory signs is a helpful historical discriminator from IgE-mediated disease [22]. For food protein-induced allergic proctocolitis (FPIAP), history often reveals otherwise well-appearing infants with streaks of blood and mucus in stools during the first months of life; approximately 60% of cases occur in exclusively breastfed infants, with cow's milk protein as the leading trigger and soy, egg, and wheat as less common culprits [23]. FPIAP is generally benign and self-limited, and most cases resolve within the first year, a natural history point that should be communicated during counseling to mitigate parental anxiety [22][23]. Food protein-induced enteropathy (FPE) presents more chronically with steatorrhea, malabsorption, and poor weight gain; historical clues include bulky, greasy stools, edema from hypoalbuminemia, and fat-soluble vitamin deficiencies. Cow's milk is the commonest trigger, followed by soy, wheat, and rice, and symptoms typically abate by age two to three with appropriate dietary management [24]. In contrast, IgE-mediated reactions exhibit rapidity and multi-organ involvement. Cutaneous findings—acute urticaria, flushing, pruritic eyes, and angioedema—often dominate early narratives and usually emerge within minutes to two hours of ingestion. Milk, egg, peanut,

tree nuts, and sesame are frequent triggers, and some fruits such as kiwi can provoke prominent oropharyngeal symptoms. Notably, about 30% of children with moderate-to-severe atopic dermatitis also have coexisting food allergy, emphasizing the clinical link between impaired skin barrier function and allergic sensitization and reinforcing the importance of targeted, not blanket, elimination diets. Respiratory symptoms—nasal congestion, sneezing, cough, and wheeze—may accompany cutaneous and gastrointestinal features, and while isolated respiratory complaints are uncommon, the presence of wheeze in roughly a quarter of IgE-mediated reactions should heighten vigilance for severity. Because only a minority of individuals with asthma experience food-induced respiratory symptoms, careful correlation with exposure timing and concurrent signs is essential to avoid over-attribution.

Figure-3: Diagnosis of Food Allergies.

The possibility of anaphylaxis must be explicitly assessed in every acute presentation. Patients may describe generalized malaise, a sense of impending doom, lightheadedness, or lethargy, with objective evidence of multisystem involvement—skin and mucosal signs, bronchospasm or upper airway edema, gastrointestinal cramping and vomiting, and cardiovascular compromise. Hypotension, tachycardia, pallor, syncope, or collapse indicate hemodynamic involvement and demand immediate recognition and treatment. In the United States, food reactions are the leading cause of anaphylaxis presenting to emergency departments, underscoring the need for prompt epinephrine administration, observation for biphasic reactions, and discharge planning that includes an action plan and auto-injector training [8]. A thorough review of prehospital and emergency care—timing and dosing of epinephrine, response, adjunctive therapies, and observation duration—should be recorded to inform risk stratification and follow-up. The physical examination complements the history by documenting objective signs, assessing severity, and identifying atopic comorbidities that modify risk. Vital signs and general appearance provide immediate cues; fever suggests infectious mimics, while hypotension, stridor, or hypoxemia signal severity. Dermatologic inspection may reveal urticaria, angioedema, or eczematous changes. In infants with suspected non-IgE-mediated disease, perianal erythema, excoriations, or fissures

can accompany FPIAP, whereas signs of chronic dermatitis and excoriation can support a history of atopy. Classic atopic stigmata—xerosis, Dennie–Morgan lines, and keratosis pilaris—lend weight to a Th2-biased phenotype. Respiratory examination focuses on breathing, wheeze, and stridor, gastrointestinal assessment notes abdominal distention, tenderness, hepatosplenomegaly, and signs of dehydration. Anthropometrics plotted on growth curves help uncover chronic malabsorption in FPE and growth faltering in FPIES with ongoing exposure [24]. A cardiovascular exam documenting perfusion and heart rate variability is essential in acute settings to detect evolving shock, particularly in infants who may decompensate quickly [22].

For patients with recurrent or chronic symptoms, clinicians should consider contextual evaluations that integrate the family and school environment. Review of food labeling literacy, cross-contact risks in shared kitchens, social eating settings, and school or daycare emergency readiness provides insight into exposure opportunities and safety gaps. In adolescents, discussions about risk-taking behaviors, exercise around meals, and adherence to carrying epinephrine address developmental vulnerabilities. In breastfeeding dyads with suspected FPIAP, maternal diet history and phased elimination-rechallenge protocols should be reviewed alongside lactation support to avoid unnecessary weaning [23]. In older children with suspected oral allergy syndrome, correlating seasonal pollen symptoms with oropharyngeal reactions to specific raw fruits or vegetables and noting tolerance of cooked forms can avert over-restriction and guide pragmatic counseling. Although the “History and Physical” emphasizes bedside assessment rather than testing, it sets the stage for judicious diagnostics. Where IgE-mediated reactions are likely, targeted serum-specific IgE or skin testing to confirm sensitization can be considered after stabilizing the acute episode, recognizing that positive tests indicate sensitization, not necessarily clinical allergy, and must be interpreted in the context of a compatible history. For non-IgE-mediated conditions, negative IgE results are expected; diagnosis relies on history, resolution with elimination, and—when safe—supervised oral food challenge to confirm causality. The historical arc of FPIES, FPIAP, and FPE and their typical triggers and natural history should be integrated into shared decision-making about elimination scope and timing of reintroduction trials [22][23][24]. Throughout, documentation should be precise and actionable, culminating in an individualized emergency plan, clear avoidance strategies, and a follow-up pathway that engages family medicine, nursing, and, when appropriate, allergy and gastroenterology to optimize safety, nutrition, and quality of life [8].

Evaluation

The evaluation of suspected food allergy is anchored in a careful, history-driven assessment

followed by judicious use of confirmatory testing. Because both skin prick testing (SPT) and serum-specific IgE (sIgE) quantify sensitization rather than clinical reactivity, testing should be reserved for patients with a high pre-test probability based on a convincing history of reproducible symptoms following ingestion of a specific food. In this context, negative SPT or sIgE results have high negative predictive value and can avert unnecessary elimination diets, whereas positive results must be interpreted alongside the clinical narrative to avoid overdiagnosis. When the history is suggestive but discordant or indeterminate relative to initial test results, a supervised oral food challenge (OFC) remains the diagnostic gold standard for establishing or excluding IgE-mediated food allergy [8]. Selecting the initial modality hinges on patient safety, comorbidities, test feasibility, and anticipated interpretability. sIgE is often favored in patients at heightened risk of anaphylaxis during testing, in those with poorly controlled asthma, or in individuals who cannot undergo SPT because of extensive eczema, dermatographism, or recent antihistamine use. Historically, the RadioAllergoSorbent Test (RAST) used radiolabeled detection to identify allergen-specific IgE, but contemporary assays use nonradioactive immunoassay platforms that offer improved analytical sensitivity and reproducibility. Despite this evolution, “RAST” persists as a colloquial umbrella term for sIgE measurement in many clinical settings. Importantly, while higher sIgE concentrations correlate with increased probability of clinical reactivity at the population level, titers do not grade reaction severity in individuals; they should be interpreted as probabilistic, not absolute, markers of risk. Moreover, an isolated negative sIgE in the absence of a clear exposure history does not establish tolerance and may simply reflect lack of prior meaningful ingestion, reinforcing the principle that testing should be targeted to histories consistent with an IgE-mediated phenotype [8].

