

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub https://doi.org/10.64483/jmph-168

The Laboratory and Clinical Guide to RNA Therapeutic Analysis and Patient Management: Advanced Analytical Techniques and Nursing Considerations for the Physicochemical, Functional, and Safe Clinical Application of RNA Therapeutics

Laila Hafez Hakami $^{(1)}$, Ateyah Laheg Nami Alhadri $^{(2)}$, Abduallaziz Jarallah Obied Alenzi $^{(3)}$, Salem Osaimer H Almutairi $^{(4)}$, Albanderi Enad Alotaibi $^{(5)}$, Maryam Sushil Alneaimy $^{(6)}$, Bishi Ahmad Mohammad Moukli $^{(7)}$, Hind Mohammad Ghaythan Alshehri $^{(8)}$, Ahlam Motashar Alanazi $^{(9)}$, Ibrahim Ali Mdarbesh , Khalid Eid Alfaris $^{(10)}$, Dhifallah Azeeb Alzahrani $^{(11)}$, Faihan Saud Obaid Al-Otaibi $^{(12)}$

- (1) Jazan General Hospital, Ministry of Health, Saudi Arabia,
- (2) Al Darb General Hospital, Ministry of Health, Saudi Arabia,
- (3) Eradah Mental Health Complex, Hail, Ministry of Health, Saudi Arabia,
- (4) Nursing Affairs General Administration, Ministry of Health, Saudi Arabia,
- (5) Al Dawadmi General Hospital, Ministry of Health, Saudi Arabia,
- (6) Western Bader, Ministry of Health, Saudi Arabia,
- (7) Sabya General Hospital, Ministry of Health, Saudi Arabia,
- (8) Staff Nurse Aseer Health Cluster, Alnamas General Hospital, Primary Healthcare Sector, Ministry of Health, Saudi Arabia,
- (9) Al Nadwa Health Center, Ministry of Health, Saudi Arabia,
- (10) Ministry Of Health Branch Riyadh, Saudi Arabia,
- (11) Eye Hospital Jeddah, Ministry of Health, Saudi Arabia,
- (12) Afif General Hospital, Ministry of Health, Saudi Arabia

Abstract

Background: The success of messenger RNA (mRNA) vaccines has established RNA as a foundation therapeutic modality. The field of RNA therapeutics, however, extends far beyond vaccines and includes heterogeneous molecules like small interfering RNAs (siRNAs), antisense oligonucleotides (ASOs), and circular RNAs (circRNAs), each with its respective set of analytical challenges.

Aim: The aim of this review is to outline advances from 2015-2025 to provide an overall view of the laboratory toolkit required to ensure the identity, purity, potency, and safety of the broad diversity of RNA therapeutics. Furthermore, this review briefly outlines the critical role of nursing professionals in the clinical administration and patient monitoring of these sophisticated therapeutics.

Methods: We conducted a systematic review of the literature, spanning analytical techniques for the analysis of the RNA molecule itself—its primary sequence, integrity, and higher-order structure—and its delivery vehicles, with a focus on lipid nanoparticles (LNPs). Key in vitro and in vivo bioassays for determining biological activity were also discussed.

Results: The analysis delineates a sophisticated, multi-dimensional toolkit. Techniques such as mass spectrometry and capillary electrophoresis determine RNA identity and purity, while methods such as SHAPE probing identify important higher-order structures. Lipid nanoparticle characterization relies on dynamic light scattering and cryo-electron microscopy for parameters like size and encapsulation efficiency. Functional potency is finally verified with cell-based assays and animal models.

Conclusion: A robust and in-depth analytical strategy is the foundation for the development of next-generation RNA drugs. This review is a beginning to address challenges in RNA analysis with a view to guaranteeing the safety and efficacy of such novel drugs.

Keywords: RNA therapeutics, lipid nanoparticles (LNP), analytical characterization, potency assays, quality control, mRNA, nursing administration, patient monitoring.

1. Introduction

The molecular biology central dogma, once a descriptive paradigm, is now a therapeutic playground. The concept of RNA as a drug has evolved from an encouraging idea to a clinical practice, transforming pharmaceutical paradigms in general. Global authorization of two mRNA-based

COVID-19 vaccines has been a watershed, showcasing the rapid development, scalability, and unprecedented efficacy of this platform (Hou et al., 2021). But this success is only the tip of the iceberg. The inherent programmability of RNA allows RNA to be engineered for a vast range of functions, from transiently guiding therapeutic proteins to directly

modulating gene expression or even rewriting the genetic code in cells (Rohner et al., 2022).

