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Abstract  
Background: The life sciences are experiencing an explosion of data from high-throughput genomics, proteomics, and 

metabolomics. It is a challenging problem to interpret the complex data sets in parallel with developments in artificial 

intelligence (AI) and machine learning (ML). 

Aim: This review categorizes the groundbreaking contribution of AI/ML to biomolecular data science during the period 2015-

2024, elucidating its use in multi-omics analysis, protein structure prediction, and experimental automation. 

Methods: We performed a systematic literature review highlighting the application of sophisticated computational models such 

as deep neural networks, graph neural networks, and transformer architectures in diverse biomolecular data. 

Results: Our results establish that AI/ML has changed the discipline at its core. These technologies facilitate the discovery of 

new biomarkers and drug targets from multi-omics data and have made breakthrough achievements in protein structure 

prediction using AlphaFold2. In addition, AI is now automating experimental design, making closed-loop systems that 

accelerate discovery. 

Conclusion: AI and ML are no longer ancillary tools but intrinsic drivers of a new paradigm in molecular biology. Although 

data quality and interpretability challenges persist, the incorporation of AI is imperative for decoding the patterns of complex 

biological systems and developing personalized medicine. 

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Genomics, Proteomics, Metabolomics, Protein Structure 

Prediction, AlphaFold, Predictive Modeling, Multi-omics, Experimental Automation. 
____________________________________________________________________________________________________________________________________________________________________  

1. Introduction 

The 21st century has witnessed biology shift 

away from a qualitative discipline per se to a 

quantitative data-rich discipline. Technologies such as 

next-generation sequencing (NGS), mass 

spectrometry-based proteomics, and high-resolution 

metabolomics produce terabytes of data per 

experiment daily (Hasin et al., 2017). This data deluge, 

although rich, overwhelmed the capacity of traditional 

statistical and computational means to analyze and 

interpret. Its high dimensionality, intrinsic noise, and 

complexity require more sophisticated, adaptive, and 

non-linear methods. 

Enter Artificial Intelligence (AI) and 

Machine Learning (ML). AI, the broad term for the 

capacity of machines to perform tasks that would 

otherwise require human intelligence, has discovered 

a fertile ground in biology. ML, an AI, is fed 

algorithms that can learn patterns and associations 

from data without being specifically programmed for 

every case (LeCun et al., 2015). The period after 2015 

has been particularly explosive, with deep learning—

deep learning being an ML technique using artificial 

neural networks with numerous layers—sweeping the 

scene across domains. In biomedicine, this 

intersection has accelerated a paradigm shift such that 

scientists can move from descriptive analysis to 

predictive and generative modeling (Eraslan et al., 

2019). 
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This review aims to provide an in-depth 

description of the application of AI and ML for the 

prediction of complex biomolecular data as well as for 

developing predictive models. We shall start by 

looking at the area of AI in integrating multi-omics 

data, such as genomics, proteomics, and 

metabolomics. We will then consider the landmark 

achievement of AI in structural biology, such as 

AlphaFold2, and its consequences. We will next 

examine the new field of AI-supported experimental 

design and verification. We will then consider the 

challenges and opportunities of this rapidly evolving 

discipline. Along the way, we will highlight 

exemplary work between 2015 and 2024 to illustrate 

state-of-the-art and trends. 

Machine Learning and AI for Multi-Omics Data 

Interpretation 

The "omics" revolution has provided us with 

a systems-level view of biology. Each of the omics 

layers—genomics (DNA), transcriptomics (RNA), 

proteomics (proteins), and metabolomics 

(metabolites)—gives only a partial picture. AI and ML 

are uniquely positioned compared to any other 

technology to integrate these various types of data and 

create a more comprehensive model of cellular 

function and disease dysfunction (Figure 1). 

Genomics and Transcriptomics: From Variant 

Calling to Functional Prediction 

Genomics is at the vanguard biology field to 

adopt large-scale data analysis. ML was first adopted 

in solving such problems as identifying locations 

where proteins interact with DNA or classifying 

genomic sequences. Later, deep learning models have 

vastly improved performance. Early variant callers 

employed hand-crafted statistical models. Google 

Health's DeepVariant model, utilizing deep learning, 

re-framed variant calling as an image class problem 

and overlayed aligned sequencing reads on an image 

to use a convolutional neural network (CNN) to 

identify insertions, deletions, and single-nucleotide 

polymorphisms (SNPs) far more accurately than 

methods before (Poplin et al., 2018). This work 

showed how domain shift—using biological 

information in the form of visual patterns—could 

produce breakthroughs. 