An attractive advantage of sIgE is accessibility: primary care clinicians can order and preliminarily interpret results, triaging referrals and counseling families on next steps. Serial sIgE measurements may also support longitudinal decision-making, such as timing of reintroduction discussions in children with a history of milk or egg allergy or identifying candidates who might safely proceed to a supervised OFC when titers decline and history becomes less compelling. Nevertheless, clinicians must remain vigilant for cross-reactivity—particularly in patients with pollen sensitization—where low-level sIgE to botanically related foods may not translate into systemic reactions upon ingestion. In such scenarios, history (including tolerance of cooked forms) should take precedence over laboratory values, and unnecessary broad-spectrum dietary restrictions should be avoided [8]. SPT is a cornerstone of the

allergist’s evaluation and is generally more sensitive than sIgE for many food allergens, with rapid turnaround at the point of care. The procedure places a drop of standardized allergen extract on the epidermis—typically forearm or back—and introduces it with a shallow lancet; a wheal-and-flare response is measured at about 15 minutes. Although larger wheal sizes increase the likelihood of clinical reactivity, there is no universal wheal diameter that equals certainty; predictive values are food-specific and age-dependent. Infants and toddlers (≤ 2 years) and older adults (≥ 70 years) may mount smaller dermal responses despite true sensitization, requiring cautious interpretation. Because histamine-mediated itching and swelling are the readout, interfering medications—especially H1 antihistamines and tricyclic antidepressants—should be withheld for roughly a week before testing, provided this is clinically safe and acceptable to the patient [8]. SPT must be performed in settings prepared to recognize and treat anaphylaxis, even though severe systemic reactions to prick testing are uncommon.

By contrast, intradermal testing introduces allergen into the dermis and, while more analytically sensitive, is substantially less specific and carries greater risk of systemic reactions. For these reasons, intradermal testing is generally confined to environmental or drug allergy assessment and is not recommended for diagnosing food allergy. Employing intradermal testing for foods inflates false positives and can lead to unnecessary, nutritionally harmful eliminations without improving clinical certainty. When history and sensitization testing fail to align, the OFC provides definitive adjudication. Conducted under close medical supervision, the OFC administers incrementally increasing doses of the suspect food at set intervals with continual monitoring for objective signs of reactivity. As with SPT, the procedure must occur in a facility capable of immediate anaphylaxis management; pre-challenge preparation includes avoiding the culprit food for a minimum of two weeks and holding medications that might mask early signs or blunt treatment response (notably antihistamines and beta-adrenergic bronchodilators, when clinically feasible) [25]. The OFC format can be double-blind placebo-controlled (DBPCFC) to minimize observer and participant bias, single-blind if practical constraints exist, or open when the risk of expectancy effects is judged low. A negative blinded challenge is often followed by an open, supervised “typical serving” to exclude false-negative results and simulate real-world intake [25].

Beyond confirming or excluding diagnosis, the OFC can estimate the threshold dose that elicits symptoms, information that informs risk counseling, label reading, and school or workplace planning. It is also indispensable in determining whether a previously diagnosed allergy has been resolved, especially in children with milk or egg allergy who

may develop tolerance over time. Notwithstanding its diagnostic value, the OFC is resource-intensive, time-consuming, and carries a low but consequential risk of severe reactions, including anaphylaxis and rare fatalities, realities that mandate careful patient selection, informed consent, and robust emergency protocols [26]. In general, when a patient has a clear, immediate reaction history to a specific food and concordant evidence of sensitization (positive SPT or elevated sIgE), an OFC is not necessary to “prove” what is already clinically evident; elimination and emergency preparedness may proceed without challenge. Conversely, OFC is contraindicated in uncontrolled asthma, recent anaphylaxis, intercurrent acute illness, pregnancy in some cases, or any setting without immediate access to advanced resuscitative care, because its risk exceeds that of SPT or sIgE testing [26]. Evaluation strategies should also incorporate the broader differential diagnosis and patient-specific modifiers. For example, adolescents who report exercise-associated reactions may require consideration of food-dependent, exercise-induced anaphylaxis and tailored challenge protocols that include co-factors. Patients with prominent oral itching to raw fruits or vegetables and seasonal rhinitis may fit pollen-food allergy syndrome, in whom targeted history frequently obviates aggressive testing and emphasizes tolerance of cooked forms. Across scenarios, close collaboration among family medicine, nursing, and allergy specialists ensures that test choice, timing, and interpretation align with patient values, safety considerations, and nutritional needs. The ultimate objective is to minimize false labeling of allergy, prevent avoidable dietary restriction, and promptly identify those at risk of severe reactions who require epinephrine education and action planning [8].

Finally, the evaluation of non-IgE-mediated food allergy remains primarily clinical. Conditions such as food protein-induced enterocolitis syndrome (FPIES), food protein-induced enteropathy (FPE), and food protein-induced allergic proctocolitis (FPIAP) lack reliable laboratory diagnostics; sIgE and SPT are typically negative because IgE is not the principal effector pathway. Diagnosis rests on a compatible timeline of delayed gastrointestinal symptoms after ingestion, improvement with strict elimination, and, when appropriate and safe, supervised reintroduction to verify causality. In these conditions, the careful history obtained in primary care, reinforced by nursing-led elimination guidance and growth monitoring, is often more informative than any test. Where diagnostic uncertainty persists or severe phenotypes are suspected, referral for specialist-directed protocols—including medically supervised challenges designed for non-IgE mechanisms—can clarify the diagnosis while prioritizing patient safety [25][26].

Treatment / Management

The management of food allergies is a multifaceted process that integrates strict dietary

avoidance, emergency preparedness, patient and caregiver education, and, when appropriate, advanced therapeutic interventions such as immunotherapy or biologics. Successful care requires collaboration among healthcare providers—including family physicians, nurses, dietitians, and allergists—to minimize allergic risk while maintaining nutritional adequacy and quality of life. The cornerstone of management remains complete avoidance of confirmed allergenic foods, alongside ongoing reassessment for possible tolerance development over time [27].

Dietary Avoidance and Patient Education

Avoidance of the triggering food is the primary therapeutic strategy, yet it is not without challenges. Education is essential to help patients recognize both obvious and hidden sources of allergens, understand labeling regulations, and identify potential cross-contamination risks in home and commercial food preparation. The American College of Allergy, Asthma & Immunology (ACAAI) and the National Institute of Allergy and Infectious Diseases (NIAID) emphasize patient-specific counseling, including instruction on reading ingredient labels, recognizing precautionary “may contain” statements, and maintaining vigilance when eating outside the home [28]. Nurses and dietitians play a central role in reinforcing these skills during follow-up visits. Patients with oral allergy syndrome (OAS) represent an exception to universal avoidance: because heating denatures the proteins responsible for cross-reactivity with pollens, these individuals may safely consume cooked or baked versions of the food that causes symptoms when raw. Common examples include apples, peaches, and carrots, which often lose their allergenicity after cooking. For most other food allergies, however, even trace exposure can provoke reactions, necessitating strict elimination. Reevaluation is crucial since many food allergies—especially to cow’s milk, egg, soy, or wheat—resolve naturally in childhood. Conversely, allergies to peanuts, tree nuts, fish, and shellfish more often persist in adulthood. Scheduled reassessment with skin testing, serum-specific IgE measurement, or oral food challenge helps determine if continued avoidance is necessary. If symptoms persist despite a verified elimination diet, clinicians should reconsider the diagnosis, as nonallergic food intolerances or other gastrointestinal disorders may be responsible [20].

