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Abstract

Background: The life sciences are experiencing an explosion of data from high-throughput genomics, proteomics, and
metabolomics. It is a challenging problem to interpret the complex data sets in parallel with developments in artificial
intelligence (Al) and machine learning (ML).

Aim: This review categorizes the groundbreaking contribution of AI/ML to biomolecular data science during the period 2015-
2024, elucidating its use in multi-omics analysis, protein structure prediction, and experimental automation.

Methods: We performed a systematic literature review highlighting the application of sophisticated computational models such
as deep neural networks, graph neural networks, and transformer architectures in diverse biomolecular data.

Results: Our results establish that AlI/ML has changed the discipline at its core. These technologies facilitate the discovery of
new biomarkers and drug targets from multi-omics data and have made breakthrough achievements in protein structure
prediction using AlphaFold2. In addition, Al is now automating experimental design, making closed-loop systems that
accelerate discovery.

Conclusion: Al and ML are no longer ancillary tools but intrinsic drivers of a new paradigm in molecular biology. Although
data quality and interpretability challenges persist, the incorporation of Al is imperative for decoding the patterns of complex
biological systems and developing personalized medicine.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Genomics, Proteomics, Metabolomics, Protein Structure
Prediction, AlphaFold, Predictive Modeling, Multi-omics, Experimental Automation.

1. Introduction capacity of machines to perform tasks that would

The 21st century has witnessed biology shift
away from a qualitative discipline per se to a
quantitative data-rich discipline. Technologies such as
next-generation sequencing (NGS), mass
spectrometry-based proteomics, and high-resolution
metabolomics produce terabytes of data per
experiment daily (Hasin et al., 2017). This data deluge,
although rich, overwhelmed the capacity of traditional
statistical and computational means to analyze and
interpret. Its high dimensionality, intrinsic noise, and
complexity require more sophisticated, adaptive, and
non-linear methods.

Enter Artificial Intelligence (Al) and
Machine Learning (ML). Al, the broad term for the

otherwise require human intelligence, has discovered
a fertile ground in biology. ML, an Al, is fed
algorithms that can learn patterns and associations
from data without being specifically programmed for
every case (LeCun et al., 2015). The period after 2015
has been particularly explosive, with deep learning—
deep learning being an ML technique using artificial
neural networks with numerous layers—sweeping the
scene across domains. In biomedicine, this
intersection has accelerated a paradigm shift such that
scientists can move from descriptive analysis to
predictive and generative modeling (Eraslan et al.,
2019).
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This review aims to provide an in-depth
description of the application of Al and ML for the
prediction of complex biomolecular data as well as for
developing predictive models. We shall start by
looking at the area of Al in integrating multi-omics
data, such as genomics, proteomics, and
metabolomics. We will then consider the landmark
achievement of Al in structural biology, such as
AlphaFold2, and its consequences. We will next
examine the new field of Al-supported experimental
design and verification. We will then consider the
challenges and opportunities of this rapidly evolving
discipline. Along the way, we will highlight
exemplary work between 2015 and 2024 to illustrate
state-of-the-art and trends.

Machine Learning and Al for Multi-Omics Data
Interpretation

The "omics" revolution has provided us with
a systems-level view of biology. Each of the omics
layers—genomics (DNA), transcriptomics (RNA),
proteomics (proteins), and metabolomics
(metabolites)—gives only a partial picture. Al and ML
are uniquely positioned compared to any other
technology to integrate these various types of data and
create a more comprehensive model of cellular
function and disease dysfunction (Figure 1).
Genomics and Transcriptomics: From Variant
Calling to Functional Prediction

Genomics is at the vanguard biology field to
adopt large-scale data analysis. ML was first adopted
in solving such problems as identifying locations
where proteins interact with DNA or classifying
genomic sequences. Later, deep learning models have
vastly improved performance. Early variant callers
employed hand-crafted statistical models. Google
Health's DeepVariant model, utilizing deep learning,
re-framed variant calling as an image class problem
and overlayed aligned sequencing reads on an image
to use a convolutional neural network (CNN) to
identify insertions, deletions, and single-nucleotide
polymorphisms (SNPs) far more accurately than
methods before (Poplin et al., 2018). This work
showed how domain shift—using biological
information in the form of visual patterns—could
produce breakthroughs.