Besides identification, comprehension of the 

functional impact of non-coding variants is a critical 

challenge. ExPecto and Sei are programs that use deep 

learning models that have been trained on a vast 

corpus of genomic and epigenomic data to predict the 

transcriptional and epigenetic effect of any sequence 

variant, including those in regulatory regions, to 

prioritize pathogenic mutations (Zhou et al., 2018; 

Chen et al., 2022). scRNA-seq and bulk data are high-

dimensional and sparse. Autoencoders—a type of 

neural network used for dimensionality reduction—

are used by ML to compress this data into interpretable 

latent representations. The representations can then be 

used for cell type labeling, trajectory inference 

(pseudotime analysis), and denoising (Lopez et al., 

2018). For instance, approaches like scVI (single-cell 

Variational Inference) provide a probabilistic 

framework for normalization, visualization, and 

differential expression analysis of scRNA-seq data, 

effectively addressing technical noise and batch 

effects (Lopez et al., 2018). More recently, generative 

models like Generative Adversarial Networks (GANs) 

and diffusion models have been used to create 

synthetic, high-quality single-cell data for dataset 

augmentation and for in-silico perturbation studies 

(Marouf et al., 2020). 

Proteomics: Unpacking the Proteome's Complexity 

Information proteomics, which is 

predominantly generated by mass spectrometry, is 

further complicated by the dynamic nature of protein 

expression, post-translational modifications (PTMs), 

and protein-protein interactions. Peptide sequence-to-

mass spectrum matching is one of the core activities in 

proteomics. Traditional database search engines can 

be ambiguous. Deep learning methods such as MS²PIP 

and Prosit directly predict the fragmentation spectrum 

of a peptide sequence, leading to more confident 

identifications and revealing newly unassigned spectra 

(Gessulat et al., 2019). The depth and accuracy of 

proteome coverage have improved significantly due to 

this. 

Together with Phosphorylation, PTMs have 

important roles in signaling. Prediction of PTM sites 

from sequence alone is a classic bioinformatics 

problem. Deep learning architectures with protein 

language model embeddings reached new benchmarks 

for phosphorylation, acetylation, and glycosylation 

site prediction (Ofer et al., 2021). Besides, ML has 

been used to integrate proteomic data with other omics 

layers to identify signaling networks that are perturbed 

in cancer and other diseases and determine new 

biomarker and drug target discovery (Zhang et al., 

2021). 

Metabolomics: Omics Cascade End 

Metabolomics provides a direct readout of 

cell phenotype and is very dynamic. However, 

identification of metabolites from mass spectra is still 

an enormous bottleneck. A minimal percentage of 

spectral features in the typical untargeted 

metabolomics experiment can be properly identified. 

ML techniques are being used to predict a candidate 

metabolite's mass spectrum from its structure, and vice 

versa. FingerID utilizes support vector machines 

(SVMs) and deep learning to map fragmentation 

spectra onto molecular structures by searching in silico 

fragmentation libraries (Dührkop et al., 2019). This 

has made it possible to annotate unknown metabolites. 

By integrating metabolomic data with 

clinical variables, ML classifiers (Random Forests, 

XGBoost) have succeeded in identifying metabolite 

diagnostic signatures for diseases like cancer, 

diabetes, and neurological disorders (Anwardeen et 

al., 2023). Not only do the models yield diagnostic 
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capacity, but they may also shed light on the 

pathogenic metabolic pathways implicated. 

 
Figure 1: AI-Driven Multi-Omics Data Integration 

Framework 

Multi-Omics Data Integration 

The true power of AI lies in the integration of 

multiple omics layers. Heterogeneity of data is the 

challenge. Earlier methods used concatenation or 

kernel-based operations, but deep learning can offer 

more universal and powerful solutions. Multi-modal 

autoencoders and deep neural network models can 

learn a shared representation of different types of 

omics data in a shared latent space. This unified 

representation can then be utilized for improved 

disease subtyping, patient stratification, and survival 

prediction (Picard et al., 2021). Genomic, 

transcriptomic, and histopathological image data, for 

example, have been integrated through deep learning 

and employed to predict cancer prognosis superior to 

any single data type alone (Mobadersany et al., 2018). 