Emergency Preparedness and Pharmacologic Management

For all patients at risk of systemic reactions, prompt intramuscular epinephrine administration remains the first-line treatment for anaphylaxis. Patients and caregivers must be trained to recognize the early signs—such as hives, throat tightness, wheezing, or dizziness—and to administer the epinephrine autoinjector (EAI) immediately, followed by emergency medical evaluation. Because of epinephrine’s short half-life, symptoms may recur,

and a second injection is often required within 5 to 15 minutes [10]. The recommended dosage is 0.1 mg/kg, up to 0.3 mg for children and 0.5 mg for adults, administered intramuscularly into the mid-outer thigh. In the United States, EAIs are available in 0.1 mg, 0.15 mg, and 0.3 mg formulations, while a 0.5 mg option is accessible in Canada and several European countries. In 2025, the U.S. Food and Drug Administration (FDA) approved inhaled epinephrine (brand name Neffy) for the emergency treatment of type I allergic reactions, including anaphylaxis, in patients aged four and older who weigh at least 15 kg. This novel, needle-free alternative provides an important option for those with needle phobia or dexterity challenges, offering ease of use and a longer shelf life compared to standard EAIs [29][30]. However, it is crucial that patients understand that inhaled epinephrine does not replace the need for emergency follow-up, as delayed absorption may not suffice in severe systemic reactions. Adjunctive agents—including H1 antihistamines, corticosteroids, and inhaled beta-agonists—may be administered after epinephrine to relieve persistent symptoms such as hives, wheezing, or airway inflammation, but they must never delay or replace epinephrine as the first-line therapy [31]. Delays in epinephrine administration remain a major cause of morbidity and mortality in food-induced anaphylaxis. Community-based education efforts must therefore emphasize early recognition and prompt intervention. Schools, restaurants, and workplaces should maintain emergency action plans that include accessible epinephrine, staff training, and clear communication protocols.

Allergen Immunotherapy and Biologic Therapies

Beyond avoidance, the therapeutic landscape for food allergy is evolving toward desensitization and immune modulation. Allergen immunotherapy, administered through oral (OIT), sublingual (SLIT), or epicutaneous (EPIT) routes, aims to increase the threshold of reactivity and reduce the severity of accidental exposures [32]. These treatments introduce minute, gradually increasing doses of the allergen under controlled conditions to retrain the immune system toward tolerance. OIT, the most studied approach, has demonstrated success in desensitizing children to peanuts, eggs, and milk, though it carries a measurable risk of gastrointestinal and systemic reactions. SLIT and EPIT, which use lower doses and mucosal or transdermal delivery, may offer improved safety profiles at the expense of slower efficacy [8][33]. Recent advances in biologic therapy have further expanded treatment options. Omalizumab, a monoclonal antibody targeting circulating IgE, works by reducing free IgE levels and downregulating Fc ϵ RI receptors on mast cells and basophils. This reduces sensitivity to allergens and lowers the risk of severe reactions. In 2024, the FDA approved omalizumab for the treatment of food allergies, either as monotherapy or as an adjunct to OIT [34]. Early clinical trials

demonstrate that omalizumab can substantially increase the threshold dose required to trigger a reaction, improving patient safety and expanding potential dietary freedom. Other biologics under investigation include dupilumab (anti-IL-4 receptor α), ligelizumab, and anti-IL-33 antibodies, each targeting distinct pathways in the allergic cascade [35].

Comprehensive and Ongoing Care

Management extends beyond immediate medical interventions to encompass long-term patient empowerment and psychosocial support. Multidisciplinary follow-up ensures that dietary restrictions do not compromise nutrition, particularly in children, and that patients remain confident in recognizing and managing potential exposures. The ACAAI's 2023 Practice Parameter Update emphasizes the triad of allergen avoidance, epinephrine accessibility, and education as the foundation of care, while incorporating newer immunotherapeutic and biologic options for select patients [28]. In summary, food allergy management is a dynamic process that combines prevention, preparedness, and personalized therapy. Avoidance remains the primary safeguard but evolving treatments—ranging from inhaled epinephrine and structured immunotherapy to precision-targeted biologics—herald a more hopeful and individualized future. Through patient education, regular reassessment, and integrated clinical collaboration, healthcare professionals can minimize risk, improve quality of life, and move closer to achieving sustained tolerance and long-term disease modification for those living with food allergies [27][28][34][35].

Differential Diagnosis

The differential diagnosis of suspected food allergy is broad and spans immune-mediated diseases, nonallergic gastrointestinal and dermatologic conditions, toxic and infectious syndromes, metabolic and endocrine disorders, and psychophysiologic phenomena that can mimic acute allergic reactions. A systematic approach begins with precise temporal mapping of symptoms relative to ingestion, characterization of organ-system involvement, consideration of co-factors such as exercise or alcohol, and careful review of past reactions and baseline atopic risk. Because positive sensitization tests indicate IgE binding rather than clinical reactivity, anchoring the evaluation in history prevents mislabeling and the nutritional harm of unnecessary elimination diets. Distinguishing immediate, reproducible responses from delayed or fluctuating symptoms narrows the field and improves downstream test yield, particularly when multiple entities can present with overlapping dermatologic, gastrointestinal, or respiratory complaints. Eosinophilic gastrointestinal disorders (EGIDs) sit near the top of the immune-mediated differential because they are chronic, antigen-driven conditions

that share Th2-skewed biology with classic food allergy but follow different clinical arcs. Eosinophilic esophagitis (EoE) is most common and typically presents from school age through midlife with dysphagia, food impaction, chest or epigastric pain, and refractory “reflux-like” symptoms unresponsive to acid suppression. A personal or family history of atopy is frequent, and endoscopy reveals rings, furrows, exudates, and strictures with histologic eosinophil-predominant inflammation. Unlike IgE-mediated food allergy, EoE reactions are not immediate after a single exposure; rather, food triggers sustain chronic esophageal inflammation via mixed IgE and non-IgE mechanisms, and elimination diets or topical corticosteroids are mainstays of therapy [36]. Eosinophilic gastroenteritis and eosinophilic colitis present with abdominal pain, diarrhea, protein-losing enteropathy, and iron deficiency, often requiring biopsy confirmation and dietary or steroid therapy, further emphasizing that eosinophil-driven disease should be considered when symptoms persist beyond the transient time course of classic food reactions [36].