The variety of RNA therapeutic modalities is broad. Small interfering RNAs (siRNAs) and Antisense Oligonucleotides (ASOs) mediate specific degradation or modulation of mRNA transcripts, a mechanism being exploited by therapeutics like Patisiran and Nusinersen (Setten et al., 2019). MicroRNA (miRNA) mimics can be employed to restore lost tumor-suppressive activities, while antagomirs can be employed to repress oncogenic miRNAs. RNA aptamers, also called "chemical antibodies," can bind specific protein targets with high affinity (Zhou & Rossi, 2017). Most recently, the coupling of RNA with gene-editing technologies, particularly CRISPR-Cas systems, whereby a guide RNA (gRNA) directs the nuclease to a specific genomic site, has opened up new avenues for the treatment of genetic diseases (Doudna & Charpentier, 2014). New platforms like circular RNAs (circRNAs) also offer more stability for prolonged protein expression (Chen et al., 2023). Each of these modalities presents unique analytical challenges, requiring a modality-specific yet still broad analytical approach.

The inherent instability of RNA and its potent immunostimulatory activity need to be precisely engineered. This includes the incorporation of modified nucleotides (e.g., pseudouridine, N1methylpseudouridine) to reduce innate immune recognition and enhance translation (Andries et al., 2015), and complicated 5' cap analogues and optimized untranslated regions (UTRs) for enhanced protein synthesis. To facilitate cellular delivery and protect the RNA cargo against degradation, most systemic RNA therapeutics are formulated in delivery vectors, with lipid nanoparticles (LNPs) being the current gold standard (Cullis & Hope, 2017). The complexity of the RNA molecule and its formulation makes the analytical challenge multi-parametric. This review systematically outlines the laboratory toolkit required to deconvolute this complexity, from physicochemical characterization, through impurity profiling, structural analysis, and functional bioassays, to provide a roadmap for the rigorous analysis required to make next-generation RNA therapeutics safe and effective.

Analytical Challenges Inherent to RNA Therapeutics

Unlike small molecule drugs, which are typically characterized by a single, well-defined chemical structure, RNA therapeutics are heterogeneous by their nature. This heterogeneity arises from several sources. First, even with modern solid-phase synthesis for shorter oligonucleotides or in vitro transcription (IVT) for longer mRNAs, the manufacturing process is not perfectly efficient. This can lead to the presence of failure sequences, truncated products, and products with incomplete or incorrect nucleoside modifications (Karikó et al., 2012). For

IVT-generated mRNAs, one of the significant challenges is the presence of double-stranded RNA (dsRNA) impurities, which are potent inducers of the innate immune response and can efficiently inhibit translation and induce cytotoxicity (Baiersdörfer et al., 2019).

The second aspect is that the RNA molecule per se is unstable. Ribonucleases (RNases) are stable and ubiquitous enzymes that have the potential to rapidly degrade RNA and require stringent controls and RNase-free conditions when working with it (Zhou et al., 2019). Furthermore, RNA is chemically unstable, with depurination (hydrolysis of the N-glycosidic bond at purine bases) and hydrolysis of the phosphodiester backbone accelerated at high temperatures or non-neutral pH (Lorenz et al., 2017). This instability necessitates that RNA be handled, stored, and analyzed under controlled conditions to avoid artifactual degradation that can confound results.

Third, the biological activity of an RNA therapeutic is not solely defined by its chemical composition but also by its higher-order structure. The single-stranded RNA molecule can fold into complex secondary and tertiary structures through intramolecular base-pairing. Such structures can profoundly affect its function, e.g., by controlling the exposure of the translation initiation site in mRNA, the seed sequence of an siRNA, or the binding loop of an aptamer (Wang et al., 2023). Analytical methods must therefore go beyond sequence confirmation to query structural features.

For formulated products, finally, the analysis two-part problem. The RNA must be characterized, but the delivery vehicle must also be characterized (e.g., LNP). The critical attributes include particle size, polydispersity, zeta potential, RNA encapsulation efficiency, and integrity of the lipid bilayer (Kulkarni et al., 2018). The way the RNA interacts with the carrier is also significant because it can affect stability, pharmacokinetics, biodistribution. This complex character necessitates an orthogonal analytical strategy, where multiple, independent techniques are used to build a holistic view of the product's critical quality attributes (CQAs). Figure 1 shows the integrated analytical strategy for RNA therapeutics, divided into three main

Physicochemical Characterization of the RNA Molecule

The analytical journey for all RNA therapeutics begins with an extensive physicochemical characterization to confirm its identity, purity, integrity, and structure. This foundational characterization ensures the molecule to be synthetically accurate and possessing the physical characteristics necessary for its biological function.