Graph Neural Networks (GNNs) 

Living organisms are networked by their 

biology. GNNs directly process graph structures, e.g., 

protein-protein interaction networks or gene 

regulatory networks, with nodes representing 

biomolecules and edges representing their 

interactions. With the incorporation of multi-omics 

data as node features, GNNs predicted novel 

interactions, identified disease modules, and ranked 

candidate genes (Zitnik et al., 2019). This is a move 

towards modeling biology in its natural network 

context (Table 1). 

Table 1: Overview of Key AI/ML Applications to Multi-Omics Data Analysis 

Omics Field Key Task Traditional/Baseli

ne Method 

AI/ML 

Approach 

Example 

Tool/Mode

l (Citation) 

Impact/Advanceme

nt 

Genomics Variant 

Calling 

GATK, Samtools CNN (image 

classification

) 

DeepVarian

t (Poplin et 

al., 2018) 

Higher accuracy, 

especially in difficult 

genomic regions. 

Genomics Non-coding 

Variant 

Effect 

PWM, GWAS Deep 

learning on 

regulatory 

code 

ExPecto, 

Sei (Zhou et 

al., 2018; 

Chen et al., 

2022) 

Functional 

interpretation of 

variants in non-

coding regions. 

Transcriptomic

s 

scRNA-seq 

Analysis 

PCA, t-SNE Variational 

Autoencoder

s 

scVI, 

scANVI 

(Lopez et 

al., 2018) 

Effective denoising, 

batch correction, and 

latent space 

representation. 

Transcriptomic

s 

Synthetic 

Data 

Generation 

N/A Generative 

Adversarial 

Networks 

scGAN 

(Marouf et 

al., 2020) 

Data augmentation, 

in-silico 

experimentation. 

Proteomics Peptide 

Identificatio

n 

Database Search 

(e.g., MaxQuant) 

Spectrum 

Prediction 

with DNNs 

Prosit, 

MS²PIP 

(Gessulat et 

al., 2019) 

Increased proteome 

coverage and 

identification 

confidence. 

Proteomics PTM 

Prediction 

Sequence Motif 

Analysis 

Embeddings 

from Protein 

Language 

Models 

(Ofer et al., 

2021) 

State-of-the-art 

accuracy in 

predicting 

modification sites. 

Metabolomics Metabolite 

Annotation 

Spectral Library 

Search 

In-silico 

Fragmentatio

n & ML 

CSI: 

FingerID 

(Dührkop et 

al., 2019) 

Dramatically 

increased annotation 

rates for unknown 

metabolites. 

Metabolomics Disease 

Biomarker 

Discovery 

Univariate Statistics Multivariate 

Classifiers 

(XGBoost, 

RF) 

(Anwardee

n et al., 

2023) 

Identification of 

robust, multi-

metabolite diagnostic 

signatures. 

Multi-Omics Data 

Integration 

MOFA, iCluster Multi-modal 

Autoencoder

s 

(Picard et 

al., 2021) 

Learning joint 

representations for 
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superior patient 

stratification. 

Multi-Omics Network 

Biology 

Gene Set 

Enrichment 

Graph Neural 

Networks 

(GNNs) 

(Zitnik et 

al., 2019) 

Modeling biology as 

interactive networks 

for prediction. 

The AI Advances in Protein Structure Prediction 

For over 50 years, the "protein folding 

problem" or protein three-dimensional structure 

prediction from the amino acid sequence has been a 

grand challenge in biology. AlphaFold2 was the 

advance by DeepMind, an AI program that achieved 

accuracy comparable to experimental methods 

(Jumper et al., 2021). 

The Pre-AlphaFold2 Landscape 

Before AlphaFold2, computational methods 

like homology modeling and fragment assembly were 

at best roughly correct, often not working for proteins 

with no close structurally characterized homologs. The 

CASP experiments consistently found the gap 

between computational prediction and experimental 

structure. Early ML approaches combined predicted 

input features like contact maps, but progress was 

incremental (Senior et al., 2020). 