Besides identification, comprehension of the
functional impact of non-coding variants is a critical
challenge. ExPecto and Sei are programs that use deep
learning models that have been trained on a vast
corpus of genomic and epigenomic data to predict the
transcriptional and epigenetic effect of any sequence
variant, including those in regulatory regions, to
prioritize pathogenic mutations (Zhou et al., 2018;
Chen et al., 2022). scRNA-seq and bulk data are high-
dimensional and sparse. Autoencoders—a type of
neural network used for dimensionality reduction—
are used by ML to compress this data into interpretable
latent representations. The representations can then be
used for cell type labeling, trajectory inference

Saudi J. Med. Pub. Health Vol. 1 No. 2 (2024)

(pseudotime analysis), and denoising (Lopez et al.,
2018). For instance, approaches like scVI (single-cell
Variational Inference) provide a probabilistic
framework for normalization, visualization, and
differential expression analysis of scRNA-seq data,
effectively addressing technical noise and batch
effects (Lopez et al., 2018). More recently, generative
models like Generative Adversarial Networks (GANS)
and diffusion models have been used to create
synthetic, high-quality single-cell data for dataset
augmentation and for in-silico perturbation studies
(Marouf et al., 2020).

Proteomics: Unpacking the Proteome's Complexity

Information proteomics, which is
predominantly generated by mass spectrometry, is
further complicated by the dynamic nature of protein
expression, post-translational modifications (PTMs),
and protein-protein interactions. Peptide sequence-to-
mass spectrum matching is one of the core activities in
proteomics. Traditional database search engines can
be ambiguous. Deep learning methods such as MS2PIP
and Prosit directly predict the fragmentation spectrum
of a peptide sequence, leading to more confident
identifications and revealing newly unassigned spectra
(Gessulat et al., 2019). The depth and accuracy of
proteome coverage have improved significantly due to
this.

Together with Phosphorylation, PTMs have
important roles in signaling. Prediction of PTM sites
from sequence alone is a classic bioinformatics
problem. Deep learning architectures with protein
language model embeddings reached new benchmarks
for phosphorylation, acetylation, and glycosylation
site prediction (Ofer et al., 2021). Besides, ML has
been used to integrate proteomic data with other omics
layers to identify signaling networks that are perturbed
in cancer and other diseases and determine new
biomarker and drug target discovery (Zhang et al.,
2021).

Metabolomics: Omics Cascade End

Metabolomics provides a direct readout of
cell phenotype and is very dynamic. However,
identification of metabolites from mass spectra is still
an enormous bottleneck. A minimal percentage of
spectral  features in the typical untargeted
metabolomics experiment can be properly identified.
ML techniques are being used to predict a candidate
metabolite's mass spectrum from its structure, and vice
versa. FingerlD utilizes support vector machines
(SVMs) and deep learning to map fragmentation
spectra onto molecular structures by searching in silico
fragmentation libraries (Duhrkop et al., 2019). This
has made it possible to annotate unknown metabolites.

By integrating metabolomic data with
clinical variables, ML classifiers (Random Forests,
XGBoost) have succeeded in identifying metabolite
diagnostic signatures for diseases like cancer,
diabetes, and neurological disorders (Anwardeen et
al., 2023). Not only do the models yield diagnostic
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capacity, but they may also shed light on the
pathogenic metabolic pathways implicated.
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Figure 1: Al-Driven Multi-Omics Data Integration
Framework
Multi-Omics Data Integration

The true power of Al lies in the integration of
multiple omics layers. Heterogeneity of data is the
challenge. Earlier methods used concatenation or
kernel-based operations, but deep learning can offer
more universal and powerful solutions. Multi-modal
autoencoders and deep neural network models can

learn a shared representation of different types of
omics data in a shared latent space. This unified
representation can then be utilized for improved
disease subtyping, patient stratification, and survival
prediction (Picard et al., 2021). Genomic,
transcriptomic, and histopathological image data, for
example, have been integrated through deep learning
and employed to predict cancer prognosis superior to
any single data type alone (Mobadersany et al., 2018).
Graph Neural Networks (GNNs)

Living organisms are networked by their
biology. GNNs directly process graph structures, e.g.,

protein-protein interaction networks or gene
regulatory networks, with nodes representing
biomolecules and edges representing their

interactions. With the incorporation of multi-omics
data as node features, GNNs predicted novel
interactions, identified disease modules, and ranked
candidate genes (Zitnik et al., 2019). This is a move
towards modeling biology in its natural network
context (Table 1).