Mast cell activation syndrome (MCAS) is another important immune-mediated mimic. It features episodic, multisystem flares due to aberrant mast cell mediator release, leading to flushing, pruritus, urticaria, gastrointestinal cramping and diarrhea, tachycardia, hypotension, and occasionally frank anaphylaxis. Triggers are heterogeneous and may include heat, stress, medications, and foods, which confounds attribution. Elevations in tryptase or other mediators during attacks can support the diagnosis, but values may be normal between episodes. Because MCAS can phenocopy anaphylaxis, clinicians should maintain high vigilance for life-threatening events while simultaneously pursuing the broader differential; management emphasizes trigger mitigation, H1/H2 antagonists, leukotriene modifiers, and epinephrine education, consistent with contemporary practice parameters [28]. Celiac disease occupies a central position among non-IgE-mediated differential diagnoses. It is an autoimmune enteropathy induced by gluten that presents chronic diarrhea, abdominal pain, weight loss, iron deficiency anemia, fatigue, and, in children, growth faltering. The temporal relationship with eating is imprecise, and symptoms evolve over weeks to months rather than minutes to hours. Serologic screening with tissue transglutaminase IgA and confirmation by small bowel biopsy establish the diagnosis, and strict gluten avoidance reverses mucosal damage over time. Notably, celiac disease can coexist with atopy, which underscores the importance of disciplined, stepwise evaluation before attributing symptoms to food allergy alone. Nonceliac gluten sensitivity, though less well defined pathophysiologically, can present with overlapping gastrointestinal and extraintestinal complaints and should be differentiated carefully from both celiac disease and IgE-mediated wheat allergy.

Common gastrointestinal mimics include lactose intolerance, fructose malabsorption, functional dyspepsia, gastroesophageal reflux disease (GERD), and irritable bowel syndrome. Lactose intolerance causes bloating, cramping, flatulence, and diarrhea after dairy ingestion via osmotic and fermentative mechanisms, often without cutaneous or respiratory findings. Fructose malabsorption leads to similar symptoms after high-fructose foods. GERD may produce postprandial regurgitation or vomiting in infants and adults, confusable with allergic emesis, but typically lacks urticaria, angioedema, or wheeze. Irritable bowel syndrome manifests with chronic abdominal pain related to defecation and altered bowel habits and often improves with low FODMAP dietary strategies, differentiating it from the reproducible, ingestion-linked pattern characteristic of IgE-mediated reactions. Infectious processes frequently masquerade as food allergy, especially when gastrointestinal symptoms follow meals. Foodborne gastroenteritis due to pathogens such as *Salmonella*, *Campylobacter*, or *norovirus* produces vomiting and diarrhea within hours to days after ingestion of contaminated food, often accompanied by fever or myalgias and affecting multiple individuals with a shared exposure. Staphylococcal enterotoxin-mediated illness can provoke rapid-onset vomiting and cramping that abates within 24 to 48 hours, again without urticaria or bronchospasm. Viral respiratory infections can trigger acute urticaria or angioedema through immune activation, and bacterial skin or sinus infections may do the same; in these settings, the temporal link to food is often coincidental. Clarifying incubation periods, co-exposures, and systemic signs helps separate infection from allergy. Histamine intolerance and scombroid poisoning illustrate how biogenic amines confound the picture. Histamine intolerance presents flushing, headaches, pruritus, urticaria, nasal congestion, and gastrointestinal upset after histamine-rich foods such as aged cheeses, fermented products, processed meats, and alcohol. Unlike IgE-mediated reactions, the threshold is dose related and may vary with co-factors that impair histamine degradation. Scombroid poisoning arises from bacterial decarboxylation of histidine in improperly stored fish, leading to abrupt flushing, palpitations, headache, and diarrhea shortly after ingestion and affecting multiple diners, with response to antihistamines and absent sensitization markers. These entities highlight the need to scrutinize food handling, storage, and communal illness patterns.

Pharmacologic and environmental exposures also belong on the differential. Nonsteroidal anti-inflammatory drugs can provoke pseudoallergic urticaria or bronchospasm in susceptible individuals, and alcohol may act as a co-factor that lowers the reaction threshold to a tolerated food. Sulfites and other additives can induce irritant or vasomotor symptoms such as flushing, headache, and nasal congestion that mimic allergic reactions are not

immune mediated. Similarly, insect stings or medication hypersensitivity may temporally coincide with eating, leading to misattribution of the culprit; querying recent new drugs, supplements, and outdoor exposures prevents needless dietary restriction. Inborn errors of metabolism, though uncommon, must be considered in infants with vomiting, lethargy, hypoglycemia, or failure to thrive. Disorders such as galactosemia, hereditary fructose intolerance, or urea cycle defects produce feeding-related decompensation with laboratory derangements and, in some cases, hepatomegaly or encephalopathy. Early recognition is essential because dietary modification can be lifesaving, and these patterns differ from the acute, multisystem, cutaneous-respiratory signature of anaphylaxis. Psychophysiologic conditions further complicate the differential. Panic attacks may cause throat tightness, paresthesias, tachycardia, dyspnea, and dizziness; hyperventilation can amplify perioral tingling and chest discomfort. Globus sensation and functional laryngeal disorders can mirror throat closing. These symptoms rarely include objective urticaria or hypotension and often dissipate with reassurance and breathing techniques. Nonetheless, clinicians should avoid prematurely assigning psychogenic labels before serious immune-mediated causes are excluded, particularly in patients with atopic histories. Practical differentiation therefore rests on reproducibility, timing, organ-system constellation, objective findings, and response to elimination and reintroduction. Immediate IgE-mediated reactions typically occur within minutes to two hours, involve skin and at least one other system, and respond briskly to epinephrine. EGIDs, MCAS, celiac disease, and many mimics follow slower, chronic, or episodic courses and require targeted testing, endoscopy, biopsy, or mediator assays for confirmation [36][28]. When the clinical story is ambiguous, a structured food-symptom diary, selective sensitization testing interpreted in context, and, when safe, medically supervised oral food challenges can adjudicate between true food allergy and its imitators. Ultimately, a careful, hypothesis-driven evaluation prevents overdiagnosis, protects nutrition, and ensures that life-threatening allergic disease is recognized and treated while alternative explanations receive appropriate, evidence-based management [36][28].

Prognosis

The prognosis for patients with food allergies is variable and depends on numerous clinical and demographic factors, including the type of allergen, age of onset, severity of past reactions, comorbid conditions, and access to timely and equitable care. Generally, food allergies in children show a favorable natural course, particularly when they involve soy, wheat, milk, or egg proteins. Studies indicate that most children with soy and wheat allergies develop tolerance by school age, and approximately 80% of

children with milk or egg allergies outgrow their sensitivities by adolescence [8]. Interestingly, a significant proportion of these children—around 75%—can tolerate baked or extensively heated forms of these foods, as the heating process denatures the allergenic proteins, reducing their immunogenic potential. This finding has allowed for the gradual introduction of baked milk or egg products under supervision, facilitating earlier acquisition of tolerance and improving dietary diversity. In contrast, peanut, tree nut, fish, and shellfish allergies tend to persist throughout life. Only about 20% of individuals with a peanut allergy eventually achieve tolerance, and the rates are even lower for those allergic to tree nuts and shellfish, where reactions often remain lifelong and can be severe. This persistence underscores fundamental immunologic differences between these allergens and transient ones such as milk or egg. The allergenic epitopes in nuts and shellfish are heat-stable and resistant to digestion, promoting sustained sensitization and increasing the risk of anaphylaxis upon even minimal exposure [8]. Non-IgE-mediated food allergies, such as food protein-induced enterocolitis syndrome (FPIES), food protein-induced allergic proctocolitis (FPIAP), and food protein-induced enteropathy (FPE), typically resolve in early childhood, usually by the age of three to five years, reflecting their self-limited, developmentally transient nature.