The AlphaFold2 Architecture: A Technical Leap 

AlphaFold2 was not an incremental 

achievement but a revolutionary idea. The most basic 

innovation in AlphaFold2 is its end-to-end deep 

learning approach, which avoids intermediate steps 

like prediction of the contact map. 

1. Evolutionary Sequence Analysis:  

The target sequence input is not only the sequence 

but a multiple sequence alignment (MSA) of 

homologs, and this MSA has evolutionary constraints. 

There is an independent deep learning module, the 

Evoformer, that receives the MSA and a 

corresponding representation of residues and predicts 

evolutionary and co-evolutionary relationships 

(Jumper et al., 2021). 

2. The Structure Module:  

It is the most innovative component. It accepts the 

representations from the Evoformer and outputs 

directly the 3D coordinates of all the atoms. It uses an 

attention-based mechanism (a transformer model) to 

reason about spatial relationships between residues, 

effectively "folding" the protein in silico in a single, 

end-to-end pass (Jumper et al., 2021). 

3. Iterative Refinement:  

The system iterates, using its own output to refine 

the predicted structure, optimizing local geometry and 

steric clash. The result was a system capable of 

predicting protein structures at sub-atomic accuracy 

for the majority of CASP14 targets, solving the 

fundamental single-chain protein folding problem. 

Ramifications and Subsequent Developments 

The publication of AlphaFold2 and the 

subsequent AlphaFold Protein Structure Database, 

with predicted structures for virtually all but a 

minuscule number of the proteins in the cataloged 

human proteome, and over 20 other model organisms, 

was an earthquake (Varadi et al., 2022). Structure-

based drug design relies on structural information 

about the target protein. AlphaFold2 has generated 

high-quality models for the vast majority of proteins 

without an experimental structure, providing novel 

opportunities for virtual screening and lead 

optimization (Thornton et al., 2021). It has been used, 

for instance, to model recalcitrant targets like G-

protein-coupled receptors (GPCRs) and membrane 

proteins. Design is the reverse of folding. With 

AlphaFold2 and after, there have been models like 

RoseTTAFold and RFdiffusion, using similar 

architectural ideas to design new proteins that do not 

occur naturally (Baek et al., 2021; Watson et al., 

2023). It has massive potential for designing novel 

enzymes, drugs, and biomaterials. 

The field is racing to more difficult problems. 

AlphaFold-Multimer and subsequent versions are 

specifically aimed at predicting protein complex 

structures (Evans et al., 2021). Although there remain 

difficulties, in particular for very flexible complexes, 

the rate of progress is rapid. Parallel and 

complementary to this has been the development of 

Protein Language Models (pLMs), such as ESM 

(Evolutionary Scale Modeling) and ProtTrans. These 

are transformer models of a gigantic size, which are 

pre-trained on millions of protein sequences from 

databases. They acquire fundamental laws of protein 

syntax and semantics and produce high-strength 

numerical embeddings for each sequence (Rives et al., 

2021). These embeddings are now a default option for 

a wide range of downstream tasks, from protein 

function and stability prediction to the effect of 

missense mutations, and will usually outperform 

MSAA-derived features, especially for orphan 

sequences with few homologs (Brandes et al., 2022). 

AI in Automated Experimental Design and 

Validation 

The final frontier of AI in biomolecular 

science is to complete the loop from hypothesis, 

prediction, experiment, and analysis. AI is beginning 

to shift from the role of a passive analytical tool to an 

active participant in the scientific process. 

Experimental Parameters Optimization 

Biological assays typically come with a vast 

parameter space (e.g., levels of reagents, temperatures, 

time points). Active learning and AI-powered 

Bayesian optimization can explore this space 

comprehensively to find good conditions using many 

fewer experiments than traditional grid searches 

(Malkomes& Garnett, 2018). This is being applied to 
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optimizing CRISPR guide RNA design, PCR, and 

protein crystallization. 

Self-Driving Laboratories 

The "self-driving lab" idea combines robotic 

automation with AI planning. The AI proposes an 

experiment based on a predefined objective (e.g., to 

synthesize a molecule with specific properties), a 

robotic platform experiment, and the results are 

returned to the AI to update its model and propose the 

next experiment. This has been demonstrated in fields 

such as materials science and is being applied in 

biology to automate strain engineering in synthetic 

biology and the discovery of new genetic circuits 

(Seifrid et al., 2022). 