Figure 1: The Analytical Toolkit for RNA **Therapeutics**

Assessment of Identity, Purity, and Integrity

Determination of the primary sequence and assessment of purity are the most important. Separation-based techniques form the foundation of such analysis. Capillary Electrophoresis (CE), particularly in denaturing conditions, is one of the gold standards for analysis of RNA size, purity, and integrity. It boasts high resolution to resolve RNA species with a one nucleotide difference, enabling quantitation of full-length product and resolution of impurities like shortmers and nicked species (Warzak et al., 2023). For smaller oligonucleotides such as siRNAs and ASOs, Ion-Pair Reversed-Phase Liquid Chromatography (IP-RP-HPLC) is a robust complementary method, resolving species well by hydrophobicity and diastereomers due phosphorothioate linkages (Goyon et al., 2020).

Mass Spectrometry (MS) provides the final confirmation of identity and primary structure. Highresolution MS can accurately determine molecular weight, confirming sequence and modified nucleotide incorporation (Gleeson et al., 2021). While intact MS of long mRNAs is challenging, a bottom-up approach—enzymatically digesting the RNA and quantifying the fragments via LC-MS/MS—enables full sequence mapping and modification localization (Lermyte et al., 2019). Selective detection of doublestranded RNA (dsRNA) impurities, potent inducers of innate immunity, is an essential element of purity profiling. This may be achieved enzymatically, using dsRNA-specific nucleases like RNase III, or immunochemically, using dsRNA-specific antibodies in assays like ELISA (Baiersdörfer et al., 2019; Weissman et al., 2012).

Probing Higher-Order Structure

Secondary and tertiary structure of an RNA therapeutic exerts a significant influence on its biological activity. Biophysical techniques are required to probe these higher-order features. Ultraviolet (UV) Melting Curve analysis is a classic method for examining overall thermal stability, providing a melting temperature (Tm) that indicates the stability of the secondary structure (Rangadurai et al., 2022). For atomic-resolution details, Nuclear Magnetic Resonance (NMR) Spectroscopy is unparalleled, but typically limited to smaller RNA constructs like aptamers, where it can resolve basepairing and conformational dynamics (Marušič et al., 2023).

Highly advanced chemical methodologies have also changed the game. SHAPE (Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension) and similar methods provide nucleotideresolution maps of RNA secondary structure by chemically modifying flexible, unpaired nucleotides; the modification sites are then read out by sequencing or capillary electrophoresis (Smola & Weeks, 2018). They allow designers to validate the intended functional conformation and weed out sequences with detrimental alternative structures (Watters et al., 2016). Table 1 and Figure 2 show the end-to-end process of RNA therapeutic development.

Table 1: Key Analytical Techniques for RNA Molecule Characterization

Analytical Target		Technique	Key Information Provided	Key Considerations
Identity Sequence	&	LC-ESI-MS/MS	Confirms molecular weight, sequence, and location of nucleoside modifications.	Challenging for large mRNAs (>3 kb); bottom-up approach required.
		Next-Generation Sequencing (NGS)	Comprehensive sequence verification; can detect low-abundance sequence variants.	Requires high purity; data analysis is complex.
Purity Integrity	&	Capillary Gel Electrophoresis (CGE)	High-resolution separation of full- length product from shortmers, longmers, and nicked impurities.	Denaturing conditions are essential; high sensitivity with LIF detection.
		Ion-Pair RP-HPLC	Separates oligonucleotides by hydrophobicity; excellent for siRNAs/ASOs and phosphorothioate diastereomers.	Can be coupled to MS for identification of impurities.
dsRNA Impurity		RNase III Digestion + CE/HPLC	Quantifies dsRNA content by specific enzymatic digestion.	Provides direct measurement of a key product-related impurity.

	Anti-dsRNA ELISA	Immunoassay for sensitive and specific	High throughput; useful for	
		detection of dsRNA.	process development screening.	
Higher-	UV Melting Curve	e Measures global thermal stability of Simple and rapid; pro-		
Order	(Tm)	RNA secondary structure.	single Tm value for	
Structure			comparison.	
	SHAPE-MaP	Nucleotide-resolution mapping of	Provides rich, quantitative	
		RNA secondary structure in solution.	structural data; can be	
			applied to long RNAs.	
	NMR Spectroscopy	Atomic-level resolution of 3D structure	Limited to small RNA	
		and dynamics.	constructs (<100 nt);	
			requires isotopic labeling.	