Several clinical markers help predict persistence or resolution. Children with higher baseline or persistent allergen-specific IgE titers, those with multiple food allergies, or those who experienced anaphylaxis or severe systemic reactions tend to have a more chronic course. Delayed introduction of allergenic foods—once a standard preventive measure—has been shown to paradoxically increase the risk of persistent allergy, leading to a paradigm shift toward early introduction under safe, guided conditions. Asthma, especially if uncontrolled, remains a critical comorbidity that heightens the risk of severe and fatal anaphylaxis. Furthermore, individuals who previously experienced mild or localized reactions may later develop systemic reactions upon re-exposure, reflecting the inherently unpredictable nature of IgE-mediated hypersensitivity and the need for continuous vigilance. Prognostic disparities also arise from sociodemographic and racial inequities. Emerging epidemiologic data highlight that racial and ethnic minorities—particularly Black, Hispanic, and Asian children—experience higher rates of food allergy-related emergency department visits, hospitalizations, and fatalities compared to White children [37]. These disparities reflect a complex interplay of socioeconomic factors, environmental exposures, and inequities in healthcare access and diagnosis. Notably, Black individuals bear a disproportionate burden of comorbid asthma, a major risk factor for fatal

anaphylaxis, and data indicate higher mortality rates among Black males from food-induced anaphylaxis. Limited access to allergy specialists, underutilization of epinephrine, and structural barriers to follow-up care contribute to these adverse outcomes. Addressing these inequities requires targeted public health strategies, community education, and system-level interventions to ensure equitable access to diagnostic testing, immunotherapy, and emergency preparedness resources [37].

Despite these risks, with strict avoidance of known allergens, appropriate emergency preparedness, and routine re-evaluation, the prognosis for most individuals is positive. Advances in allergy management, including oral immunotherapy (OIT), sublingual immunotherapy (SLIT), epicutaneous immunotherapy (EPIT), and biologics such as omalizumab, have expanded treatment options, offering the potential for desensitization and improved quality of life. Such approaches do not cure food allergies but may significantly raise the threshold for reactions, reducing the severity of accidental exposures and mitigating anxiety for patients and families. However, the psychosocial and nutritional dimensions of prognosis are equally important. Food-related anxiety can profoundly impact mental health, leading to social isolation, avoidance behaviors, and diminished quality of life. Children may experience anxiety around school meals or social gatherings, while parents may develop excessive caution that limits participation in routine activities. Overly restrictive diets—especially when based on unconfirmed or misdiagnosed allergies—can result in nutritional deficiencies, poor growth, and impaired development, particularly in children whose diets exclude multiple food groups. Therefore, multidisciplinary care involving allergists, dietitians, and mental health professionals is crucial for achieving both physiological and psychosocial well-being. In conclusion, while most childhood-onset food allergies have a favorable prognosis, particularly for transient allergens like milk, egg, and soy, others such as peanut, tree nut, and shellfish allergies often persist and may be lifelong. The prognosis is influenced by immunologic markers, comorbid conditions, and social determinants of health. Through ongoing monitoring, tailored immunotherapy, equitable healthcare access, and comprehensive family education, clinicians can optimize outcomes and empower patients to live safely and confidently with their condition. The future of food allergy management is increasingly hopeful, as biologic and immunotherapeutic advances promise not only improved safety but also the potential for long-term tolerance and disease modification [8][37].

Complications

Complications of food allergy span acute, subacute, and chronic domains and can affect growth, psychosocial development, and long-term cardiopulmonary health. The most feared acute

complication in IgE-mediated disease is anaphylaxis, a rapidly progressive, life-threatening reaction that requires immediate intramuscular epinephrine. Peanuts are the leading cause of food-induced anaphylaxis in many regions, and even trace exposures can provoke severe reactions in highly sensitized individuals [8]. Risk is magnified by prior systemic reactions, coexisting asthma—particularly if poorly controlled—and delays in administering epinephrine. Clinical deterioration can be abrupt; biphasic responses may occur hours after apparent resolution, underscoring the need for observation and robust discharge planning after initial stabilization [8]. In infants with food protein-induced enterocolitis syndrome (FPIES), explosive vomiting with diarrhea can precipitate hypovolemia and shock, sometimes accompanied by lethargy and hypothermia; these presentations demand prompt fluid resuscitation and careful monitoring because cutaneous or respiratory signs of classic allergy are typically absent. Beyond acute crises, recurrent exposures to provoking foods can worsen atopic dermatitis, especially with milk, egg, and peanut; ingestion may also trigger wheeze in susceptible patients with asthma, further increasing the risk of severe morbidity during subsequent reactions. Chronic complications frequently reflect the cumulative toll of dietary restriction. Children with multiple food allergies face heightened risks of micronutrient deficiencies and suboptimal macronutrient intake, with downstream effects on linear growth, bone accrual, and neurodevelopment. The exclusion of milk, egg, wheat, soy, nuts, or fish without expert dietetic guidance can result in insufficient protein, calcium, vitamin D, iron, and essential fatty acids, especially in toddlers and school-aged children whose appetitive drives and taste preferences are still forming. Feeding challenges, including oral aversion and rigid food rituals, may evolve into restrictive eating patterns; adolescents in particular can experience body image concerns or anxiety-driven avoidance that blurs into eating disorders when nutritional adequacy is not proactively safeguarded. These risks are amplified in children with coexisting gastrointestinal conditions or sensory sensitivities, making early referral to dietetics and behavioral health essential to prevent cascading complications.

Psychosocial sequelae are common across the lifespan. Persistent fear of accidental exposure, hypervigilant label reading, and social navigation around meals can foster generalized anxiety, sleep disruption, and diminished quality of life. Parents often shoulder intense responsibility for environmental control, and siblings may experience vicarious restrictions or guilt around food, straining family dynamics. School-based and workplace stressors—ranging from stigma to inconsistent accommodation—compound these burdens. Over-restriction based on unconfirmed allergies, or reliance on tests that detect sensitization rather than clinical

reactivity, can further impair nutrition and social participation; re-evaluation at intervals helps recalibrate risk and liberalize diets safely where possible [20]. With comprehensive education, emergency preparedness, and periodic reassessment, most patients achieve excellent day-to-day functioning; yet the potential for life-threatening reactions persists, requiring lifelong vigilance and ready access to epinephrine [8].

Consultations

Optimal outcomes depend on timely, coordinated consultation. Primary care clinicians commonly establish the initial diagnosis and orchestrate referrals based on clinical severity and comorbidities. Allergists and immunologists refine diagnosis with targeted testing, counsel on avoidance strategies, determine candidacy for oral food challenges or immunotherapy, and provide emergency action plans. Registered dietitians translate restrictions into balanced, culturally appropriate meal plans, monitor growth trajectories, and guide staged reintroduction when indicated. Dermatologists manage atopic dermatitis flares that are exacerbated by dietary triggers; gastroenterologists evaluate non-IgE-mediated syndromes such as FPIES, food protein-induced enteropathy, and eosinophilic gastrointestinal disorders, integrating endoscopy or biopsy when necessary. Pulmonologists assist with asthma optimization, a critical modifier of anaphylaxis risk, especially in patients with a history of severe food reactions. In acute anaphylaxis, emergency physicians lead stabilization and disposition; intensive care specialists and anesthesiologists may be needed for airway management, refractory hypotension, or vasopressor support in severe presentations. Prompt communication of the index event, treatments provided, and observed thresholds facilitates precise follow-up and risk stratification.