AI for Data Validation and Reproducibility 

The reproducibility crisis of science is also, 

in part, a data quality problem. AI models can be 

instructed to find outliers, detect technical artifacts, 

and even flag potentially falsified images on scientific 

articles (Gendron et al., 2022). ML algorithms, for 

example, can filter Western blot images or flow 

cytometry data for signs of improper manipulations or 

of poor quality as an initial line of defense in data 

analysis and peer review. 

Hypothesis Formation with Generative AI 

Large language models (LLMs) like GPT-4, 

if trained on the vast corpus of scientific literature 

(e.g., PubMed), can also act as superhuman assistants 

in literature generation. They can abstract existing 

knowledge, identify unmapped connections between 

unrelated fields, and generate novel, testable 

hypotheses (Wang et al., 2023). While not replacing 

scientists, they can significantly accelerate the initial 

phase of research development (Table 2). 

Table 2: Advances through AI in Protein Science and Experimental Automation 

Domain Specific 

Challenge 

Pre-AI 

Paradigm 

AI/ML 

Solution 

Key 

Model/System 

(Citation) 

Impact/Advancement 

Protein 

Structure 

Single-chain 

3D 

Prediction 

Homology 

Modeling, 

Physics-

based 

End-to-End 

Deep Learning 

(Transformers) 

AlphaFold2 

(Jumper et al., 

2021) 

Solved the core folding 

problem; atomic-level 

accuracy. 

Protein 

Structure 

Rapid, 

Accessible 

Prediction 

N/A Simplified, 

Open-Source 

AF2 

Architecture 

RoseTTAFold 

(Baek et al., 

2021) 

Democratized high-

accuracy structure 

prediction. 

Protein 

Science 

Functional & 

Stability 

Prediction 

Evolutionary 

Analysis 

(MSA-

dependent) 

Protein 

Language 

Models 

(pLMs) 

ESM-2, 

ProtTrans 

(Rives et al., 

2021) 

Powerful sequence-only 

embeddings for diverse 

prediction tasks. 

Protein 

Design 

De Novo 

Protein 

Creation 

Rational 

Design, 

Phage 

Display 

Inverse 

Folding & 

Generative 

Models 

RFdiffusion, 

ProteinMPNN 

(Watson et al., 

2023; Dauparas 

et al., 2022) 

Creation of novel 

functional proteins and 

enzymes from scratch. 

Protein 

Complexes 

Protein-

Protein 

Interaction 

Structures 

Docking 

Simulations 

Specialized 

Multimer 

Prediction 

AlphaFold-

Multimer 

(Evans et al., 

2021) 

Improved accuracy for 

quaternary structure 

prediction. 

Experiment 

Design 

Parameter 

Optimization 

One-factor-

at-a-time, 

Grid Search 

Bayesian 

Optimization 

(Malkomes& 

Garnett, 2018) 

Finds optimal 

experimental conditions 

with minimal trials. 

Experiment 

Design 

Synthetic 

Biology & 

Chemistry 

Manual 

Design-

Build-Test 

Cycles 

Self-Driving 

Laboratories 

(Seifrid et al., 

2022) 

Fully automated, closed-

loop discovery systems. 

Validation Image Fraud 

Detection 

Manual Peer 

Review 

Image 

Analysis with 

CNNs 

(Gendron et al., 

2022) 

Automated screening for 

image duplication and 

manipulation. 

Hypothesis 

Generation 

Literature 

Mining & 

Connection 

Manual 

Literature 

Review 

Fine-tuned 

Large 

Language 

Models 

GPT-4, 

Galactica 

(Wang et al., 

2023) 

Accelerated knowledge 

synthesis and novel 

hypothesis generation. 
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Challenges, Limitations, and Future Directions 

Although the advances are really inspiring, the 

integration of AI in biomolecular science is marred by 

several major hurdles. 

1. Data Quality and Quantity: 

The quality and quantity of training data are a 

fundamental part of the performance of AI models. 