Table 1: Overview of Key AI/ML Applications to Multi-Omics Data Analysis

Omics Field Key Task Traditional/Baseli  Al/ML Example Impact/Advanceme
ne Method Approach Tool/Mode nt
| (Citation)
Genomics Variant GATK, Samtools CNN (image DeepVarian Higher accuracy,
Calling classification t (Poplin et especially in difficult
) al., 2018) genomic regions.
Genomics Non-coding PWM, GWAS Deep ExPecto, Functional
Variant learning on Sei(Zhouet interpretation of
Effect regulatory al., 2018; wvariants in  non-
code Chen et al., coding regions.
2022)
Transcriptomic scRNA-seq  PCA, t-SNE Variational scVI, Effective denoising,
S Analysis Autoencoder  scCANVI batch correction, and
S (Lopez et latent space
al., 2018) representation.
Transcriptomic  Synthetic N/A Generative SCGAN Data augmentation,
S Data Adversarial (Marouf et in-silico
Generation Networks al., 2020) experimentation.
Proteomics Peptide Database Search  Spectrum Prosit, Increased proteome
Identificatio  (e.g., MaxQuant) Prediction MS2PIP coverage and
n with DNNs (Gessulat et identification
al., 2019) confidence.
Proteomics PTM Sequence Motif Embeddings  (Ofer et al., State-of-the-art
Prediction Analysis from Protein 2021) accuracy in
Language predicting
Models modification sites.
Metabolomics Metabolite Spectral Library In-silico CSl: Dramatically
Annotation  Search Fragmentatio  FingerID increased annotation
n& ML (Dihrkop et rates for unknown
al., 2019) metabolites.
Metabolomics  Disease Univariate Statistics ~Multivariate  (Anwardee Identification of
Biomarker Classifiers n et al, robust, multi-
Discovery (XGBoost, 2023) metabolite diagnostic
RF) signatures.
Multi-Omics Data MOFA, iCluster Multi-modal ~ (Picard et Learning joint
Integration Autoencoder  al., 2021) representations  for
S
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superior patient

stratification.
Multi-Omics Network Gene Set Graph Neural (Zitnik et Modeling biology as
Biology Enrichment Networks al., 2019) interactive networks

(GNNs) for prediction.

The Al Advances in Protein Structure Prediction

For over 50 vyears, the "protein folding
problem™ or protein three-dimensional structure
prediction from the amino acid sequence has been a
grand challenge in biology. AlphaFold2 was the
advance by DeepMind, an Al program that achieved
accuracy comparable to experimental methods
(Jumper et al., 2021).
The Pre-AlphaFold2 Landscape

Before AlphaFold2, computational methods
like homology modeling and fragment assembly were
at best roughly correct, often not working for proteins
with no close structurally characterized homologs. The
CASP experiments consistently found the gap
between computational prediction and experimental
structure. Early ML approaches combined predicted
input features like contact maps, but progress was
incremental (Senior et al., 2020).
The AlphaFold2 Architecture: A Technical Leap

AlphaFold2 was not an incremental
achievement but a revolutionary idea. The most basic
innovation in AlphaFold2 is its end-to-end deep
learning approach, which avoids intermediate steps
like prediction of the contact map.

1. Evolutionary Sequence Analysis:

The target sequence input is not only the sequence
but a multiple sequence alignment (MSA) of
homologs, and this MSA has evolutionary constraints.
There is an independent deep learning module, the
Evoformer, that receives the MSA and a
corresponding representation of residues and predicts
evolutionary and co-evolutionary relationships
(Jumper et al., 2021).

2. The Structure Module:

It is the most innovative component. It accepts the
representations from the Evoformer and outputs
directly the 3D coordinates of all the atoms. It uses an
attention-based mechanism (a transformer model) to
reason about spatial relationships between residues,
effectively "folding" the protein in silico in a single,
end-to-end pass (Jumper et al., 2021).

3. Iterative Refinement:

The system iterates, using its own output to refine
the predicted structure, optimizing local geometry and
steric clash. The result was a system capable of
predicting protein structures at sub-atomic accuracy
for the majority of CASP14 targets, solving the
fundamental single-chain protein folding problem.
Ramifications and Subsequent Developments

The publication of AlphaFold2 and the
subsequent AlphaFold Protein Structure Database,
with predicted structures for virtually all but a
minuscule number of the proteins in the cataloged
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human proteome, and over 20 other model organisms,
was an earthquake (Varadi et al., 2022). Structure-
based drug design relies on structural information
about the target protein. AlphaFold2 has generated
high-quality models for the vast majority of proteins
without an experimental structure, providing novel
opportunities for virtual screening and lead
optimization (Thornton et al., 2021). It has been used,
for instance, to model recalcitrant targets like G-
protein-coupled receptors (GPCRs) and membrane
proteins. Design is the reverse of folding. With
AlphaFold2 and after, there have been models like
RoseTTAFold and RFdiffusion, wusing similar
architectural ideas to design new proteins that do not
occur naturally (Baek et al., 2021; Watson et al.,
2023). It has massive potential for designing novel
enzymes, drugs, and biomaterials.