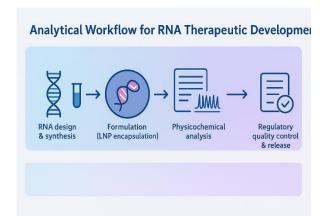


Figure 2: Analytical Workflow for RNA Therapeutic Development

Characterization of the Delivery System: Shining the Spotlight on Lipid Nanoparticles

systemically administered For therapeutics, the delivery vehicle is equally crucial as the payload. The gold standard delivery system is Lipid Nanoparticles (LNPs), and their comprehensive characterization is critical to ensure product quality and performance. Key physical attributes include particle size, distribution, charge, and morphology. Dynamic Light Scattering (DLS) is routinely used to measure hydrodynamic diameter and polydispersity index (PDI), where a low PDI is critical for a narrow, homogeneous size distribution that is necessary for reproducible in vivo behavior (Yang & Wang, 2021). Nanoparticle Tracking Analysis (NTA) provides complementary data, with particle concentration and visualization of sub-populations. Surface charge, or zeta potential, which influences colloidal stability and cellular interactions, is measured by electrophoretic light scattering. For internal morphology and structure imaging, Cryo-Electron Microscopy (cryo-EM) is currently the gold standard, allowing direct visualization of the electron-dense RNA core and lipid bilayer integrity (Brader et al., 2021).

A paramount analytical challenge is determining Encapsulation Efficiency (EE)—the proportion of RNA successfully entrapped in the LNPs. The standard method employs a fluorescent dye like Ribogreen. Fluorescence is measured before and

after LNP disruption with a detergent; the difference in signals quantitates the unencapsulated (free) and total RNA, and EE can be determined as (1 - free RNA/total RNA) * 100% (Kulkarni et al., 2018). Free RNA and intact LNPs can also be physically separated and quantified using more advanced techniques, such as size-exclusion chromatography combined with multi-angle light scattering (SEC-MALS).

Functional and Potency Assays

Last, a value of an RNA therapeutic is determined by its biological activity. Potency needs to be established using a tiered set of bioassays. To screen early, in vitro translation assays can be employed in cell-free systems (e.g., rabbit reticulocyte lysate), providing a rapid, quantitative readout of protein expression potential with minimal cellular complexity (Tavernier et al., 2011). In vitro cell-based assays represent the gold standard for determination of potency. For mRNAs, this is accomplished by transfecting a suitable cell line and quantitating the encoded protein by ELISA, western blot, or flow cytometry (Vlatkovic, 2021). For silencing modalities like siRNA and ASOs, potency is measured as knockdown of the target mRNA (via RTqPCR) and protein (Janas et al., 2018). For CRISPR guide RNAs, the functional readout is genome editing efficiency, which is quantified by next-generation sequencing or enzymatic assays like the T7 Endonuclease I assay (Hendel et al., 2015).

Besides in vitro assays that are crucial for quality control, in vivo efficacy testing in animal models is needed for preclinical development. These experiments evaluate therapeutic efficacy in a physiologically relevant context, including pharmacokinetics, biodistribution, and cell uptake (Moss et al., 2019). An important parallel safety study is immunogenicity profiling. This is tested in vitro on human peripheral blood mononuclear cells (PBMCs) or custom reporter cell lines, measuring the induction of pro-inflammatory cytokines IFN-α and IL-6 to ensure the RNA construct is as non-immunogenic as possible (Nelson et al., 2020). Table 2 illustrates the functional bioassays for different RNA therapeutic modalities.

Table 2: Functional Bioassays for Different RNA Therapeutic Modalities

Therapeutic Modality	Key Functional Assay(s)	Readout Method	Purpose
mRNA (Protein	In	Luminescence,	Quantifies protein
Replacement/Vaccine)	vitro transcription/translation	Fluorescence (e.g., Luciferase), ELISA	expression potential.
	Cell-based expression in relevant cell line	Flow Cytometry, ELISA, Western Blot, Functional Assay (e.g., enzyme activity)	Measures protein expression and function in a cellular context.
siRNA / ASO	Target mRNA knockdown in cell line	RT-qPCR	Quantifies reduction of target transcript levels.
	Target protein knockdown in cell line	Western Blot, Flow Cytometry, ELISA	Confirms functional effect at the protein level.
CRISPR gRNA	Genome editing efficiency	NGS, T7 Endonuclease I Assay, ddPCR	Quantifies the percentage of indels at the target locus.
	Off-target editing assessment	Whole-genome or targeted NGS	Identifies and quantifies editing at unintended genomic sites.
RNA Aptamer	Target binding affinity	Surface Plasmon Resonance (SPR), Bio- Layer Interferometry (BLI)	Measures kinetics (Kon, Koff) and equilibrium (KD) of binding.
	Functional inhibition/activation in cell assay	Cell-based reporter assay, Proliferation assay	Confirms biological activity in a relevant system.
Self-Amplifying RNA (saRNA)	In vitro translation with time course	ELISA, Luminescence over multiple days	Distinguishes primary translation from amplified, sustained expression.
Immunogenicity Profiling	Cytokine induction in PBMCs or reporter cells	ELISA, MSD, Luminescence (e.g., HEK-Blue TM)	Assesses innate immune activation potential; key safety assay.