Noisy, biased, or badly annotated data will produce 

biased and unreliable models. The "garbage in, 

garbage out" maxim is the most significant principle. 

Further, for the majority of rare diseases or biological 

settings, large datasets do not exist, and therefore, few-

shot or zero-shot learning strategies must be created 

(Feuerriegel et al., 2024). 

2. Model Explainability and Interpretability 

(XAI):  

Deep models are typically referred to as "black 

boxes." Understanding why a model is making a 

particular prediction is critical to knowing what 

biological knowledge is being derived and building 

trust, especially in clinical settings. Techniques like 

SHAP (Shapley Additive exPlanations) and LIME 

(Local Interpretable Model-agnostic Explanations) are 

being adapted to work on biological models in an 

attempt to highlight which features (like specific 

genomic positions or metabolites) contributed most to 

a prediction (Lundberg & Lee, 2017). The design of 

inherently interpretable models represents an active 

area for future research. 

3. Generalization and Robustness:  

Models trained with data from a single cell type, 

species, or technology fail to generalize to others 

(domain shift). Achieving robustness and 

generalizability across biological contexts is a primary 

challenge that can be tackled by curated training data 

and algorithmic advancements (Yang et al., 2022). 

4. Computational Resources:  

Training such high-quality models as AlphaFold2 

or large pLMs requires significant computational 

resources and energy, constituting an entry barrier for 

small laboratories and also causing concerns regarding 

the carbon footprint of AI research (Strubell et al., 

2019). Efficient models and algorithms are the 

solution. 

5. Ethical and Societal Implications:  

The ability to predict disease risk from genomic 

data, design new pathogens, or generate synthetic 

biological data raises profound ethical issues. Data 

privacy, consent, algorithmic bias (e.g., models being 

less accurate on underrepresented groups), and the 

potential for dual-use call for anticipatory governance 

and input from bioethicists, policymakers, and the 

public (Raikar et al., 2023). 

Future Directions 

In the coming times, the trajectory of AI in 

biomolecular science is towards some groundbreaking 

frontiers. One of the primary directions is the 

development of foundation models for biology-large-

scale, multi-modal pre-trained models over a range of 

data types from DNA and protein sequences to cellular 

images and scientific texts. These models, adaptable to 

a huge range of downstream tasks with minimal fine-

tuning, promise to be the universal platform for 

biological discovery (Moor et al., 2023). 

Concurrently, the advent of spatial omics technologies 

demands sophisticated AI for spatial omics to 

disentangle the complex spatial patterns of gene and 

protein expression in tissues, thereby unveiling a 

profound tissue architecture comprehension in health 

and disease (Moses & Pachter, 2022). On a higher 

integration level, the ambitious vision of digital twins 

would create comprehensive, dynamic AI models of 

biological systems, from individual cells to entire 

patients. By combining multi-omics, clinical, and 

lifestyle data, digital twins may be able to simulate 

disease development and personalize reactions to 

treatment, revolutionizing predictive medicine 

(Bruynseels et al., 2018). Lastly, in order to go beyond 

correlation and into true mechanistic understanding, 

the field must embrace causal AI. Building models that 

learn causal relationships from high-dimensional 

observational data is the next crucial step, enabling 

predictions of the outcome of intervention and 

solidifying AI's role not only in the discovery of 

patterns, but in informing actionable biological 

knowledge (Schölkopf et al., 2021). 

Conclusion 

This decade has been revolutionary in the life 

sciences, driven by the immense synergy between 

biomolecular data and AI/ML. We have progressed 

from using ML to assistive tasks to implementing deep 

learning machines to solve problems of existential 

importance, most aptly exemplified by the solution to 

the problem of predicting protein structure. AI is no 

longer just an analytical tool; it is becoming a 

discovery engine, capable of interpreting the richness 

of multi-omics spaces, anticipating accurate structural 

models at scale, and even designing and executing 

experiments independently. While issues around data, 

interpretability, and ethics remain, the trend is set. AI 

and ML are now fundamental tools in the biomolecular 

scientist's toolkit, ushering in the era of predictive, 

personalized, and programmable biology. The future 

will be defined by our ability to apply these 

technologies judiciously to crack the remaining 

frontiers of life and translate these predictions into 

actionable therapies and understanding of health and 

disease. 
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