Patient Education

Deterrence rests on three pillars: strict avoidance of confirmed allergens, immediate access to and correct use of epinephrine, and sustained education for patients, families, and caregivers across home, school, and community contexts. Foundational skills include accurate label interpretation and vigilance regarding cross-contact. In the United States, the Food Allergen Labeling and Consumer Protection Act of 2004 mandates plain-language disclosure of the eight major allergens—milk, soy, egg, wheat, fish, shellfish, tree nuts, and peanuts—on packaged foods, with sesame added in 2021; disclosures may appear within ingredient lists or as a “Contains” statement, while advisory labels such as “may contain” remain voluntary [38]. The European Union’s Food Information for Consumers regulation requires listing additional allergens such as gluten-containing cereals, celery, mustard, sulfites, and lupin, among others, reinforcing the need for region-specific literacy among families who travel internationally [38]. Education

should extend to strategies for dining out: asking targeted questions, clarifying preparation methods, and communicating allergies clearly to restaurant staff. Food Allergy Research & Education (FARE) provides accessible, evidence-based resources for patients and institutions at www.foodallergy.org [39]. A critical educational objective is distinguishing systemic reactions from anaphylaxis and acting decisively. Systemic reactions involve more than one organ system and may include urticaria with gastrointestinal or respiratory symptoms; anaphylaxis is severe, often rapid in onset, and typically involves at least two systems or presents with hypotension or airway compromise. Patients and caregivers must know when and how to use epinephrine auto-injectors (EAIs), emphasizing intramuscular delivery to the anterolateral thigh using a “place and press” technique to avoid finger injury. Accidental self-injection into the thumb, often from device misorientation, is well documented and preventable with hands-on training [28]. Demonstration devices allow rehearsal of cap removal, grip, and injection sequence without medication, improving confidence and reducing delays. Written, individualized action plans should be issued and reviewed periodically, aligning symptom recognition with stepwise responses and clear criteria for calling emergency services [20]. Because under-use of epinephrine is more common than overuse, many clinicians teach the heuristic, “If there’s more than skin, Epi goes in,” to counteract hesitancy and prevent progression to severe anaphylaxis. After any use of epinephrine, guidelines from the American Academy of Allergy, Asthma, & Immunology and the American College of Allergy, Asthma & Immunology recommend prompt medical evaluation and consideration of emergency department observation [28].

Institutional readiness is equally important. Schools and childcare programs should adopt comprehensive protocols that include staff training, safe food service practices, clear allergy communication, immediate access to epinephrine, and individualized emergency plans. New York’s 2019 enactment of Elijah’s Law—named in memory of a three-year-old with known milk allergy—set a precedent for statewide standards; multiple states have since followed with similar policies aimed at preventing fatal oversights in early care settings [Asthma and Allergy Foundation of America, Elijah-Alavi Foundation, (2022). Child Care Policies for Food Allergy: Elijah’s Law Report for U.S. States and Territories. Families should be encouraged to partner proactively with schools and camps to review action plans and confirm that epinephrine is accessible during playground activities, athletic events, and field trips. Prevention strategies also target infancy, when immune tolerance is most malleable. Exclusive breastfeeding confers multiple immunologic benefits and is associated with reduced risks of early atopic

disease; the American Academy of Pediatrics (AAP) recommends exclusive breastfeeding for approximately the first six months of life [40]. Current evidence does not support maternal avoidance of allergenic foods during pregnancy or lactation as a preventive strategy. Instead, the AAP advises early introduction of allergenic foods—such as peanuts and eggs—around four to six months of age for infants at high risk due to severe eczema or a strong family history of allergy, a major shift from prior guidance that favored delay [41][42]. The LEAP trial demonstrated that introducing peanut between four and eleven months reduced peanut allergy at age five by 81% compared with avoidance, establishing a powerful case for proactive feeding in suitable candidates [43]. Early egg introduction has also been linked to reduced egg allergy risk, though optimal dosing and preparation (e.g., baked vs boiled) vary across trials [44]. The EAT study further showed that introducing multiple allergenic foods early is feasible and safe without undermining breastfeeding continuation, supporting pragmatic approaches in motivated families [45]. For individual infants, shared decision-making should align these principles with developmental readiness, cultural dietary patterns, and access to supervision where needed.

Enhancing Healthcare Team Outcomes

Food allergy care exemplifies the value of interprofessional teamwork. Primary care clinicians and nurses anchor longitudinal education, reinforce avoidance strategies, and ensure that EAIs are prescribed, carried consistently, and used correctly. School nurses, present in roughly 79% of U.S. public schools, are pivotal in training teachers and staff to recognize anaphylaxis and administer epinephrine; this preparedness is essential given that about 25% of first-time anaphylactic reactions occur at school [46]. They foster a culture of shared responsibility by standardizing cleaning practices, reviewing snack and classroom project materials for hidden allergens, and verifying EAI accessibility beyond the nurse's office, including on playgrounds and during off-site activities. Administrators should maintain current, individualized allergy action plans for all students with known allergies and conduct regular drills that simulate real-world response demands. Policy and infrastructure expand the safety net. Schools and daycare centers should implement standard allergy protocols and stock undesignated EAIs for emergencies involving undiagnosed or visiting individuals, supported by state laws and liability protections. The U.S. School Access to Emergency Epinephrine Act promotes stocking epinephrine and grants legal immunity to those who prescribe or administer it in good faith, enabling faster, life-saving responses while reducing institutional hesitancy [47]. Pharmacists enhance outcomes by counseling on correct EAI technique, advising on storage conditions and expiration management, and identifying drug-food interactions that could confound symptom

interpretation or raise risk. Registered dietitians ensure nutritional adequacy within the constraints of avoidance, craft culturally congruent meal plans, and help families navigate label changes and manufacturing variability that affect allergen exposure risk. Allergy specialists contribute expertise in risk stratification, supervised oral food challenges, and advanced therapies, including immunotherapy and biologics, while pulmonologists, dermatologists, and gastroenterologists co-manage comorbid asthma, atopic dermatitis, and eosinophilic or non-IgE gastrointestinal disorders.

Continuous quality improvement threads these efforts together. Teams can audit epinephrine carriage rates, action plan completeness, and time-to-epinephrine metrics after school or community reactions. Simulation training for anaphylaxis improves role clarity and reduces treatment delays, while structured debriefs after real events translate experience into system changes. Telehealth can extend allergy expertise to rural or resource-limited settings for follow-up counseling, device checks, and shared decision-making around food challenges. Community partnerships with organizations such as FARE disseminate up-to-date educational materials and amplify public awareness campaigns that normalize allergy-friendly practices in restaurants, youth sports, and travel. By integrating clinical care, policy, education, and family support, interprofessional teams can lower the incidence of catastrophic reactions, protect growth and mental health, and empower children and adults with food allergy to participate fully and safely in daily life [20][28][39][46][47].