New Modalities and Their Unique Analytical **Requirements**

The rapid evolution of the RNA therapeutic field introduces new modalities that pose particular analytical challenges. Self-Amplifying RNA (saRNA) based on alphavirus genomes is significantly larger (~9-12 kb) than conventional mRNA and encodes its replication machinery. This necessitates tight integrity analysis for the larger molecule and potency assays capable of discriminating between primary translation and amplified, sustained protein expression (Bloom et al., 2021). Circular RNAs (circRNAs), which are present as covalently closed loops, exhibit nuclease resistance to an extreme extent. Their characterisation requires methods to confirm circular topology and absence of linear impurities, usually achieved by enzymatic digestion with RNase R (which digests only linear RNA) followed by electrophoresis or RT-qPCR (Chen et al., 2023).

For gene editors like CRISPR-Cas systems that are RNA-guided, the analytical focus is almost entirely on functional outcomes. Gene editing efficiency and specificity are the quality attributes of interest. This necessitates deep sequencing to completely profile on-target editing and scan the genome for potential off-target effects (Tsai et al., 2015). Furthermore, when the guide RNA is coformulated with the Cas9 protein ribonucleoprotein (RNP) complex, the analytical strategy must reach out to characterize the composition, stability, and activity of the entire RNP, which adds another dimension of sophistication to the laboratory toolkit.

Integrated Analytical Strategies and Regulatory Considerations

The production of a commercial RNA therapeutic requires an integrated analytical strategy that complies with regulatory expectations of agencies like the U.S. Food and Drug Administration (FDA)

Saudi J. Med. Pub. Health Vol. 1 No. 2 (2024)

and the European Medicines Agency (EMA). The Quality by Design (QbD) concepts mandate that CQAs are established and linked with critical process parameters (CPPs) during manufacturing. A control strategy involves developing appropriate acceptance criteria for each CQA based on clinical and non-clinical batch data. Analytical methods used must be strictly validated according to International Council for Harmonisation (ICH) principles in order to be sure that they are fit for purpose. This involves verification of parameters such as accuracy, precision, specificity, linearity, range, and robustness (Guideline, 2005).

The future for RNA analytics lies in the advancement of technologies. cIEF for charge variant analysis, FFF for LNP characterization, and the use of artificial intelligence for RNA secondary structure prediction and analytical workflow optimization are in the future (Mailler et al., 2019). As the pipeline for RNA therapeutics expands into rare diseases, cancers, and chronic diseases, the laboratory toolkit will only become more sophisticated to enable these powerful medicines to be both safe and effective.

Nursing Considerations and Patient Management

The successful movement of RNA therapeutics from the laboratory to the clinic is not only reliant on rigorous analytical characterization but also on competent clinical delivery and patient management. Nurses are the critical interface between the sophisticated pharmaceutical product and the patient and play a primary role in the upholding of safety, monitoring of efficacy, and provision of required education (Alanazi et al., 2020). Their function includes the entire clinical process, from product handling to long-term patient advocacy.

inherent complexity of The therapeutics, particularly those formulated in lipid nanoparticles (LNPs), demands stringent handling processes that are a fundamental nursing duty. This comprises rigorous adherence to cold chain requirements, such as ultra-low temperature storage and thawing for mRNA products, and meticulous, manufacturer-specific reconstitution with authorized sterile diluents (Johnson et al., 2023). Agitation must be prevented to preserve the structure of the LNP and RNA cargo intact. During administration, typically by intravenous infusion, the infusion rate needs to be carefully controlled. Too fast administration is associated with increased risk of acute inflammatory reactions, and patients need to be closely observed, especially with the initial infusion, for infusion-related adverse effects (Yan et al., 2020).