The field is racing to more difficult problems.
AlphaFold-Multimer and subsequent versions are
specifically aimed at predicting protein complex
structures (Evans et al., 2021). Although there remain
difficulties, in particular for very flexible complexes,
the rate of progress is rapid. Parallel and
complementary to this has been the development of
Protein Language Models (pLMs), such as ESM
(Evolutionary Scale Modeling) and ProtTrans. These
are transformer models of a gigantic size, which are
pre-trained on millions of protein sequences from
databases. They acquire fundamental laws of protein
syntax and semantics and produce high-strength
numerical embeddings for each sequence (Rives et al.,
2021). These embeddings are now a default option for
a wide range of downstream tasks, from protein
function and stability prediction to the effect of
missense mutations, and will usually outperform
MSAA-derived features, especially for orphan
sequences with few homologs (Brandes et al., 2022).
Al in Automated Experimental Design and
Validation

The final frontier of Al in biomolecular
science is to complete the loop from hypothesis,
prediction, experiment, and analysis. Al is beginning
to shift from the role of a passive analytical tool to an
active participant in the scientific process.
Experimental Parameters Optimization

Biological assays typically come with a vast
parameter space (e.g., levels of reagents, temperatures,
time points). Active learning and Al-powered
Bayesian optimization can explore this space
comprehensively to find good conditions using many
fewer experiments than traditional grid searches
(Malkomes& Garnett, 2018). This is being applied to
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optimizing CRISPR guide RNA design, PCR, and
protein crystallization.
Self-Driving Laboratories

The "self-driving lab" idea combines robotic
automation with Al planning. The Al proposes an
experiment based on a predefined objective (e.g., to
synthesize a molecule with specific properties), a
robotic platform experiment, and the results are
returned to the Al to update its model and propose the
next experiment. This has been demonstrated in fields
such as materials science and is being applied in
biology to automate strain engineering in synthetic
biology and the discovery of new genetic circuits
(Seifrid et al., 2022).
Al for Data Validation and Reproducibility

The reproducibility crisis of science is also,
in part, a data quality problem. Al models can be

instructed to find outliers, detect technical artifacts,
and even flag potentially falsified images on scientific
articles (Gendron et al., 2022). ML algorithms, for
example, can filter Western blot images or flow
cytometry data for signs of improper manipulations or
of poor quality as an initial line of defense in data
analysis and peer review.
Hypothesis Formation with Generative Al

Large language models (LLMSs) like GPT-4,
if trained on the vast corpus of scientific literature
(e.g., PubMed), can also act as superhuman assistants
in literature generation. They can abstract existing
knowledge, identify unmapped connections between
unrelated fields, and generate novel, testable
hypotheses (Wang et al., 2023). While not replacing
scientists, they can significantly accelerate the initial
phase of research development (Table 2).

Table 2: Advances through Al in Protein Science and Experimental Automation

Domain Specific Pre-Al Al/ML Key Impact/Advancement
Challenge Paradigm Solution Model/System
(Citation)

Protein Single-chain  Homology End-to-End AlphaFold2 Solved the core folding
Structure 3D Modeling, Deep Learning (Jumper et al., problem; atomic-level
Prediction Physics- (Transformers) 2021) accuracy.

based
Protein Rapid, N/A Simplified, RoseTTAFold Democratized high-
Structure Accessible Open-Source (Baek et al., accuracy structure
Prediction AF2 2021) prediction.
Architecture
Protein Functional & Evolutionary Protein ESM-2, Powerful  sequence-only
Science Stability Analysis Language ProtTrans embeddings for diverse
Prediction (MSA- Models (Rives et al., prediction tasks.
dependent) (pLMs) 2021)
Protein De Novo Rational Inverse RFdiffusion, Creation of novel
Design Protein Design, Folding & ProteinMPNN functional proteins and
Creation Phage Generative (Watson et al., enzymes from scratch.
Display Models 2023; Dauparas
et al., 2022)

Protein Protein- Docking Specialized AlphaFold- Improved accuracy for
Complexes  Protein Simulations ~ Multimer Multimer quaternary structure
Interaction Prediction (Evans et al., prediction.

Structures 2021)
Experiment Parameter One-factor-  Bayesian (Malkomes& Finds optimal
Design Optimization at-a-time, Optimization Garnett, 2018) experimental  conditions
Grid Search with minimal trials.
Experiment Synthetic Manual Self-Driving (Seifrid et al.,, Fully automated, closed-
Design Biology & Design- Laboratories 2022) loop discovery systems.
Chemistry Build-Test
Cycles
Validation  Image Fraud Manual Peer Image (Gendron et al., Automated screening for
Detection Review Analysis with 2022) image duplication and
CNNs manipulation.
Hypothesis  Literature Manual Fine-tuned GPT-4, Accelerated  knowledge
Generation Mining & Literature Large Galactica synthesis  and novel
Connection Review Language (Wang et al.,, hypothesis generation.
Models 2023)
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Challenges, Limitations, and Future Directions

Although the advances are really inspiring, the
integration of Al in biomolecular science is marred by
several major hurdles.