Conclusion:

In summary, the effective diagnosis and care of food allergies necessitate a robust, integrated approach that leverages the distinct expertise of family medicine, nursing, and laboratory practice. The prognosis for patients is highly variable, influenced by the specific allergen, individual immune response, and access to consistent, high-quality care. While many childhood food allergies may be resolved, others persist in adulthood, requiring lifelong vigilance. The cornerstone of management remains strict allergen avoidance coupled with comprehensive emergency preparedness, underscored by the immediate availability and correct use of epinephrine auto-injectors. The evolving therapeutic landscape, including oral immunotherapy and biologic agents like omalizumab, provides new avenues for desensitization and risk reduction, moving beyond mere avoidance. However, these advances do not replace the foundational need for patient and caregiver education on label reading, cross-contact, and recognizing the signs of anaphylaxis. Ultimately, enhancing healthcare outcomes depends on seamless interprofessional collaboration. This team-based model ensures that patients receive continuous support, from initial diagnosis in primary care and precise laboratory testing to the longitudinal education and

empowerment provided by nursing, all within a framework of shared decision-making. Through this coordinated effort, healthcare teams can mitigate risks, address nutritional and psychosocial complications, and empower individuals to lead safe and fulfilling lives.

References:

1. Kalb B, Marenholz I, Jeanrenaud ACSN, Meixner L, Arnau-Soler A, Rosillo-Salazar OD, Ghauri A, Cibin P, Blümchen K, Schlags R, Hansen G, Seidenberg J, Keil T, Lau S, Niggemann B, Beyer K, Lee YA. Filaggrin loss-of-function mutations are associated with persistence of egg and milk allergy. *J Allergy Clin Immunol*. 2022 Nov;150(5):1125-1134.
2. Marenholz I, Grosche S, Kalb B, Rüschendorf F, Blümchen K, Schlags R, Harandi N, Price M, Hansen G, Seidenberg J, Röblitz H, Yürek S, Tschirner S, Hong X, Wang X, Homuth G, Schmidt CO, Nöthen MM, Hübner N, Niggemann B, Beyer K, Lee YA. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. *Nat Commun*. 2017 Oct 20;8(1):1056.
3. Hui-Beckman JW, Goleva E, Berdyshev E, Leung DYM. Endotypes of atopic dermatitis and food allergy. *J Allergy Clin Immunol*. 2023 Jan;151(1):26-28.
4. Davis EC, Jackson CM, Ting T, Harizaj A, Järvinen KM. Predictors and biomarkers of food allergy and sensitization in early childhood. *Ann Allergy Asthma Immunol*. 2022 Sep;129(3):292-300.
5. Leung AS, Xing Y, Fernández-Rivas M, Wong GW. The Relationship Between Dietary Patterns and the Epidemiology of Food Allergy. *Allergy*. 2025 Mar;80(3):690-702.
6. Turke PW. Childhood food allergies: An evolutionary mismatch hypothesis. *Evol Med Public Health*. 2017;2017(1):154-160.
7. Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, Schleimer RP, Nadeau KC. Prevalence and Severity of Food Allergies Among US Adults. *JAMA Netw Open*. 2019 Jan 04;2(1):e185630.
8. Bright DM, Stegall HL, Slawson DC. Food Allergies: Diagnosis, Treatment, and Prevention. *Am Fam Physician*. 2023 Aug;108(2):159-165.
9. Loh W, Tang MLK. The Epidemiology of Food Allergy in the Global Context. *Int J Environ Res Public Health*. 2018 Sep 18;15(9)
10. NIAID-Sponsored Expert Panel. Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, Wood RA, Plaut M, Cooper SF, Fenton MJ, Arshad SH, Bahna SL, Beck LA, Byrd-Bredbenner C, Camargo CA, Eichenfield L, Furuta GT, Hanifin JM, Jones C, Kraft M, Levy BD, Lieberman P, Luccioli S, McCall KM, Schneider LC, Simon RA, Simons FE, Teach SJ, Yawn BP, Schwaninger JM. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. *J Allergy Clin Immunol*. 2010 Dec;126(6 Suppl):S1-58.
11. Warren CM, Jiang J, Gupta RS. Epidemiology and Burden of Food Allergy. *Curr Allergy Asthma Rep*. 2020 Feb 14;20(2):6.
12. Peters RL, Mavoa S, Koplin JJ. An Overview of Environmental Risk Factors for Food Allergy. *Int J Environ Res Public Health*. 2022 Jan 10;19(2)
13. Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. *J Allergy Clin Immunol*. 2018 Jan;141(1):41-58.
14. Rial MJ, Sastre J. Food Allergies Caused by Allergenic Lipid Transfer Proteins: What Is behind the Geographic Restriction? *Curr Allergy Asthma Rep*. 2018 Sep 11;18(11):56.
15. Shroba J, Rath N, Barnes C. Possible Role of Environmental Factors in the Development of Food Allergies. *Clin Rev Allergy Immunol*. 2019 Dec;57(3):303-311.
16. Keet CA, Savage JH, Seopaul S, Peng RD, Wood RA, Matsui EC. Temporal trends and racial/ethnic disparity in self-reported pediatric food allergy in the United States. *Ann Allergy Asthma Immunol*. 2014 Mar;112(3):222-229.e3.
17. Jimenez-Garcia R, Lopez-de-Andres A, Hernandez-Barrera V, Zamorano-Leon JJ, Cuadrado-Corrales N, de Miguel-Diez J, Del-Barrio JL, Jimenez-Sierra A, Carabantes-Alarcon D. Hospitalizations for Food-Induced Anaphylaxis Between 2016 and 2021: Population-Based Epidemiologic Study. *JMIR Public Health Surveill*. 2024 Aug 27;10:e57340.
18. Anvari S, Miller J, Yeh CY, Davis CM. IgE-Mediated Food Allergy. *Clin Rev Allergy Immunol*. 2019 Oct;57(2):244-260.
19. Kato Y, Morikawa T, Fujieda S. Comprehensive review of pollen-food allergy syndrome: Pathogenesis, epidemiology, and treatment approaches. *Allergol Int*. 2025 Jan;74(1):42-50.
20. Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, Nadeau K, Nowak-Wegrzyn A, Oppenheimer J, Perry TT, Randolph C, Sicherer SH, Simon RA, Vickery BP, Wood R, Joint Task Force on Practice Parameters. Bernstein D, Blessing-Moore J, Khan D, Lang D, Nicklas R, Oppenheimer J, Portnoy J, Randolph C, Schuller D, Spector S, Tilkes SA, Wallace D, Practice Parameter Workgroup. Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, Nadeau K, Nowak-Wegrzyn A, Oppenheimer J, Perry TT, Randolph C, Sicherer SH, Simon RA, Vickery BP, Wood R. Food allergy: a practice parameter

update-2014. *J Allergy Clin Immunol*. 2014 Nov;134(5):1016-25.e43.