Vigilant monitoring of the patient and mitigation of adverse events are at the center of the nursing role. A well-characterized class effect of RNA therapeutics is innate immune reactogenicity, with transient flu-like symptoms of pyrexia, chills, myalgia, and fatigue (Pardi et al., 2018). Nurses offer anticipatory guidance, symptoms are managed with antipyretics and analgesics per protocol, and supportive care is given. Additionally, components of

the delivery mechanism, such as polyethylene glycol (PEG) in LNPs, are allergens. Nurses require training to recognize and treat early signs of anaphylaxis or other hypersensitivity reactions, with emergency medications and equipment available (Vogel et al., 2021). For chronic RNA treatments like small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs), the role of the nurse is the long-term monitoring for potential organ-specific toxicities, such as renal or hepatic, through scheduled clinical assessment and laboratory monitoring (Hammond et al., 2021).

Finally, patient education and advocacy are primarily the responsibility of nurses. The novel mechanism of action of RNA-based drugs can be a significant source of patient concern. Nurses bridge the gap between complex science and patient understanding by demystifying the therapy, explaining, for example, how mRNA instructs cells to make a protein or how siRNA silences a diseasecausing gene (Johnson et al., 2023). Setting clear expectations about the potential for reactogenicity symptoms improves adherence and minimizes distress. By mitigating patient fears and dispelling myths, nurses foster trust and facilitate informed consent, which is critical for emerging therapy platforms (Alanazi et al., 2020).

Conclusion

Analytical characterization therapeutics is a demanding but important activity that supports successful development and regulatory approval of RNA therapeutics. The toolkit required is as diverse as the modalities themselves, spanning from advanced physicochemical techniques to determine molecular identity and purity, state-of-the-art biophysical techniques to probe higher-order structure, stringent analyses of the delivery vehicle, and sensitive bioassays to quantify biological potency. The experience with the rapid development and characterization of mRNA vaccines has established a firm foundation, but the unique characteristics of saRNAs, circRNAs, and gene-editing RNAs demand further innovation. As the field continues to mature, the integration of orthogonal analytical data by advanced bioinformatics and the establishment of standardized, rugged methods will be critical to maintaining the consistent quality, safety, and efficacy of the next generation of RNA-based therapeutics and thus fulfilling their enormous potential to cure and treat human disease. In conclusion, while the analytical toolkit ensures the RNA therapeutic product's consistency and quality, it is the nursing profession that ensures its safe and effective translation to the patient. Their role in handling, meticulous administration, monitoring, comprehensive patient education is an integral component of the RNA therapeutic workflow, with direct impact on clinical outcomes and the overall patient experience.

References

- Alanazi, A. J., Alreshidi, M. S., Alyamani, I. M., Alotibi, F. S. N., & Almutairi, N. H. B. (2020). Advancing Oncology Care: the Intersection of Pharmacological Therapies, Nursing Support, and Laboratory Diagnostics. *International journal of health sciences*, 4(S1), 426-441. https://doi.org/10.53730/ijhs.v4nS1.15362
- Andries, O., Mc Cafferty, S., De Smedt, S. C., Weiss, R., Sanders, N. N., & Kitada, T. (2015). N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. *Journal of Controlled Release*, 217, 337-344. https://doi.org/10.1016/j.jconrel.2015.08.051
- 3. Aviran, S., & Guttman, M. (2018). Integrating RNA-seq and chemical probing to determine RNA structure. *Nature Protocols*, *13*(5), 987–1006.
- Baiersdörfer, M., Boros, G., Muramatsu, H., Mahiny, A., Vlatkovic, I., Sahin, U., & Karikó, K. (2019). A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. *Molecular therapy Nucleic* acids, 15, 26-35. https://doi.org/10.1016/j.omtn.2019.02.018
- Bloom, K., van den Berg, F., & Arbuthnot, P. (2021). Self-amplifying RNA vaccines for infectious diseases. *Gene therapy*, 28(3), 117-129. https://doi.org/10.1038/s41434-020-00204-y
- Brader, M. L., Williams, S. J., Banks, J. M., Hui, W. H., Zhou, Z. H., & Jin, L. (2021). Encapsulation state of messenger RNA inside lipid nanoparticles. *Biophysical journal*, 120(14), 2766-2770. https://doi.org/10.1016/j.bpj.2021.03.012
- 7. Chen, R., Wang, S. K., Belk, J. A., Amaya, L., Li, Z., Cardenas, A., ... & Chang, H. Y. (2023). Engineering circular RNA for enhanced protein production. *Nature biotechnology*, 41(2), 262-272. https://doi.org/10.1038/s41587-022-01393-0
- 8. Cullis, P. R., & Hope, M. J. (2017). Lipid nanoparticle systems for enabling gene therapies. *Molecular Therapy*, 25(7), 1467-1475.
 - https://doi.org/10.1016/j.ymthe.2017.03.013
- 9. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. *Science*, *346*(6213), 1258096
 - https://doi.org/10.1126/science.1258096
- 10. Gleeson, J., Leger, A., Prawer, Y. D., Lane, T. A., Harrison, P. J., Haerty, W., & Clark,