1. Data Quality and Quantity:

The quality and quantity of training data are a
fundamental part of the performance of Al models.
Noisy, biased, or badly annotated data will produce
biased and unreliable models. The "garbage in,
garbage out" maxim is the most significant principle.
Further, for the majority of rare diseases or biological
settings, large datasets do not exist, and therefore, few-
shot or zero-shot learning strategies must be created
(Feuerriegel et al., 2024).

2. Model Explainability and Interpretability

(XAI:

Deep models are typically referred to as "black
boxes.” Understanding why a model is making a
particular prediction is critical to knowing what
biological knowledge is being derived and building
trust, especially in clinical settings. Techniques like
SHAP (Shapley Additive exPlanations) and LIME
(Local Interpretable Model-agnostic Explanations) are
being adapted to work on biological models in an
attempt to highlight which features (like specific
genomic positions or metabolites) contributed most to
a prediction (Lundberg & Lee, 2017). The design of
inherently interpretable models represents an active
area for future research.

3. Generalization and Robustness:

Models trained with data from a single cell type,
species, or technology fail to generalize to others
(domain  shift).  Achieving  robustness  and
generalizability across biological contexts is a primary
challenge that can be tackled by curated training data
and algorithmic advancements (Yang et al., 2022).

4. Computational Resources:

Training such high-quality models as AlphaFold2
or large pLMs requires significant computational
resources and energy, constituting an entry barrier for
small laboratories and also causing concerns regarding
the carbon footprint of Al research (Strubell et al.,
2019). Efficient models and algorithms are the
solution.

5. Ethical and Societal Implications:

The ability to predict disease risk from genomic
data, design new pathogens, or generate synthetic
biological data raises profound ethical issues. Data
privacy, consent, algorithmic bias (e.g., models being
less accurate on underrepresented groups), and the
potential for dual-use call for anticipatory governance
and input from bioethicists, policymakers, and the
public (Raikar et al., 2023).

Future Directions

In the coming times, the trajectory of Al in
biomolecular science is towards some groundbreaking
frontiers. One of the primary directions is the
development of foundation models for biology-large-
scale, multi-modal pre-trained models over a range of
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data types from DNA and protein sequences to cellular
images and scientific texts. These models, adaptable to
a huge range of downstream tasks with minimal fine-
tuning, promise to be the universal platform for
biological discovery (Moor et al., 2023).
Concurrently, the advent of spatial omics technologies
demands sophisticated Al for spatial omics to
disentangle the complex spatial patterns of gene and
protein expression in tissues, thereby unveiling a
profound tissue architecture comprehension in health
and disease (Moses & Pachter, 2022). On a higher
integration level, the ambitious vision of digital twins
would create comprehensive, dynamic Al models of
biological systems, from individual cells to entire
patients. By combining multi-omics, clinical, and
lifestyle data, digital twins may be able to simulate
disease development and personalize reactions to
treatment, revolutionizing predictive  medicine
(Bruynseels et al., 2018). Lastly, in order to go beyond
correlation and into true mechanistic understanding,
the field must embrace causal Al. Building models that
learn causal relationships from high-dimensional
observational data is the next crucial step, enabling
predictions of the outcome of intervention and
solidifying Al's role not only in the discovery of
patterns, but in informing actionable biological
knowledge (Scholkopf et al., 2021).
Conclusion
This decade has been revolutionary in the life
sciences, driven by the immense synergy between
biomolecular data and AlI/ML. We have progressed
from using ML to assistive tasks to implementing deep
learning machines to solve problems of existential
importance, most aptly exemplified by the solution to
the problem of predicting protein structure. Al is no
longer just an analytical tool; it is becoming a
discovery engine, capable of interpreting the richness
of multi-omics spaces, anticipating accurate structural
models at scale, and even designing and executing
experiments independently. While issues around data,
interpretability, and ethics remain, the trend is set. Al
and ML are now fundamental tools in the biomolecular
scientist's toolkit, ushering in the era of predictive,
personalized, and programmable biology. The future
will be defined by our ability to apply these
technologies judiciously to crack the remaining
frontiers of life and translate these predictions into
actionable therapies and understanding of health and
disease.
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