21. Brough HA, Nadeau KC, Sindher SB, Alkotob SS, Chan S, Bahnsen HT, Leung DYM, Lack G. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? *Allergy*. 2020 Sep;75(9):2185-2205.
22. Uncuoğlu A, Aydoğan M, Şimşek IE, Çögürlü MT, Uçak K, Acar HC. A Prospective Assessment of Clinical Characteristics and Responses to Dietary Elimination in Food Protein-Induced Allergic Proctocolitis. *J Allergy Clin Immunol Pract*. 2022 Jan;10(1):206-214.e1.
23. Senocak N, Ertugrul A, Ozmen S, Bostancı I. Clinical Features and Clinical Course of Food Protein-Induced Allergic Proctocolitis: 10-Year Experience of a Tertiary Medical Center. *J Allergy Clin Immunol Pract*. 2022 Jun;10(6):1608-1613.
24. Nowak-Węgrzyn A, Katz Y, Mehr SS, Koletzko S. Non-IgE-mediated gastrointestinal food allergy. *J Allergy Clin Immunol*. 2015 May;135(5):1114-24.
25. Sampson HA, Arasi S, Bahnsen HT, Ballmer-Weber B, Beyer K, Bindslev-Jensen C, Bird JA, Blumchen K, Davis C, Ebisawa M, Nowak-Węgrzyn A, Patel N, Peters RL, Sicherer S, Spergel J, Turner PJ, Yanagida N, Eigenmann PA. AAAAI-EAACI PRACTALL: Standardizing oral food challenges-2024 Update. *Pediatr Allergy Immunol*. 2024 Nov;35(11):e14276.
26. Patel N, Shreffler WG, Custovic A, Santos AF. Will Oral Food Challenges Still Be Part of Allergy Care in 10 Years' Time? *J Allergy Clin Immunol Pract*. 2023 Apr;11(4):988-996.
27. Meyer R, Cianferoni A, Vazquez-Ortiz M. An update on the diagnosis and management of non-IgE-mediated food allergies in children. *Pediatr Allergy Immunol*. 2025 Mar;36(3):e70060.
28. Golden DBK, Wang J, Waserman S, Akin C, Campbell RL, Ellis AK, Greenhawt M, Lang DM, Ledford DK, Lieberman J, Oppenheimer J, Shaker MS, Wallace DV, Abrams EM, Bernstein JA, Chu DK, Horner CC, Rank MA, Stukus DR, Collaborators. Burrows AG, Cruickshank H, Workgroup Contributors. Golden DBK, Wang J, Akin C, Campbell RL, Ellis AK, Greenhawt M, Lang DM, Ledford DK, Lieberman J, Oppenheimer J, Shaker MS, Wallace DV, Waserman S, Joint Task Force on Practice Parameters Reviewers. Abrams EM, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt M, Horner CC, Ledford DK, Lieberman J, Rank MA, Shaker MS, Stukus DR, Wang J. Anaphylaxis: A 2023 practice parameter update. *Ann Allergy Asthma Immunol*. 2024 Feb;132(2):124-176.
29. Casale TB, Oppenheimer J, Kaliner M, Lieberman JA, Lowenthal R, Tanimoto S. Adult pharmacokinetics of self-administration of epinephrine nasal spray 2.0 mg versus manual intramuscular epinephrine 0.3 mg by health care provider. *J Allergy Clin Immunol Pract*. 2024 Feb;12(2):500-502.e1.
30. Anderer S. FDA Fast-Tracks First Nasal Spray for Allergic Reactions, Anaphylaxis. *JAMA*. 2024 Oct 01;332(13):1043.
31. Jones SM, Burks AW. Food Allergy. *N Engl J Med*. 2017 Sep 21;377(12):1168-1176.
32. Nsouli TM. New insights in the optimal diagnosis and management of food allergy. *Allergy Asthma Proc*. 2023 Sep 01;44(5):306-314.
33. Pajno GB, Fernandez-Rivas M, Arasi S, Roberts G, Akdis CA, Alvaro-Lozano M, Beyer K, Bindslev-Jensen C, Burks W, Ebisawa M, Eigenmann P, Knol E, Nadeau KC, Poulsen LK, van Ree R, Santos AF, du Toit G, Dhami S, Nurmatov U, Boloh Y, Makela M, O'Mahony L, Papadopoulos N, Sackesen C, Agache I, Angier E, Halken S, Jutel M, Lau S, Pfaar O, Ryan D, Sturm G, Varga EM, van Wijk RG, Sheikh A, Muraro A., EAACI Allergen Immunotherapy Guidelines Group. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. *Allergy*. 2018 Apr;73(4):799-815.
34. Ghelli C, Costanzo G, Canonica GW, Heffler E, Paoletti G. New evidence in food allergies treatment. *Curr Opin Allergy Clin Immunol*. 2024 Aug 01;24(4):251-256.
35. Cafarotti A, Giovannini M, Begin P, Brough HA, Arasi S. Management of IgE-mediated food allergy in the 21st century. *Clin Exp Allergy*. 2023 Jan;53(1):25-38.
36. Shoda T, Taylor RJ, Sakai N, Rothenberg ME. Common and disparate clinical presentations and mechanisms in different eosinophilic gastrointestinal diseases. *J Allergy Clin Immunol*. 2024 Jun;153(6):1472-1484.
37. American Academy of Allergy, Asthma & Immunology. Electronic address: info@aaaai.org; American Academy of Allergy, Asthma & Immunology. Addressing health disparities in food allergy: A Position Statement of the AAAAI Prior Authorization Task Force. *J Allergy Clin Immunol*. 2025 Jan;155(1):53-61.
38. Odisho N, Carr TF, Cassell H. Food Allergy: Labelling and exposure risks. *J Food Allergy*. 2020 Sep;2(1):115-118.
39. Dinakar C, Warady B. Food Allergy Care: "It Takes a Team". *Mo Med*. 2016 Jul-Aug;113(4):314-319.
40. Meek JY, Noble L., Section on Breastfeeding. Policy Statement: Breastfeeding and the Use of Human Milk. *Pediatrics*. 2022 Jul 01;150(1)
41. Anagnostou A, Lieberman J, Greenhawt M, Mack DP, Santos AF, Venter C, Stukus D, Turner PJ, Brough HA. The future of food allergy: Challenging existing paradigms of clinical practice. *Allergy*. 2023 Jul;78(7):1847-1865.

42. Boudreau-Romano S, Qamar N. Peanut Allergy: Changes in Dogma and Past, Present, and Future Directions. *Pediatr Ann.* 2018 Jul 01;47(7):e300-e304.
43. Greer FR, Sicherer SH, Burks AW., Committee On Nutrition. Section On Allergy And Immunology. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. *Pediatrics.* 2019 Apr;143(4)
44. Al-Saud B, Sigurdardóttir ST. Early Introduction of Egg and the Development of Egg Allergy in Children: A Systematic Review and Meta-Analysis. *Int Arch Allergy Immunol.* 2018;177(4):350-359.
45. Perkin MR, Logan K, Marrs T, Radulovic S, Craven J, Flohr C, Lack G., EAT Study Team. Enquiring About Tolerance (EAT) study: Feasibility of an early allergenic food introduction regimen. *J Allergy Clin Immunol.* 2016 May;137(5):1477-1486.e8.
46. Muñoz VL. 'Everybody has to think - do I have any peanuts and nuts in my lunch?' School nurses, collective adherence, and children's food allergies. *Sociol Health Illn.* 2018 May;40(4):603-622.
47. Russell AF, Bingemann TA, Cooke AT, Ponda P, Pistiner M, Jean T, Nanda A, Jobrack J, Hoyt AEW, Young MC. The Need for Required Stock Epinephrine in All Schools: A Work Group Report of the AAAAI Adverse Reactions to Foods Committee. *J Allergy Clin Immunol Pract.* 2023 Apr;11(4):1068-1082.e1.