- M. B. (2022). Accurate expression quantification from nanopore direct RNA sequencing with NanoCount. *Nucleic acids research*, *50*(4), e19-e19. https://doi.org/10.1093/nar/gkab1129
- 11. Goyon, A., Yehl, P., & Zhang, K. (2020). Characterization of therapeutic oligonucleotides by liquid chromatography. *Journal of Pharmaceutical and Biomedical Analysis*, 182, 113105. https://doi.org/10.1016/j.jpba.2020.113105
- 12. Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology. *Q2* (*R1*), 1(20), 05.
- 13. Hammond, S. M., Aartsma-Rus, A., Alves, S., Borgos, S. E., Buijsen, R. A., Collin, R. W., ... & Arechavala-Gomeza, V. (2021). Delivery of oligonucleotide-based therapeutics: challenges and opportunities. *EMBO molecular medicine*, *13*(4), e13243. https://doi.org/10.15252/emmm.202013243
- 14. Hendel, A., Bak, R. O., Clark, J. T., Kennedy, A. B., Ryan, D. E., Roy, S., ... & Porteus, M. H. (2015). Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. *Nature biotechnology*, 33(9), 985-989. https://doi.org/10.1038/nbt.3290
- 15. Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. *Nature Reviews Materials*, 6(12), 1078-1094. https://doi.org/10.1038/s41578-021-00358-0
- Janas, M. M., Schlegel, M. K., Harbison, C. E., Yilmaz, V. O., Jiang, Y., Parmar, R., ... & Jadhav, V. (2018). Selection of GalNAcconjugated siRNAs with limited off-target-driven rat hepatotoxicity. *Nature communications*, 9(1), 723. https://doi.org/10.1038/s41467-018-02989-4
- Johnson, E. A., Rainbow, J. G., Reed, P. G., Gephart, S. M., & Carrington, J. M. (2023). Developing a preclinical nurse-nurse communication framework for clinical trial patient-related safety Information. CIN: Computers, Informatics, Nursing, 41(7), 514-521. DOI: 10.1097/CIN.00000000000000968
- Karikó, K., Muramatsu, H., Keller, J. M., & Weissman, D. (2012). Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. *Molecular Therapy*, 20(5), 948-953. https://doi.org/10.1038/mt.2012.7
- 19. Kulkarni, J. A., Darjuan, M. M., Mercer, J. E., Chen, S., Van Der Meel, R., Thewalt, J. L., ... & Cullis, P. R. (2018). On the formation

- and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. *ACS nano*, *12*(5), 4787-4795. https://doi.org/10.1021/acsnano.8b01516
- Lermyte, F., Tsybin, Y. O., O'Connor, P. B., & Loo, J. A. (2019). Top or middle? Up or down? Toward a standard lexicon for protein top-down and allied mass spectrometry approaches. *Journal of the American Society* for Mass Spectrometry, 30(7), 1149-1157. https://doi.org/10.1007/s13361-019-02201-x
- 21. Lorenz, C., Lünse, C. E., & Mörl, M. (2017). tRNA modifications: impact on structure and thermal adaptation. *Biomolecules*, 7(2), 35. https://doi.org/10.3390/biom7020035
- 22. Mailler, E., Paillart, J. C., Marquet, R., Smyth, R. P., & Vivet-Boudou, V. (2019). The evolution of RNA structural probing methods: from gels to next-generation sequencing. *Wiley Interdisciplinary Reviews: RNA*, *10*(2), e1518. https://doi.org/10.1002/wrna.1518
- 23. Marušič, M., Toplishek, M., & Plavec, J. (2023). NMR of RNA-Structure and interactions. *Current Opinion in Structural Biology*, 79, 102532. https://doi.org/10.1016/j.sbi.2023.102532
- 24. Moss, K. H., Popova, P., Hadrup, S. R., Astakhova, K., & Taskova, M. (2019). Lipid nanoparticles for delivery of therapeutic RNA oligonucleotides. *Molecular pharmaceutics*, *16*(6), 2265-2277. https://doi.org/10.1021/acs.molpharmaceut.8 b01290
- 25. Nelson, J., Sorensen, E. W., Mintri, S., Rabideau, A. E., Zheng, W., Besin, G., ... & Joyal, J. L. (2020). Impact of mRNA chemistry and manufacturing process on innate immune activation. *Science advances*, 6(26), eaaz6893. https://doi.org/10.1126/sciadv.aaz6893
- Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines—a new era in vaccinology. *Nature reviews Drug discovery*, 17(4), 261-279. http://dx.doi.org/10.1038/nrd.2017.243
- 27. Rangadurai, A., Shi, H., Xu, Y., Liu, B., Abou Assi, H., Boom, J. D., ... & Al-Hashimi, H. M. (2022). Measuring thermodynamic preferences to form nonnative conformations in nucleic acids using ultraviolet melting. Proceedings of the National Academy of Sciences, 119(24), e2112496119.
 - https://doi.org/10.1073/pnas.2112496119
- 28. Rohner, E., Yang, R., Foo, K. S., Goedel, A., & Chien, K. R. (2022). Unlocking the promise of mRNA therapeutics. *Nature biotechnology*, 40(11), 1586-1600. https://doi.org/10.1038/s41587-022-01491-z

- Setten, R. L., Rossi, J. J., & Han, S. P. (2019). The current state and future directions of RNAi-based therapeutics. *Nature reviews Drug discovery*, 18(6), 421-446. https://doi.org/10.1038/s41573-019-0017-4
- 30. Smola, M. J., & Weeks, K. M. (2018). In-cell RNA structure probing with SHAPE-MaP. *Nature protocols*, *13*(6), 1181-1195. https://doi.org/10.1038/nprot.2018.010
- 31. Tavernier, G., Andries, O., Demeester, J., Sanders, N. N., De Smedt, S. C., & Rejman, J. (2011). mRNA as gene therapeutic: how to control protein expression. *Journal of controlled release*, *150*(3), 238-247. https://doi.org/10.1016/j.jconrel.2010.10.020
- 32. Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., ... & Joung, J. K. (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. *Nature biotechnology*, *33*(2), 187-197. https://doi.org/10.1038/nbt.3117
- 33. Vlatkovic, I. (2021). Non-immunotherapy application of LNP-mRNA: maximizing efficacy and safety. *Biomedicines*, 9(5), 530. https://doi.org/10.3390/biomedicines905053
- 34. Vogel, A. B., Kanevsky, I., Che, Y., Swanson, K. A., Muik, A., Vormehr, M., ... & Sahin, U. (2021). BNT162b vaccines protect rhesus macaques from SARS-CoV-2. *Nature*, 592(7853), 283-289. https://doi.org/10.1038/s41586-021-03275-y
- 35. Wang, X., Yu, S., Lou, E., Tan, Y. L., & Tan, Z. J. (2023). RNA 3D structure prediction: progress and perspective. *Molecules*, 28(14), 5532.
 - https://doi.org/10.3390/molecules28145532
- Watters, K. E., Angela, M. Y., Strobel, E. J., Settle, A. H., & Lucks, J. B. (2016). Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). *Methods*, 103, 34-48. https://doi.org/10.1016/j.ymeth.2016.04.002
- 37. Warzak, D. A., Pike, W. A., & Luttgeharm, K. D. (2023). Capillary electrophoresis methods for determining the IVT mRNA critical quality attributes of size and purity. *SLAS technology*, 28(5), 369-374. https://doi.org/10.1016/j.slast.2023.06.005
- Weissman, D., Pardi, N., Muramatsu, H., & Karikó, K. (2012). HPLC purification of in vitro transcribed long RNA. In Synthetic messenger RNA and cell metabolism modulation: Methods and protocols (pp. 43-54). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-260-5_3

- - 39. Yan, L., Shen, J., Wang, J., Yang, X., Dong, S., & Lu, S. (2020). Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response, 18(3), 1559325820936161. https://doi.org/10.1177/1559325820936161
 - 40. Yang, J., Jia, C., & Yang, J. (2021). Designing nanoparticle-based drug delivery systems for precision medicine. International journal of medical sciences, 18(13), 2943. https://doi.org/10.7150/ijms.60874
 - 41. Zhou, J., & Rossi, J. (2017). Aptamers as targeted therapeutics: current potential and challenges. Nature reviews Drug discovery, 16(3), 181-202. https://doi.org/10.1038/nrd.2016.199
 - 42. Zhou, L. Y., Qin, Z., Zhu, Y. H., He, Z. Y., & Xu, T. (2019). Current RNA-based therapeutics in clinical trials. Current Gene Therapy, 19(3), 172-196. https://doi.org/10.2174/15665232196661907 19100526